JPS62260027A - Manufacture of sintered composite material - Google Patents

Manufacture of sintered composite material

Info

Publication number
JPS62260027A
JPS62260027A JP61101995A JP10199586A JPS62260027A JP S62260027 A JPS62260027 A JP S62260027A JP 61101995 A JP61101995 A JP 61101995A JP 10199586 A JP10199586 A JP 10199586A JP S62260027 A JPS62260027 A JP S62260027A
Authority
JP
Japan
Prior art keywords
acid
ceramics
metal
composite material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61101995A
Other languages
Japanese (ja)
Inventor
Yukio Ogino
荻野 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP61101995A priority Critical patent/JPS62260027A/en
Publication of JPS62260027A publication Critical patent/JPS62260027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To disperse uniformly a binding metal into ceramics by carrying out reduction treatment by the use of specific carboxylates as binding metal at the time of manufacturing a sintered composite material from high-m.p. ceramics and binding metal such as Co, etc. CONSTITUTION:At the time of compacting and sintering a mixture consisting of at least one kind of high-m.p. ceramics and at least one kind of binding meal selected from Co, Ni, and Fe, the mixture is prepared by using carboxylates with >=6 carbons as the above binding metal, by mixing the above with ceramics, and by subjecting the resulting mixture to reduction treatment. Further, oxides, carbides, borides, nitrides, silicides, etc., having melting points as high as about 2,000-3,500 deg.C are used as ceramics and, as carboxylates with >=6 carbons, fatty acid, resin acid, and naphthenic acid are used. In this way, the sintered composite material in which binding metal is uniformly dispersed into ceramics can be obtained easily and inexpensively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、焼結複合材料の製造方法に関するものであり
、特には炭化物、酸化物、窒化物等のセラミクスと結合
相としての全日との焼結複合材料を製造するに際して、
結合相としての金属を従来の金属粉末として使用する方
法に代えて有機酸塩として用いることを特徴とするもの
である。本発明は、一般に超硬合金或いはサーメットと
呼ばれる系列の焼結複合材料全般を対象とするが、特に
周期律表■a族金11(Tl、zr、ar)、Va族金
萬(V、 Nb%7’a)及び■a族金B4(Cr %
 M O、W )の炭化物をCo、Nl、Fe等の金属
で焼結結合した超硬合金を好ましい対象例とし、その代
表例は、WC−Co、WC−Tm(Nb)C−Co%W
C−Tic−Co。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing sintered composite materials, and in particular to sintering of ceramics such as carbides, oxides, nitrides, etc. When manufacturing composite materials,
This method is characterized in that the metal as the binder phase is used as an organic acid salt instead of the conventional method of using metal powder. The present invention is directed to sintered composite materials of the series generally referred to as cemented carbide or cermet, but is particularly directed to sintered composite materials of the series generally referred to as cemented carbide or cermet. %7'a) and ■a group metal B4 (Cr %
A preferred target example is a cemented carbide in which carbides of MO, W) are sintered and bonded with metals such as Co, Nl, and Fe, and typical examples thereof are WC-Co, WC-Tm(Nb)C-Co%W
C-Tic-Co.

WC−TiC−Ta(Nb)C−Co%WC−Ni%W
C−Co−Ni%WC−Ni−F・等である。本発明材
料は、これまで超硬合金やサーメットが利用されてきた
チップ、バイト、ミル、ドリル、カッタ等の切削工具、
耐摩耗・耐@撃工具等全般に有益に用いられるが、特に
最近電気回路基板のスルーホール部の穴明けに用いるマ
イクロドリルのような微細で且つ高い強度や切削性が望
まれる用途に最適である。
WC-TiC-Ta(Nb)C-Co%WC-Ni%W
C-Co-Ni%WC-Ni-F. etc. The material of the present invention can be applied to cutting tools such as tips, bits, mills, drills, and cutters in which cemented carbide and cermet have been used,
It is useful for wear-resistant and hammer-resistant tools in general, but it is especially suitable for applications that require fine, high strength and machinability, such as micro drills, which are recently used to drill through-holes in electrical circuit boards. be.

