JPH05132745A - Production of aluminum alloy excellent in formability - Google Patents

Production of aluminum alloy excellent in formability

Info

Publication number
JPH05132745A
JPH05132745A JP32530691A JP32530691A JPH05132745A JP H05132745 A JPH05132745 A JP H05132745A JP 32530691 A JP32530691 A JP 32530691A JP 32530691 A JP32530691 A JP 32530691A JP H05132745 A JPH05132745 A JP H05132745A
Authority
JP
Japan
Prior art keywords
treatment
aluminum alloy
formability
room temperature
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32530691A
Other languages
Japanese (ja)
Inventor
Takahiro Tsubota
孝弘 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP32530691A priority Critical patent/JPH05132745A/en
Publication of JPH05132745A publication Critical patent/JPH05132745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce an aluminum alloy having fine and uniform crystalline grains even after final forming, free from the occurrence of surface roughing, and excellent in formability. CONSTITUTION:An ingot of an aluminum alloy having a composition consisting of, by weight, 4.0-7.0% Cu, 0.1-0.6% Mn, 0.01-0.2% V, 0.05-0.3% Zr, 0.01-0.15% Ti, and the balance aluminum with inevitable impurities is subjected to homogenizing treatment, to hot and cold rollings, to heating and holding at 470-550 deg.C, and to cooling down to a temp. not higher than room temp. Subsequently, after subjected to or not subjected to precipitation treatment, the alloy is worked at 20-75% draft and further subjected to softening treatment at 360-500 deg.C. This alloy is characterized by having an electric conductivity, at room temp. after the treatment, of 44-46%IACS.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形性に優れたアルミニ
ウム合金の製造方法に関するものであり、特に従来の2
000系合金で代表されるCu、Mn等を含有するアル
ミニウム合金において軟化処理後成形加工を施しても、
肌荒れを生じることのないアルミニウム合金の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy having excellent formability, and particularly to the conventional method 2.
Even if an aluminum alloy containing Cu, Mn, etc. represented by a 000 series alloy is subjected to a forming process after the softening treatment,
The present invention relates to a method for producing an aluminum alloy that does not cause rough skin.

【0002】[0002]

【従来の技術】従来成形用アルミニウム合金、例えば2
024等の合金は航空機用材料又はその他の構造用材料
として大量に使用されており、通常軟質材にて予備成形
加工を施し、次いで溶体化及び焼入れを行い、焼入れ直
後の強度の低い短時間の間に最終成形加工を行った後、
時効処理を施して高強度のアルミニウム合金とする製造
工程が実施されている。
2. Description of the Related Art Conventional aluminum alloys for forming, eg 2
Alloys such as 024 are used in large quantities as materials for aircraft or other structural materials. Usually, soft materials are preformed, then solution heat treated and quenched to obtain a low strength short time immediately after quenching. After performing the final molding process in between,
A manufacturing process in which an aging treatment is performed to obtain a high-strength aluminum alloy is performed.

【0003】[0003]

【発明が解決しようとする課題】従来の軟質材で1〜2
0%程度の予備成形加工を受けた部分は、その後の溶体
化、焼き入れ等の工程において著しく粗大な再結晶組織
となり、最終成形加工において表面に肌荒れ或いは微小
な割れが発生しアルミニウム製品としての性能を低下さ
せる原因となるものであった。
The conventional soft material is 1-2.
The portion that has undergone preforming of about 0% has a remarkably coarse recrystallized structure in the subsequent steps such as solutionizing and quenching, and the surface is roughened or minute cracks occur in the final forming process, resulting in an aluminum product. It was a cause of lowering the performance.

