JPS62265764A - Manufacture of thin film field effect transistor - Google Patents

Manufacture of thin film field effect transistor

Info

Publication number
JPS62265764A
JPS62265764A JP10844486A JP10844486A JPS62265764A JP S62265764 A JPS62265764 A JP S62265764A JP 10844486 A JP10844486 A JP 10844486A JP 10844486 A JP10844486 A JP 10844486A JP S62265764 A JPS62265764 A JP S62265764A
Authority
JP
Japan
Prior art keywords
gate
source
drain
silicon layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10844486A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
隆 鈴木
Takaya Suzuki
誉也 鈴木
Yoshikazu Hosokawa
細川 義和
Nobutake Konishi
信武 小西
Akio Mimura
三村 秋男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10844486A priority Critical patent/JPS62265764A/en
Publication of JPS62265764A publication Critical patent/JPS62265764A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To contrive improvement in working speed of the title transistor as well as to accomplish microscopic formation and high integration of an element by a method wherein the overlapping between a source and a gate, and a drain and a gate is decreased, and to reduce a parasitic capacitance and the short circuit generating between the source and the gate, and the drain and the gate. CONSTITUTION:After a non-single crystal silicon layer 2 containing no impurities has been deposited on an insulative substrate 1, a pattern is formed, and an island-like non-single crystal silicon layer 2' is formed. Then, the silicon oxide film 3 to be turned to a gate insulating film and the impurity-doped silicon layer 4 to be turned to a gate electrode are deposited, and a resist pattern 5 is formed on the gate electrode 4. Subsequently, said silicon layer 4 and insulating film 3 are removed by performing a plasma etching, the silicon layer 23 on the source and drain region is exposed, and a plasma etching is performed on the layer 2' using the gate electrode 4 as a mask. Then, impurity-doped silicon films 6-8 are formed by performing a selective epitaxial growing method using the layers 2' and 4 as a seed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜電界効果トランジスタにおいて、ソース・
ゲート間およびドレイン・ゲート間の重なりを零とし、
寄生容量を低減するに好適な薄膜電界効果トランジスタ
の製造方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thin film field effect transistor in which a source
The overlap between gates and between drain and gate is set to zero,
The present invention relates to a method of manufacturing a thin film field effect transistor suitable for reducing parasitic capacitance.

〔発明の背景〕[Background of the invention]

近年、非単結晶シリコンにより形成された薄膜電界効果
トランジスタ(TPT)が注目されている。特に、上記
半導体薄膜が低温で形成できるため、薄膜半導体装置を
構成するための基板が特に限定されず、また、従来の露
光技術、エツチング技術等のパターン形成法もそのまま
使用でき大面積基板への集積化も可能であるなどの利点
を有する。
In recent years, thin film field effect transistors (TPTs) formed from non-single crystal silicon have attracted attention. In particular, since the semiconductor thin film described above can be formed at low temperatures, there are no particular limitations on the substrate used to construct the thin film semiconductor device, and conventional pattern forming methods such as exposure technology and etching technology can be used as is, making it possible to form large-area substrates. It has advantages such as being able to be integrated.

第2図は従来のTPTの基本構造を概略的に示す図であ
る。この図において、1は絶縁性基板。
FIG. 2 is a diagram schematically showing the basic structure of a conventional TPT. In this figure, 1 is an insulating substrate.

2は非晶質シリコン等の半導体膜、3はゲート絶縁膜、
4はゲート電極、9.10はそれぞれソースドレイン電
極で良好なオーミックコンタクトを得るための不純物ド
ープ半導体膜である。
2 is a semiconductor film such as amorphous silicon, 3 is a gate insulating film,
Reference numeral 4 is a gate electrode, and reference numerals 9 and 10 are source and drain electrodes, respectively, which are impurity-doped semiconductor films for obtaining good ohmic contact.

