JPS6227397A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPS6227397A
JPS6227397A JP16665285A JP16665285A JPS6227397A JP S6227397 A JPS6227397 A JP S6227397A JP 16665285 A JP16665285 A JP 16665285A JP 16665285 A JP16665285 A JP 16665285A JP S6227397 A JPS6227397 A JP S6227397A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
raw material
melt
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16665285A
Other languages
Japanese (ja)
Inventor
Koichi Onodera
小野寺 晃一
Takayuki Suzuki
孝幸 鈴木
Kengo Ono
小野 賢悟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP16665285A priority Critical patent/JPS6227397A/en
Publication of JPS6227397A publication Critical patent/JPS6227397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To inexpensively produce a long- and large-sized single crystal having a uniform compsn. by solidifying the melt of a solid crystal raw material from below while rotating a crucible contg. said melt. CONSTITUTION:The crucible 2 is disposed on a support 5 of a crucible moving device 6 having a rotating device 10 in a heating furnace 1 formed with such a temp. distribution in which the temp. is max. in the central part in the vertical position in the furnace and successively decreases toward the vertical direction from the central part. The solid crystal raw material 7 in the powder, granular or pellet state is then supplied from a raw material supply mechanism 8 via a supply pipe 9 into the crucible 2 and the crucible 2 is rotated; at the same time, the moving mechanism 6 is actuated to lower the crucible 2 by which the raw material 7 is melted to the melt 3. The crucible 3 is thereafter lowered further to solidify the melt and to allow the single crystal 4 to grow.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、るつぼと加熱装置とを用い、該るつぼに結晶
原料を供給しつつ該加熱装置及び前記るつ11の相対的
位置関係を連続的に変えることによって、該るつぼ内の
前記結晶原料の融液を下方から凝固させて単結晶を作製
する方法に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention uses a crucible and a heating device, and continuously changes the relative positional relationship between the heating device and the crucible 11 while supplying the crystal raw material to the crucible. The present invention relates to a method for producing a single crystal by solidifying the melt of the crystal raw material in the crucible from below by changing the method.

以下余日 〈従来技術〉 上述の如き単結晶の作製法はブリッジマン法として知ら
れている。この方法で長尺の大型単結晶を作製する場合
には、長尺で大型のるつぼを用い。
The rest of the article <Prior art> The method for producing a single crystal as described above is known as the Bridgman method. When producing long and large single crystals using this method, a long and large crucible is used.

せる。let

具体的には、るつぼの中に一部装填した固体の結晶原料
を溶融し、所定の温度分布をもつ加熱炉内でるつぼを下
方に移動させることによって、るつぼ底部で生じた結晶
をもとに結晶を成長させ。
Specifically, a solid crystal raw material partially charged in a crucible is melted, and the crucible is moved downward in a heating furnace with a predetermined temperature distribution. grow crystals.

他方、結晶の成長に合せて粉末状、顆粒状、あるいはペ
レット状等の固体結晶原料をるつぼに上方から供給する
ことによって単結晶を作製する。
On the other hand, a single crystal is produced by supplying a solid crystal raw material in the form of powder, granules, or pellets to a crucible from above in accordance with the growth of the crystal.

〈発明が解決しようとする問題点〉 しかしながらこのように、るつぼ内に固体結晶原料を単
位時間当シ一定量ずつ連続的に添加しながら溶融させて
長尺の大型単結晶を製造する際に。
<Problems to be Solved by the Invention> However, in this way, when producing a long, large single crystal by melting the solid crystal raw material while continuously adding it to the crucible at a constant rate per unit time.

実際にはるつぼ材が溶出しやすく良質の単結晶が得られ
ない傾向があった。
In reality, the crucible material tends to elute, making it difficult to obtain high-quality single crystals.