【0004】[0004]

【課題を解決するための手段】本発明はかかる状況に鑑
み鋭意検討の結果、板材、管材及び棒材などの軟質材に
施される圧延、抽伸、スウェージ、冷間鍛造などにおけ
る全ての冷間加工後に於いて再結晶粒が粗大とならず且
つ最終成形加工後も均一微細な結晶粒を有し、肌荒れの
生じない成形性に優れたアルミニウム合金の製造方法を
開発したものであり、請求項1記載の発明は、Cu4.
0〜7.0wt%、Mn0.1〜0.6wt%、V0.01
〜0.2wt%、Zr0.05〜0.3wt%、Ti0.0
1〜0.15wt%を含有し、残部がAlと不可避不純物
とからなるアルミニウム合金鋳塊を均質化処理後、熱間
圧延及び冷間圧延を施し、次いで470〜550℃にて
溶体化処理後、室温以下の温度まで冷却した後、20〜
75%の加工を施した後、更に360〜500℃にて軟
化処理を施し、その後の室温での導電率が44〜46%
IACSであることを特徴とする成形性に優れたアルミ
ニウム合金の製造方法であり、請求項2記載の発明は、
Cu4.0〜7.0wt%、Mn0.1〜0.6wt%、V
0.01〜0.2wt%、Zr0.05〜0.3wt%、T
i0.01〜0.15wt%を含有し、残部がAlと不可
避不純物とからなるアルミニウム合金鋳塊を均質化処理
後、熱間圧延及び冷間圧延を施し、次いで470〜55
0℃にて溶体化処理後、室温以下の温度まで冷却し、次
いで析出処理を行い、次いで20〜75%の加工を施し
た後、更に360〜500℃にて軟化処理を施し、その
後の室温での導電率が44〜46%IACSであること
を特徴とする成形性に優れたアルミニウム合金の製造方
法である。
DISCLOSURE OF THE INVENTION As a result of intensive investigations in view of such circumstances, the present invention has revealed that all cold workings such as rolling, drawing, swaging and cold forging applied to soft materials such as plate materials, pipe materials and bar materials. Claims: This is a method for producing an aluminum alloy which does not have coarse recrystallized grains after processing and has fine and uniform crystal grains even after final forming and has excellent formability without causing rough skin. The invention described in 1 is Cu4.
0-7.0 wt%, Mn 0.1-0.6 wt%, V0.01
~ 0.2 wt%, Zr0.05-0.3 wt%, Ti0.0
After homogenizing an aluminum alloy ingot containing 1 to 0.15 wt% and the balance of Al and unavoidable impurities, hot rolling and cold rolling are performed, and then solution treatment is performed at 470 to 550 ° C. , After cooling to a temperature below room temperature, 20 to
After processing 75%, softening treatment is further carried out at 360-500 ° C., and the conductivity at room temperature after that is 44-46%.
A method for producing an aluminum alloy having excellent formability, which is IACS, and the invention according to claim 2 is
Cu 4.0-7.0 wt%, Mn 0.1-0.6 wt%, V
0.01-0.2 wt%, Zr 0.05-0.3 wt%, T
The aluminum alloy ingot containing i of 0.01 to 0.15 wt% and the balance of Al and unavoidable impurities is homogenized, hot-rolled and cold-rolled, and then 470-55.
After solution treatment at 0 ° C., it is cooled to a temperature below room temperature, then precipitation treatment is performed, then 20 to 75% processing is performed, and then softening treatment is further performed at 360 to 500 ° C., then room temperature. The method for producing an aluminum alloy having excellent formability is characterized by having a conductivity of 44 to 46% IACS.

【0005】[0005]