発明の背景 炭化物、酸化物、窒化物、ホウ化物、ケイ化物等の高融
点物質と金属との焼結複合材料はサーメットと呼ばれ、
切削工具、耐摩耗・耐衝撃工具用途に広く使用されてき
た。このうち、炭化物系サーメットに属するものは、超
硬合金と呼ばれ、とりわけ良好な機械的性質を示す。超
硬合金は、前記した通り、周期律表■1族金属(TI、
Zr、 Hf )、va族金属(v、 Nb%T&)及
び■a族金fi(Cr。
Background of the Invention A sintered composite material of metal and high melting point substances such as carbides, oxides, nitrides, borides, and silicides is called cermet.
It has been widely used for cutting tools, wear-resistant and impact-resistant tools. Among these, those belonging to carbide-based cermets are called cemented carbides and exhibit particularly good mechanical properties. As mentioned above, cemented carbide is a group 1 metal of the periodic table (TI,
Zr, Hf), va group metals (v, Nb%T&) and group a group metals fi (Cr.

Mo、’W)の炭化物粉末の1種以上を結合相とじての
F・、Co%Niの1種以上の金属で焼結結合した焼結
複合材料として定義することが出来る。
It can be defined as a sintered composite material in which one or more carbide powders (Mo, W) are sintered and bonded with one or more metals F., Co%Ni as a binder phase.

こうした焼結複合材料は、WC−Co系を例にとると次
の工程により製造される: (1)WCの製造工程: 原料タングステン粉末と原料炭素とを混合し、そして混
合物を横型水素炉等の使用により炭化処理する。その後
、炭化物を粉砕しそして分級する。但し、一般にWCは
市販されており入手しつる。
Taking the WC-Co system as an example, such a sintered composite material is manufactured by the following process: (1) WC manufacturing process: Raw material tungsten powder and raw material carbon are mixed, and the mixture is heated in a horizontal hydrogen furnace, etc. Carbonized by using. The carbide is then crushed and classified. However, in general, WC is commercially available and can be obtained.

(21WC+Co混合粉末の処理工程:上記WC粉末と
Co金属粉末(所定粒度)をその地温加物と共にボール
ミル等にて混合し、更に造粒する。
(21 WC+Co mixed powder processing step: The above-mentioned WC powder and Co metal powder (predetermined particle size) are mixed together with the geothermal additive in a ball mill or the like, and further granulated.

(3)成形及び焼結工程: 上記造粒物をプレス成形し、適宜予備焼結及び中間加工
を経由して焼結を行う。
(3) Molding and sintering process: The above granulated material is press-molded, and sintered via preliminary sintering and intermediate processing as appropriate.

(4)仕上げ工程: この後、研削、検査を経て工具が作製される。(4) Finishing process: After this, the tool is manufactured through grinding and inspection.

従来技術の問題点 近年、微細な切削工具への需要が高まっている。Problems with conventional technology In recent years, demand for fine cutting tools has increased.

例えば、半導体デバイスの進歩に伴い、電気回路基板の
スルーホール部の穴あけに用いるマイク四ドリルは年々
小径化をたどり、しかもその要求性能も益々厳しくなっ
ている。従来技術においてこうした微細な切削工具を製
造する場合、WC%TIC等の炭化物その他の基材が微
粉であることが必要であると共に、結合相となる Co、Ni及びFa等についてもそれらが微粉であるこ
とを必要とする。しかし、現状では、WC%TXC等の
基材のサブミクロン微粉の製造は可能であるが、結合相
とするCoやNiについてはサブミクロン微粉を工業的
規模で得ることは非輩に困難である。一般に、粉砕工程
において、金属としての性質から、サブミクロン粒度の
CoやNiを得ることは非常に難しいとされている。仮
にサブミクロンのCoやNiが得られたとしても、それ
らは非常に不安定であり、爆発的に燃焼したりまた注意
深い取扱いの下でも徐々に酸化物に変化しやすく、結合
能力を低下する。
For example, with the advancement of semiconductor devices, the diameter of microphone drills used for drilling through-holes in electrical circuit boards is becoming smaller year by year, and the required performance is becoming increasingly strict. When manufacturing such fine cutting tools using conventional technology, it is necessary that carbides such as WC%TIC and other base materials are fine powders, and the binder phases such as Co, Ni, and Fa are also fine powders. requires something. However, at present, although it is possible to produce submicron fine powder of base materials such as WC%TXC, it is difficult for non-professionals to obtain submicron fine powder of Co and Ni used as binder phases on an industrial scale. . Generally, it is said that it is very difficult to obtain submicron particle size Co or Ni in the pulverization process due to their properties as metals. Even if submicron Co and Ni could be obtained, they are very unstable and easily burn explosively or gradually change into oxides even under careful handling, reducing their binding ability.