したがって本発明の目的は、均一な組成を有する長尺の
大型単結晶を製造する方法であって、かつ高品質の単結
晶を製造する方法を提供し、これによシ一つの単結晶か
ら得られる均一かつ所望の組成を有する単結晶素材の割
合を高めることによって該単結晶素材のコストの大幅な
低下を可能にすることにある。
Therefore, an object of the present invention is to provide a method for producing a long, large-sized single crystal having a uniform composition, and a method for producing a high-quality single crystal. The purpose of this invention is to significantly reduce the cost of the single crystal material by increasing the proportion of the single crystal material having a uniform and desired composition.

〈発明の構成〉 本発明によれば、るつぼと該るつぼ内の固体結晶原料を
融液にするための加熱装置とを用い、該加熱装置及び前
記るつぼの相対的位置関係を連続的に変えることによっ
て、該るつぼ内の前記結晶原料の融液を下方から凝固さ
せて単結晶を作製する方法において、前記るつぼを回転
しながら前記単結晶を成長させることを特徴とする単結
晶の製造方法が得られる。
<Structure of the Invention> According to the present invention, a crucible and a heating device for turning the solid crystal raw material in the crucible into a melt are used, and the relative positional relationship between the heating device and the crucible is continuously changed. According to the present invention, there is provided a method for producing a single crystal, in which a melt of the crystal raw material in the crucible is solidified from below to produce a single crystal, the method comprising growing the single crystal while rotating the crucible. It will be done.

〈実施例〉 次に本発明の実施例について図面を参照して説明する。<Example> Next, embodiments of the present invention will be described with reference to the drawings.

第1図を参照すると2本発明の一実施例による結晶製造
方法に用いる結晶製造装置が示されている。第1図にお
いて、lは加熱炉である。この加熱炉lは炉内上下方向
位置の中央部で最高温となシ、該中央部から上下方向に
離れるに従って温度が下がる温度分布を有している。加
熱炉1の最高温部は固1体の結晶原料を溶融して融液に
することができる温度である。
Referring to FIG. 1, there is shown a crystal manufacturing apparatus used in a crystal manufacturing method according to an embodiment of the present invention. In FIG. 1, l is a heating furnace. The heating furnace 1 has a temperature distribution in which the temperature is highest at the center of the furnace in the vertical direction, and the temperature decreases as it moves away from the center in the vertical direction. The highest temperature part of the heating furnace 1 is a temperature at which a solid crystal raw material can be melted into a melt.

第1図の状態では、るつぼ2の中に融液3が入っており
、上述した温度分布をもった加熱炉1の中を、るつぼ2
を所定の速度で下方へ移動させることによって単結晶4
が成長しつつある。なお5はるつぼ支持具、6はるつぼ
を上下に移動するるつぼ移動機構である。この際、粉末
状、顆粒状あるいはペレット状の個体結晶原料7を、原
料供給機構8によって、単結晶4の成長速度に合せて供
給パイプ9を介してるつぼ2の中に、単位時間当シ一定
量ずつ連続的に供給する。そして。
In the state shown in FIG. 1, the melt 3 is contained in the crucible 2, and the crucible 2 is passed through the heating furnace 1 having the above-mentioned temperature distribution.
By moving the single crystal 4 downward at a predetermined speed,
is growing. Note that 5 is a crucible supporter, and 6 is a crucible moving mechanism that moves the crucible up and down. At this time, the solid crystal raw material 7 in the form of powder, granules, or pellets is fed by the raw material supply mechanism 8 into the crucible 2 through the supply pipe 9 in accordance with the growth rate of the single crystal 4 at a constant rate per unit time. Continuously supply in small amounts. and.

本発明では2回転装置10を設置し1回転を加える。In the present invention, a two-rotation device 10 is installed to apply one rotation.

以下2本発明の実施例を、磁気ヘッド等の磁性材料とし
て使用されるMn −Znフェライトの単結晶の育成を
例にとって説明する。
Two embodiments of the present invention will be described below, taking as an example the growth of a single crystal of Mn--Zn ferrite used as a magnetic material for magnetic heads and the like.