【作用】本発明において、合金組成を上記の如く限定し
たのは、次の理由によるものである。Cuの含有量を
4.0〜7.0wt%と限定したのは、4.0wt%未満で
は成形加工後、溶体化処理及び時効処理を行っても十分
な強度が得られず、7.0wt%を超えるとCu系金属間
化合物が析出し、靱性を低下するばかりか、冷間圧延性
及び成形加工性を低下させる為好ましくない。Mnの含
有量を0.1〜0.6wt%、Zrの含有量を0.05〜
0.3wt%及びTiの含有量を0.01〜0.15wt%
と限定したのは、それぞれ下限未満では結晶粒が微細化
せず、成形加工性が改善されない為であり、また上限を
超えると冷間圧延性及び成形加工性を低下させる為好ま
しくない。Vの含有量を0.01〜0.2wt%と限定し
たのは、0.01wt%未満では耐熱性の効果が得られず
0.2wt%を超えると冷間圧延性及び成形加工性を低下
させる為好ましくない。
In the present invention, the alloy composition is limited as described above for the following reason. The reason for limiting the Cu content to 4.0 to 7.0 wt% is that if it is less than 4.0 wt%, sufficient strength cannot be obtained even after solution treatment and aging treatment after molding, %, Cu-based intermetallic compound precipitates, which not only lowers the toughness but also lowers the cold rolling property and the formability, which is not preferable. Mn content is 0.1-0.6 wt%, Zr content is 0.05-
0.3 wt% and Ti content 0.01-0.15 wt%
The above limits are not preferable because the crystal grains do not become finer and the formability is not improved when the content is less than the lower limit, and the cold rolling property and the formability are deteriorated when the content exceeds the upper limit. The content of V is limited to 0.01 to 0.2 wt% because if it is less than 0.01 wt%, the effect of heat resistance cannot be obtained, and if it exceeds 0.2 wt%, cold rolling property and formability are deteriorated. It is not preferable because it causes

【0006】次に製造方法を上記の如く限定したのは、
以下の理由によるものである。先ず均質化処理、熱間圧
延、冷間圧延した後、470〜550℃にて溶体化処理
後、室温以下の温度まで冷却するのは、溶質元素をマト
リックスに固溶させるか、又はその後G.P相もしくは
θ′中間相が析出した状態にする為である。470℃未
満では十分に固溶することができず、又550℃を超え
ると共晶溶融が起こり好ましくない。なおこの時の保持
時間は数分程度で良いが、できれば十分な時間の保持が
望ましい。又冷却速度は0.6℃/min.以上が良く、で
きれば水焼き入れが望ましい。次に析出処理を施すの
は、前述のG.P相又はθ′中間相の析出を適度に促進
し、再結晶粒の粗大化を阻害する為である。処理温度と
しては、120〜200℃が好ましく、これは120℃
未満では析出が促進されず、200℃を超えると析出相
の相変態が起こり好ましくない為である。またこの時の
保持時間は40時間以下が望ましい。なお自然時効によ
っても時間を要するが析出は起こるので、長時間室温に
て放置する場合にはこの析出処理を行わなくてもよい。
次に20〜75%の加工を施すのは、微細再結晶粒を得
る為に必要な適度の量の転位を導入させる為である。2
0%未満では転位の量が少なく、又75%を超えると転
位の量が多くなり何れも再結晶粒が大きくなるので好ま
しくない。次に360〜500℃にて軟化処理を施すの
は、加工で導入された転位を微細均一なセル組織として
分布させ、それを核として微細な再結晶組織を得る為で
ある。360℃未満では十分に軟化されず、又500℃
を超えると結晶粒が著しく成長する為好ましくない。な
おこの時の加熱速度は40℃/hr以上が望ましい。又保
持時間は、高温側では数分〜数時間でよく低温側でも6
時間程度迄の保持時間で十分である。更に軟化後の冷却
は徐冷が望ましい。次に軟化後の室温での導電率を44
〜46%IACSと限定したのは、44%IACS未満
ではマトリックス中に溶質元素が固溶し過ぎ、又46%
IACSを超えると析出物の量が多い状態にあり何れも
最終成形後の肌荒れ防止に効果が現れない為である。
Next, the manufacturing method is limited as described above.
The reason is as follows. First, homogenization treatment, hot rolling, cold rolling, and then solution treatment at 470 to 550 ° C. and cooling to room temperature or lower are performed by dissolving the solute element in the matrix, or by G. This is because the P phase or the θ ′ intermediate phase is deposited. If it is less than 470 ° C, it cannot be sufficiently dissolved, and if it exceeds 550 ° C, eutectic melting occurs, which is not preferable. The holding time at this time may be several minutes, but if possible, it is desirable to hold it for a sufficient time. The cooling rate is preferably 0.6 ° C./min. Or higher, and water quenching is desirable if possible. Next, the precipitation treatment is performed according to G. This is because the precipitation of the P phase or the θ ′ intermediate phase is appropriately promoted and the coarsening of recrystallized grains is hindered. The treatment temperature is preferably 120 to 200 ° C, which is 120 ° C.
If it is less than 200 ° C., precipitation is not promoted, and if it exceeds 200 ° C., phase transformation of the precipitation phase occurs, which is not preferable. The holding time at this time is preferably 40 hours or less. Precipitation occurs although it takes time due to natural aging, so that the precipitation treatment does not have to be performed when it is left at room temperature for a long time.
Next, the processing of 20 to 75% is carried out in order to introduce a proper amount of dislocations necessary for obtaining fine recrystallized grains. Two
If it is less than 0%, the amount of dislocations is small, and if it exceeds 75%, the amount of dislocations is large and the recrystallized grains are large, which is not preferable. Next, the softening treatment is performed at 360 to 500 ° C. in order to distribute the dislocations introduced in the processing as a fine and uniform cell structure and obtain a fine recrystallized structure using the dislocations as nuclei. If it is less than 360 ° C, it is not softened sufficiently, and it is 500 ° C.
If it exceeds, crystal grains grow remarkably, which is not preferable. The heating rate at this time is preferably 40 ° C./hr or more. The holding time is several minutes to several hours on the high temperature side and 6 on the low temperature side.
A holding time up to about an hour is sufficient. Further, the cooling after softening is preferably slow cooling. Next, the softness at room temperature after softening is 44
The limit of ~ 46% IACS is that the solute element is too solid-solubilized in the matrix below 44% IACS, and is 46%.
This is because if the IACS is exceeded, the amount of precipitates will be large and none of the effects will be effective in preventing rough skin after final molding.