さて、第2図に示した構造ではゲート電極4とソース・
ドレイン9,10は自己整合の位置に関係なく、ゲート
電極2とソース・ドレイン9゜1oの平面的型なりは不
純物を含まない非晶質シリコン2とゲート絶縁膜3とを
積層誘電体とする重なり容量を形成する。一般に、寄生
容量を有するTPTを含む回路の動作速度を上げるため
には、TPTのON状態における抵抗を下げればよいが
、このためにはTPTのチャンネル幅を大きくする必要
がある。この場合従来構造のTETでは寄生容量もチャ
ンネル幅に比例して増えるため1本質的な動作速度の向
上とはならない。
Now, in the structure shown in FIG. 2, the gate electrode 4 and the source
Regardless of the self-alignment position of the drains 9 and 10, the planar type of the gate electrode 2 and source/drain 9°1o is made of a laminated dielectric material consisting of amorphous silicon 2 containing no impurities and a gate insulating film 3. forming an overlapping capacitance. Generally, in order to increase the operating speed of a circuit including a TPT having parasitic capacitance, it is sufficient to reduce the resistance in the ON state of the TPT, but for this purpose it is necessary to increase the channel width of the TPT. In this case, in the conventional TET structure, the parasitic capacitance also increases in proportion to the channel width, so that there is no substantial improvement in operating speed.

そこで、第2図に示す構造が特開昭58−190058
号公報に記載のように、ソース・ドレインとゲート間の
重なりが雰の構造となっている。しかし。
Therefore, the structure shown in FIG.
As described in the publication, the overlap between the source/drain and the gate forms the structure. but.

この構造ではソース・ドレインとゲート間隔が近く、ソ
ース・ドレインとゲートのショートを防止するため、不
純物をドープした半導体膜9,10を極めて薄くする必
要があり、膜形成の制御が難しい。
In this structure, the distance between the source/drain and the gate is close, and in order to prevent a short circuit between the source/drain and the gate, it is necessary to make the impurity-doped semiconductor films 9 and 10 extremely thin, making it difficult to control film formation.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ソース・ゲートおよびドレインソー入
間の重なりを零とし、自己整合させてTPT回路の動作
速度の向上を図り、素子の微細化と高集積化を可能とす
るとともに、ソース・ゲート間あるいはドレイン・ゲー
ト間のショートの少ないTPTの製造方法を提供するこ
とにある。
An object of the present invention is to eliminate the overlap between the source gate and the drain input, improve the operating speed of the TPT circuit by self-aligning, and enable miniaturization and high integration of elements. Another object of the present invention is to provide a method for manufacturing a TPT with less short-circuiting between the drain and the gate.

〔発明の概要〕[Summary of the invention]

本発明においては、まず絶縁性基板上に半導体膜を堆積
し、この上にゲート絶縁膜となる酸化シリコン膜を堆積
し、その表面を不純物をドープした半導体膜でおおいゲ
ート電極を形成する。そしてこのゲート電極をマスクと
して前記絶縁膜をエツチングしてソースおよびドレイン
領域の半導体表面を露出させる。この後、さらに露出し
た半導体表面を選択エツチングする。この後、露出した
半導体表面およびゲート電極表面に不純物をドープした
半導体を選択的ゲート絶縁膜、半導体界面以下に堆積す
ることトこよりソース・ドレインとゲート間の重なりを
零とし、ソース・ドレイン間のショートの少ないTPT
を製造する。
In the present invention, a semiconductor film is first deposited on an insulating substrate, a silicon oxide film serving as a gate insulating film is deposited thereon, and the surface thereof is covered with a semiconductor film doped with impurities to form a gate electrode. Then, using this gate electrode as a mask, the insulating film is etched to expose the semiconductor surface of the source and drain regions. After this, the exposed semiconductor surface is further selectively etched. After that, a semiconductor doped with impurities is deposited on the exposed semiconductor surface and the gate electrode surface as a selective gate insulating film, which is deposited below the semiconductor interface, thereby reducing the overlap between the source/drain and gate to zero, and reducing the overlap between the source/drain and the gate. TPT with less short circuit
Manufacture.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。まず
、絶縁性基板1上に厚さ2000人の不純物を含まない
非単結晶シリコン層2をSiH4のプラズマCVDより
堆積する(a)、その後。
An embodiment of the present invention will be described below with reference to FIG. First, a non-single crystal silicon layer 2 containing no impurities is deposited to a thickness of 2000 on an insulating substrate 1 by SiH4 plasma CVD (a), and then.