先ず2回転装置10を使用しないでフェライト単結晶を
育成した場合について説明する。例えば。
First, a case will be described in which a ferrite single crystal is grown without using the two-rotation device 10. for example.

Mn −Znフェライトの溶融原料を単結晶に成長させ
ているとき、るつぼ材が溶出しやすい傾向があった。
When the molten raw material of Mn-Zn ferrite was grown into a single crystal, the crucible material tended to be easily eluted.

次に2本発明による方法ではMn −Znフェライト単
結晶を育成する場合について説明する。例えば、 Mn
 −Znフェライトの溶融原料から単結晶に成長させて
いくときに9回転装置10によシ乏つぼにたとえば20
 (rpm )の速さの回転を加えながら結晶成長を行
なう。以上のように育成したMn −Znフェライト単
結晶は、るつぼ材の溶出のきわめて少ない高品質のもの
である。
Next, two methods according to the present invention will be described in which a Mn-Zn ferrite single crystal is grown. For example, Mn
- When growing a single crystal from a molten raw material of Zn ferrite, for example, 20
Crystal growth is performed while applying rotation at a speed of (rpm). The Mn-Zn ferrite single crystal grown as described above is of high quality with extremely little elution of crucible material.

従って、これから得られるフェライト単結晶は。Therefore, the ferrite single crystal obtained from this is.

高品質であシ、得られる均一かつ所望の組成あるいは磁
気特性を有するMn −Znフェライト単結晶の割合は
、従来に比べて著しく高められ、磁気ヘッド材料として
使用する場合も、そのコストを大幅に低下できる。
The proportion of Mn-Zn ferrite single crystals that are of high quality and have a uniform and desired composition or magnetic properties has been significantly increased compared to conventional methods, and when used as a magnetic head material, the cost can be significantly reduced. Can be lowered.

なおこのようにるつぼ材の溶出量に差が生じるのは、従
来のようにるつぼ2を回転させないでおくと径方向に温
度差が生じ、るつぼ2と融液3の接する部分の温度が内
部の温度より高くなってるつぼ材の溶出が起シ易くなる
のに対し2本発明のようにるつぼ2を回転させると内外
の温度差が小くなシ、るつぼ2と融液3の接する部分の
温度が内部温度以上には殆んど上らないので、るつぼ材
の溶出はきわめて少なくなるものと理解される。
The reason for this difference in the elution amount of the crucible material is that when the crucible 2 is not rotated as in the conventional case, a temperature difference occurs in the radial direction, and the temperature of the part where the crucible 2 and the melt 3 are in contact changes with the internal temperature. If the temperature is higher than the temperature, the crucible material tends to elute, but when the crucible 2 is rotated as in the present invention, the temperature difference between the inside and outside is small. It is understood that since the temperature hardly rises above the internal temperature, there is very little elution of the crucible material.

また2本発明はMn −Znフェライト単結晶以外の単
結晶の製造に適用でき、上記同様の効果があるのはもち
ろんである。
Furthermore, the present invention can be applied to the production of single crystals other than Mn-Zn ferrite single crystals, and of course has the same effects as described above.