【0007】[0007]

【実施例】表1に示す組成の合金を通常の溶製法により
鋳造し、面削後、熱間圧延、冷間圧延を経て、厚さ2mm
の板材とした。この板材を表2に示す本発明法、比較法
による処理条件及び従来の焼鈍処理によりそれぞれ処理
を行って試料を得た。なお何れの場合も溶体化処理後は
室温迄水冷し、軟化処理は80℃/hr. にて加熱後、2
50℃迄25℃/hr. の冷却速度で徐冷した。この軟化
後の室温にて導電率を測定した。この様にして得た本発
明材、比較材及び従来材についてその性能を試みる為
に、表3に示す0〜20%の予備成形加工(L及びLT
方向引張)を行い、次に溶体化焼入れ処理(500℃×
1hr. 水冷)を実施後直ちに最終成形加工(2〜10%
L及びLT方向引張)を行って肌荒れの有無を確認し
た。
EXAMPLE An alloy having the composition shown in Table 1 was cast by an ordinary melting method, face-cut, hot-rolled and cold-rolled to a thickness of 2 mm.
It was used as a plate material. Samples were obtained by subjecting this plate material to the treatment conditions according to the method of the present invention and the comparative method shown in Table 2 and the conventional annealing treatment. In either case, after solution treatment, water-cooling to room temperature, softening treatment at 80 ° C / hr.
It was gradually cooled to 50 ° C. at a cooling rate of 25 ° C./hr. The electrical conductivity was measured at room temperature after this softening. In order to test the performances of the inventive material, the comparative material and the conventional material thus obtained, 0 to 20% of the preforming process (L and LT) shown in Table 3 was performed.
Direction tensile), and then solution heat treatment (500 ℃ x
Immediately after carrying out 1 hr. Water cooling, final molding process (2-10%)
The presence or absence of rough skin was confirmed by performing (L and LT direction tension).

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】[0010]

【表3】 [Table 3]

【0011】表3から明らかなように本発明材試料No.
1〜8はいずれも軟化処理後の最大結晶粒が微細であ
り、種々の加工率で予備成形加工を行っても、最終成形
加工後の肌荒れは発生しなかった。これに対し本発明製
造方法の範囲をはずれる比較材試料No.9〜12は肌荒
れまたは割れを発生した。
As is apparent from Table 3, the material sample No.
In all of Nos. 1 to 8, the maximum crystal grains after the softening treatment were fine, and even when preforming was performed at various processing rates, the roughening after the final forming did not occur. On the other hand, the comparative material sample No. out of the range of the manufacturing method of the present invention. 9-12 generated rough skin or cracks.