従って、結合相合at金属粉末として使用する限り、工
具の微細化への対応は限度があり、そうした微細工具を
必要とする用途での大きなネックとなりつつある。
Therefore, as long as it is used as a bonded intermetallic powder, there is a limit to its ability to respond to the miniaturization of tools, and this is becoming a major bottleneck in applications requiring such fine tools.

更に、微細工具に限らず、焼結複合材料を使用する工具
その他の部品全般においても、セラミクス基材と結合相
金属との更に一層の親和性即ち結合力を高めることによ
り、一段と大きな強度、切削性、耐摩耗性、耐衝撃性等
の機械的性質を実現することが望まれている。
Furthermore, not only fine tools but also tools and other parts that use sintered composite materials can have even greater strength and cutting ability by further increasing the affinity, or bonding strength, between the ceramic base material and the binder phase metal. It is desired to achieve mechanical properties such as hardness, abrasion resistance, and impact resistance.

発明の目的 こうした要望に答えるべく、本発明は、従来技術では得
られない、極めて微密なそしてセラミクス基材に結合用
金属を理想的に一様に分散させた焼結複合材料を製造す
る方法を確立することである。
Purpose of the Invention In order to meet these needs, the present invention provides a method for producing a sintered composite material in which bonding metals are ideally and uniformly dispersed in extremely fine particles and in a ceramic substrate, which cannot be obtained using conventional techniques. The goal is to establish

本発明の特定された目的は、マイク四ドリルのような微
細工具の製造を可能ならしめる上記のような焼結複合材
料の製造方法を提供することである。
A specific object of the invention is to provide a method for producing a sintered composite material as described above, which allows the production of fine tools such as microphone drills.

発明の概要 本発明者等は、結合相金属を全翼粉末として利用する限
り、上述した固有の障害を克服することは至難と考え、
結合相金属を有機酸塩として導入することを想到し、研
究を重ねた。その結果、これら金属を炭素数6以上のカ
ルボン酸塩の形で導入することにより上記目的の実現に
成功した。
Summary of the Invention The present inventors believe that it is extremely difficult to overcome the above-mentioned inherent obstacles as long as the binder phase metal is used as a flying powder.
We came up with the idea of introducing the bonded phase metal as an organic acid salt, and conducted repeated research. As a result, the above objective was successfully achieved by introducing these metals in the form of carboxylates having 6 or more carbon atoms.

こうしたカルボン酸塩は、実用的には、金属石鹸として
市販されているものが多く、脂肪酸、樹脂酸及びナフテ
ン酸の、コバルト、ニッケル及び鉄の金属塩に代表され
る。
Practically speaking, many of these carboxylic acid salts are commercially available as metal soaps, and are typified by cobalt, nickel, and iron metal salts of fatty acids, resin acids, and naphthenic acids.

こうして、コバルト、ニッケル及び鉄をカルボン酸塩の
形でセラミクス基材と混合することにより、セラミクス
基材にこれらカルボン酸塩が緊密に絡みあった分散体が
得られ、それらを還元処理して得られるスポンジ状還元
物を粉砕することによりサブミクロン寸法の混合微粉が
容易に得られる。この粉末は爾後の成形、焼結等の工程
を経由して工具その他の物品、特に微細切削工具を製作
するに好適なものである。
Thus, by mixing cobalt, nickel, and iron in the form of carboxylates with a ceramic substrate, a dispersion in which these carboxylates are tightly entangled in the ceramic substrate is obtained, which can be reduced and obtained. By pulverizing the sponge-like reduced product, a fine mixed powder of submicron size can be easily obtained. This powder is suitable for manufacturing tools and other articles, especially fine cutting tools, through subsequent processes such as molding and sintering.

斯くして、本発明は、少くとも1812の高融点セラミ
クスとコバルト、ニッケル及び鉄のうちから選択される
少くとも1種の結合用金属とから成る混合物を成形及び
焼結することにより焼結複合材料を製造する方法におい
て前記混合物を、前記セラミクスと前記結合用金属の炭
素数6以上のカルボン酸塩との混合物を還元処理するこ
とにより調製することを特徴とする焼結複合材料の製造
方法を提供する。
Thus, the present invention provides a sintered composite by forming and sintering a mixture of at least 1812 high melting point ceramic and at least one bonding metal selected from cobalt, nickel and iron. A method for producing a sintered composite material, characterized in that the mixture is prepared by reducing a mixture of the ceramic and the carboxylic acid salt having 6 or more carbon atoms of the bonding metal. provide.