〈発明の効果〉 以上、説明したように2本発明によれば、ブリッジマン
法で単結晶を製造するに際し、るつぼを回転しながら単
結晶成長を行なうことによシ均一な組成を有する長尺の
大型単結晶を製造することができ、かつ高品質の単結晶
を製造することができるので、単結晶素材のコストの大
幅な低下が可能となる。
<Effects of the Invention> As explained above, according to the present invention, when producing a single crystal by the Bridgman method, a long crystal having a uniform composition can be grown by growing the single crystal while rotating the crucible. Since it is possible to manufacture large single crystals of 1,000 yen and high quality single crystals, it is possible to significantly reduce the cost of single crystal materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による単結晶製造方法に用い
る単結晶製造装置を示した断面図である。 記号の説明=1は加熱炉、2はるつぼ、3は融液、4は
単結晶、5ばるつぼ支持具、6はるつぼ移動機構、7は
結晶原料、8は原料供給機構、9は供給・ぐイブ、10
は回転装置をそれぞれあられしている。 第1図
FIG. 1 is a sectional view showing a single crystal manufacturing apparatus used in a single crystal manufacturing method according to an embodiment of the present invention. Explanation of symbols = 1 is a heating furnace, 2 is a crucible, 3 is a melt, 4 is a single crystal, 5 is a crucible supporter, 6 is a crucible moving mechanism, 7 is a crystal raw material, 8 is a raw material supply mechanism, 9 is a supply Guib, 10
are respectively hailing rotating devices. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、るつぼと加熱装置とを用い、該加熱装置及び前記る
つぼの相対的位置関係を連続的に変えるとともに、その
速度に応じた量の原料を該るつぼに供給することによっ
て、該るつぼ内の前記結晶原料の融液を下方から凝固さ
せて単結晶を作製する方法において、前記るつぼを回転
しながら前記単結晶を成長させることを特徴とする単結
晶の製造方法。
1. By using a crucible and a heating device, continuously changing the relative positional relationship between the heating device and the crucible, and supplying an amount of raw material to the crucible according to the speed, 1. A method for producing a single crystal in which a melt of a crystal raw material is solidified from below to produce a single crystal, the method comprising growing the single crystal while rotating the crucible.
JP16665285A 1985-07-30 1985-07-30 Production of single crystal Pending JPS6227397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16665285A JPS6227397A (en) 1985-07-30 1985-07-30 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16665285A JPS6227397A (en) 1985-07-30 1985-07-30 Production of single crystal

Publications (1)

Publication Number Publication Date
JPS6227397A true JPS6227397A (en) 1987-02-05

Family

ID=15835233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16665285A Pending JPS6227397A (en) 1985-07-30 1985-07-30 Production of single crystal

Country Status (1)

Country Link
JP (1) JPS6227397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111670A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012111669A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111670A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP2012111669A (en) * 2010-11-26 2012-06-14 Shin-Etsu Chemical Co Ltd METHOD FOR MANUFACTURING SiC SINGLE CRYSTAL

Similar Documents

Publication Publication Date Title
JPS6227397A (en) Production of single crystal
JPH01252595A (en) Production of single crystal and device therefor
JPS60191087A (en) Method and apparatus for manufacturing single crystal
JPS6136192A (en) Crucible for producing single crystal
JPS62128995A (en) Production of single crystal
JP2831906B2 (en) Single crystal manufacturing equipment
JPS61242981A (en) Production of single crystal
KR0130403B1 (en) Method for production of mono crystal by travelling zon method
JPS6177694A (en) Preparation of single crystal having uniform composition
JPS61286293A (en) Process and device for preparing single crystal
JPS61155286A (en) Single crystal growth device
JPH0421594A (en) Production of mn-zn ferrite single crystal
JPS61236681A (en) Process and device for preparing single crystal
JPS6114191A (en) Manufacture of single crystal
JPH06279174A (en) Production of oxide single crystal
JPH05279188A (en) Method for growing rutile single crystal
JPH0777993B2 (en) Single crystal manufacturing method
JP3010848B2 (en) Single crystal manufacturing method
JPS5964587A (en) Preparation of single crystal
JPS55140792A (en) Manufacture of 3-5 group compound semiconductor single crystal
JPH02221180A (en) Device for growing single crystal
JPH01242480A (en) Apparatus for producing single crystal
JPH04149098A (en) Production of mn-zn ferrite single crystal
JP2004091222A (en) Method for manufacturing oxide semiconductor single crystal
JPH0238558B2 (en) TANKETSUSHONOSEIZOHOHO