(b)に示すように非単結晶シリコンN2をパターン形
成して島状の非単結晶シリコン層2′を形成する。さら
に(c)に示すように常圧CVDにより厚さ1000人
のゲート絶縁膜となる酸化シリコン層3を堆積し、次に
ゲート電極となる不純物をドープしたシリコン層4を5
00人の厚さに堆積する。次に、ゲート電極4上にレジ
ストパターン5を形成する(d)。その後、レジストパ
ターン5をマスクとし、ゲート電極となる不純物をドー
プしたシリコンN4をCF 4 + Ox系ガスでプラ
ズマエツチング除去し、その後CHF sガスでゲート
絶縁膜3をプラズマエツチング除去し、ソース・ドレイ
ン領域の不純物を含まない非単結晶シリコン層2′ を
露出させる(f)、その後、さらにゲート電極4をマス
クとし、CF 4 + Oz系ガスで不純物を含まない
非単結晶シリコン層2′を厚さ1500人プラズマエツ
チングする(g)。
As shown in (b), the non-single crystal silicon N2 is patterned to form an island-shaped non-single crystal silicon layer 2'. Furthermore, as shown in (c), a silicon oxide layer 3, which will become a gate insulating film, is deposited to a thickness of 1000 nm by atmospheric pressure CVD, and then a silicon layer 4 doped with impurities, which will become a gate electrode, is deposited.
Deposited to a thickness of 0.00 people. Next, a resist pattern 5 is formed on the gate electrode 4 (d). Thereafter, using the resist pattern 5 as a mask, the impurity-doped silicon N4 that will become the gate electrode is removed by plasma etching with CF 4 + Ox gas, and then the gate insulating film 3 is removed by plasma etching with CHF s gas to form the source and drain. The region of the non-single crystal silicon layer 2' that does not contain impurities is exposed (f), and then, using the gate electrode 4 as a mask, the non-single crystal silicon layer 2' that does not contain impurities is thickened using CF 4 + Oz-based gas. 1,500 people were plasma etched (g).

次に、この上に不純物をドープしたシリコン膜6゜7.
8を非単結晶シリコンM2’ 、4を種とした選択エピ
タキシャル成長により厚さ1000人形成する(h)。
Next, a silicon film 6°7. doped with impurities is placed on top of this.
8 is made of non-single-crystal silicon M2', and 4 is selectively epitaxially grown to a thickness of 1000 nm using 4 as a seed (h).

なお、本発明は上記実施例に限定されない0例えば、非
単結晶シリコンM2はGe等の半導体やsb等の化合物
半導体であってもよい。また、これらの半導体膜の形成
法はスパック、蒸着、熱分解法などいかなる方法でもよ
い。また、ゲート絶縁膜も酸化シリコンに限らず窒化シ
リコン等でもよい。
Note that the present invention is not limited to the above embodiments. For example, the non-single crystal silicon M2 may be a semiconductor such as Ge or a compound semiconductor such as sb. Further, the method for forming these semiconductor films may be any method such as spucking, vapor deposition, or thermal decomposition. Furthermore, the gate insulating film is not limited to silicon oxide, but may also be silicon nitride or the like.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲートに自己整合されたソース・ドレ
インが、ゲート絶縁膜の膜厚以上の間隔、をもって形成
できるので、ゲート電極とソース・ドレイン電極の間の
寄生容量が小さく、高速動作が可能となる。また、ソー
ス・ドレインとゲートのショートが低減できるので、T
ET回路の素子の微細化、高集積化を図る効果がある。
According to the present invention, the source/drain that is self-aligned to the gate can be formed with a spacing greater than the thickness of the gate insulating film, so the parasitic capacitance between the gate electrode and the source/drain electrode is small, and high-speed operation is possible. It becomes possible. In addition, short circuits between the source/drain and gate can be reduced, so T
This has the effect of achieving miniaturization and high integration of ET circuit elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(h)は本発明の一実施例のTPTの製
造工程を示す断面図、第2図は従来構造のTPTの断面
図である。 1・・・絶縁性基板、2,2′・・・不純物を含まない
非単結晶シリコン層、3・・・ゲート絶縁膜(酸化シリ
コン)、4・・・ゲート電極(不純物をドープしたシリ
コン層)、5・・・レジスト、6,7,8,9゜10・
・・不純物をドープしたシリコン層。
1A to 1H are cross-sectional views showing the manufacturing process of a TPT according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a TPT having a conventional structure. 1... Insulating substrate, 2, 2'... Non-single crystal silicon layer containing no impurities, 3... Gate insulating film (silicon oxide), 4... Gate electrode (silicon layer doped with impurities) ), 5... resist, 6, 7, 8, 9°10.
...Silicon layer doped with impurities.