【0012】[0012]

【発明の効果】このように本発明製造方法によれば、軟
化処理材で予備成形加工をうけた部分は、後工程で溶体
化焼入れ処理を行っても均一微細な再結晶組織を有し、
最終成形加工後も肌荒れを発生しない成形性に優れたア
ルミニウム合金の製造が可能であり、工業上顕著な効果
を奏するものである。
As described above, according to the manufacturing method of the present invention, the portion which has been preformed with the softening-treated material has a uniform fine recrystallized structure even if the solution hardening treatment is performed in the subsequent step,
It is possible to produce an aluminum alloy having excellent formability that does not cause surface roughness even after the final forming process, and it is possible to achieve a remarkable industrial effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Cu4.0〜7.0wt%、Mn0.1〜
0.6wt%、V0.01〜0.2wt%、Zr0.05〜
0.3wt%、Ti0.01〜0.15wt%を含有し、残
部がAlと不可避不純物とからなるアルミニウム合金鋳
塊を均質化処理後、熱間圧延及び冷間圧延を施し、次い
で470〜550℃にて溶体化処理後、室温以下の温度
まで冷却した後、20〜75%の加工を施した後、更に
360〜500℃にて軟化処理を施し、その後の室温で
の導電率が44〜46%IACSであることを特徴とす
る成形性に優れたアルミニウム合金の製造方法。
1. Cu 4.0-7.0 wt%, Mn 0.1
0.6 wt%, V0.01-0.2 wt%, Zr0.05-
After homogenizing an aluminum alloy ingot containing 0.3 wt% and 0.01 to 0.15 wt% of Ti and the balance of Al and unavoidable impurities, hot rolling and cold rolling are performed, and then 470 to 550. After solution treatment at ℃, after cooling to a temperature below room temperature, after processing 20 to 75%, further softening at 360 to 500 ℃, the subsequent conductivity at room temperature is 44 ~ A method for producing an aluminum alloy having excellent formability, which is 46% IACS.
【請求項2】 Cu4.0〜7.0wt%、Mn0.1〜
0.6wt%、V0.01〜0.2wt%、Zr0.05〜
0.3wt%、Ti0.01〜0.15wt%を含有し、残
部がAlと不可避不純物とからなるアルミニウム合金鋳
塊を均質化処理後、熱間圧延及び冷間圧延を施し、次い
で470〜550℃にて溶体化処理後、室温以下の温度
まで冷却し、次いで析出処理を行い、次いで20〜75
%の加工を施した後、更に360〜500℃にて軟化処
理を施し、その後の室温での導電率が44〜46%IA
CSであることを特徴とする成形性に優れたアルミニウ
ム合金の製造方法。
2. Cu 4.0-7.0 wt%, Mn 0.1
0.6 wt%, V0.01-0.2 wt%, Zr0.05-
After homogenizing an aluminum alloy ingot containing 0.3 wt% and 0.01 to 0.15 wt% of Ti and the balance of Al and unavoidable impurities, hot rolling and cold rolling are performed, and then 470 to 550. After solution treatment at ℃, cooled to a temperature below room temperature, followed by precipitation treatment, then 20-75
%, And then a softening treatment at 360 to 500 ° C., and the conductivity at room temperature thereafter is 44 to 46% IA.
A method for producing an aluminum alloy having excellent formability, which is CS.
JP32530691A 1991-11-12 1991-11-12 Production of aluminum alloy excellent in formability Pending JPH05132745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32530691A JPH05132745A (en) 1991-11-12 1991-11-12 Production of aluminum alloy excellent in formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32530691A JPH05132745A (en) 1991-11-12 1991-11-12 Production of aluminum alloy excellent in formability

Publications (1)

Publication Number Publication Date
JPH05132745A true JPH05132745A (en) 1993-05-28