Claims (1)

【特許請求の範囲】[Claims] 1、絶縁性基板上に半導体膜を堆積する工程と、この半
導体膜の表面を絶縁膜でおおつてその上にゲート電極を
形成する工程と、このゲート電極をマスクとして前記絶
縁膜をエッチングしてソースおよびドレイン領域の半導
体膜表面を露出させる工程と、この後さらにゲートをマ
スクとして半導体膜をエッチングし、前記半導体膜エッ
チング表面とゲート電極上に選択的に不純物をドープし
た半導体膜を前記絶縁膜半導体膜界面以下に形成する工
程とより成る薄膜電界効果トランジスタであり、ソース
・ゲート間およびドレイン・ゲート間の重なりを少なく
し、寄生容量を低減すると共に、ソース・ゲート間およ
びドレイン・ゲート間のショートを低減することを特徴
とする薄膜電界効果トランジスタの製造方法。
1. A step of depositing a semiconductor film on an insulating substrate, a step of covering the surface of this semiconductor film with an insulating film and forming a gate electrode thereon, and etching the insulating film using the gate electrode as a mask. A step of exposing the semiconductor film surface of the source and drain regions, and then further etching the semiconductor film using the gate as a mask, and adding a semiconductor film selectively doped with impurities to the insulating film on the etched surface of the semiconductor film and the gate electrode. It is a thin film field effect transistor that is formed below the semiconductor film interface, reducing the overlap between the source and gate and between the drain and gate, reducing parasitic capacitance, and reducing the overlap between the source and gate and between the drain and gate. A method for manufacturing a thin film field effect transistor characterized by reducing short circuits.
JP10844486A 1986-05-14 1986-05-14 Manufacture of thin film field effect transistor Pending JPS62265764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10844486A JPS62265764A (en) 1986-05-14 1986-05-14 Manufacture of thin film field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10844486A JPS62265764A (en) 1986-05-14 1986-05-14 Manufacture of thin film field effect transistor

Publications (1)

Publication Number Publication Date
JPS62265764A true JPS62265764A (en) 1987-11-18

Family

ID=14484932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10844486A Pending JPS62265764A (en) 1986-05-14 1986-05-14 Manufacture of thin film field effect transistor

Country Status (1)

Country Link
JP (1) JPS62265764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287563A1 (en) * 2000-05-16 2003-03-05 Infineon Technologies AG Field effect transistor and method for producing a field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1287563A1 (en) * 2000-05-16 2003-03-05 Infineon Technologies AG Field effect transistor and method for producing a field effect transistor

Similar Documents

Publication Publication Date Title
JPH05160396A (en) Mos field effect transistor
JPH06177154A (en) Manufacture and structure of mosfet
JP3152959B2 (en) Semiconductor device and manufacturing method thereof
JPH05206451A (en) Mosfet and its manufacture
JPS6252963A (en) Manufacture of bipolar transistor
JPH04348077A (en) Thin-film transistor
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH0324069B2 (en)
JPH01114070A (en) Manufacture of semiconductor device
JP2002222947A (en) Semiconductor device and manufacturing method therefor
JPS62265764A (en) Manufacture of thin film field effect transistor
JPS63192266A (en) Cmos integrated circuit and manufacture thereof
JP3138841B2 (en) Method for manufacturing MIS field-effect semiconductor device
JPS6242391B2 (en)
JP2672596B2 (en) Method for manufacturing semiconductor device
JPS6313378A (en) Semiconductor device and manufacture thereof
JPS6367779A (en) Insulated-gate transistor and manufacture of same
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPS5818966A (en) Manufacture of thin film field-effect transistor
JPH06132292A (en) Semiconductor device and manufacture thereof
JP2781468B2 (en) Method of manufacturing SOI thin film transistor
JPS58190058A (en) Manufacture of thin film field effect transistor
JP2002033485A (en) Tft liquid crystal display device and its manufacturing method
JP2960742B2 (en) Thin film transistor element
JPS5935186B2 (en) Manufacturing method of MOS type semiconductor device