Family

ID=18175350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32530691A Pending JPH05132745A (en) 1991-11-12 1991-11-12 Production of aluminum alloy excellent in formability

Country Status (1)

Country Link
JP (1) JPH05132745A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072972A1 (en) * 2006-12-13 2008-06-19 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
WO2012044450A3 (en) * 2010-09-08 2012-07-05 Alcoa Inc. Improved 2xxx aluminum alloys, and methods for producing the same
EP2625302A4 (en) * 2010-10-08 2015-10-07 Alcoa Inc Improved 2xxx aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
US9926620B2 (en) 2012-03-07 2018-03-27 Arconic Inc. 2xxx aluminum alloys, and methods for producing the same
CN110284086A (en) * 2019-07-29 2019-09-27 中国船舶重工集团公司第十二研究所 A method of it eliminates and crystallizes phase segregation in casting Al-Cu manganese alloy

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072972A1 (en) * 2006-12-13 2008-06-19 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
EP2097551A1 (en) * 2006-12-13 2009-09-09 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
EP2097551A4 (en) * 2006-12-13 2010-09-22 Hydro Aluminium As Aluminium casting alloy, method for the manufacture of a casting and cast component for combustion engines
US9194028B2 (en) 2010-09-08 2015-11-24 Alcoa Inc. 2xxx aluminum alloys, and methods for producing the same
US8999079B2 (en) 2010-09-08 2015-04-07 Alcoa, Inc. 6xxx aluminum alloys, and methods for producing the same
WO2012044450A3 (en) * 2010-09-08 2012-07-05 Alcoa Inc. Improved 2xxx aluminum alloys, and methods for producing the same
US9249484B2 (en) 2010-09-08 2016-02-02 Alcoa Inc. 7XXX aluminum alloys, and methods for producing the same
US9359660B2 (en) 2010-09-08 2016-06-07 Alcoa Inc. 6XXX aluminum alloys, and methods for producing the same
EP2625302A4 (en) * 2010-10-08 2015-10-07 Alcoa Inc Improved 2xxx aluminum alloys, and methods for producing the same
US9926620B2 (en) 2012-03-07 2018-03-27 Arconic Inc. 2xxx aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
CN110284086A (en) * 2019-07-29 2019-09-27 中国船舶重工集团公司第十二研究所 A method of it eliminates and crystallizes phase segregation in casting Al-Cu manganese alloy
CN110284086B (en) * 2019-07-29 2020-12-01 中国船舶重工集团公司第十二研究所 Method for eliminating segregation of crystalline phase in cast aluminum-copper-manganese alloy

Similar Documents

Publication Publication Date Title
EP0157600B1 (en) Aluminum lithium alloys
US5151136A (en) Low aspect ratio lithium-containing aluminum extrusions
EP0281076A1 (en) Aluminum lithium flat rolled product
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JPH06264202A (en) Production of high strength copper alloy
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH10183287A (en) Aluminum alloy for cold forging and its production
JPH0138866B2 (en)
JPS61166938A (en) Al-li alloy for expansion and its production
JPH0517858A (en) Manufacture of aluminum alloy excellent in formability
JPH059683A (en) Manufacture of aluminum alloy excellent in formability
JPH0259859B2 (en)
JPS61288036A (en) Copper alloy for lead frame and its production
JPH0588302B2 (en)
JPS62151551A (en) Manufacture of cold worked titanium alloy material
JPS63243252A (en) Manufacture of high-strength conductive aluminum-alloy conductor
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
JPH05339686A (en) Manufacture of aluminum alloy excellent in formability
JPH042664B2 (en)
CN117568656A (en) Copper alloy strip and preparation method and application thereof
JPH06158246A (en) Manufacture of high heat resistant aluminum alloy wire for electric conduction
JPS63103055A (en) Manufacture of thin iron-copper alloy strip for lead frame
JPH08218155A (en) Production of zirconium-copper alloy sheet having fine crystal grain
JPS6157383B2 (en)
JPH05295496A (en) Manufacture of aluminum alloy excellent in formability