発明の具体的説明 本発明は、2000〜5500℃の高融点を持つ酸化物
、炭化物、ホウ化物、窒化物、ケイ化物等のセラミクス
の少くとも1種以上と、Co、Nl及びFeのうちから
選択される少くとも1種以上との焼結複合材料を対象と
する。酸化物としては、A 1203 SZ r 02
 % T h O2、B @ Os Cr tOs %
 MJr O等が挙げられ、炭化物としてはTic、 
ZrC,1(fC。
DETAILED DESCRIPTION OF THE INVENTION The present invention comprises at least one type of ceramics such as oxides, carbides, borides, nitrides, and silicides having a high melting point of 2000 to 5500°C, and Co, Nl, and Fe. The object is a sintered composite material with at least one selected type. As an oxide, A 1203 SZ r 02
% T h O2, B @ Os Cr tOs %
Examples of carbides include Tic, MJrO, etc.
ZrC,1(fC.

VC,NbC,TaC,Cr5C2、MOC%WC%S
IC等が挙げられ、ホウ化物としてはT I B2 %
 Z r B2、CrJ等が挙げられ、窒化物としては
TIN%TaN等が挙げられそしてケイ化物としてはT
 i S t、、Mo S 12 、WS i2等が挙
げられる。特に好ましいものは、一般に超硬合金と呼ば
れる炭化物系サーメットであり、周期律表■a族金J!
$(’I’i%Zr。
VC, NbC, TaC, Cr5C2, MOC%WC%S
Examples of borides include T I B2 %
Examples of the nitride include TIN%TaN, and examples of the silicide include T.
i S t, , Mo S 12 , WS i2, and the like. Particularly preferred are carbide-based cermets, generally called cemented carbides, which include metals from group II of the periodic table J!
$('I'i%Zr.

Hf)、’/a族金興(V、Nb、Ta)及びVIA族
金属(Cr % M O% W )の炭化物をco%N
 1 % F s等の金属で焼結結合したものである。
Co%N
It is sintered and bonded with a metal such as 1% Fs.

炭化物は表面エネルギーが大きいため金属との濡れ性が
良く、良好な機械的性質を創出しつる。その代表例は、
WC−CO%WC−Ta(Nb)C−Co、WC−Ti
c−Co、WC−TiC−Ta(Nb)C−Co、WC
−Ni、WC−Co−Ni、WC−Nl−Fe%Tic
−Co%Tic−N1、Tic−Cr3C2−?’LI
、Cr5C2−WC−Ni等である。
Carbides have high surface energy, so they have good wettability with metals and create good mechanical properties. A typical example is
WC-CO%WC-Ta(Nb)C-Co, WC-Ti
c-Co, WC-TiC-Ta(Nb)C-Co, WC
-Ni, WC-Co-Ni, WC-Nl-Fe%Tic
-Co%Tic-N1, Tic-Cr3C2-? 'LI
, Cr5C2-WC-Ni, etc.

本発明に従えば、結合用全屈としてのCo、N1及びF
eは、炭素数6以上のカルボン酸塩の形で使用される。
According to the invention, Co, N1 and F as coupling total bends
e is used in the form of a carboxylate having 6 or more carbon atoms.

こうしたカルボン酸塩は、金属石鹸として市販されてい
るものが多く、脂肪酸、樹脂酸及びナフテン酸の金属塩
に代表される。
Many of these carboxylic acid salts are commercially available as metal soaps, and are typified by metal salts of fatty acids, resin acids, and naphthenic acids.

脂肪酸は、カルボキシル基1個をもつカルボン酸RCO
OHのうち鎖式構造のものを総称するが、ここではC−
以上の、カプロン酸(C,1口C00H)、エナント酸
(Cs Hls C00H) 、カプリル酸(オクチ/
l’ 酸) ((4Ml 8 C00H)、ベラA/ 
:f ン779((4H1rCOOH)、カプリン酸(
CoHt*C00H) 、ウンデシル酸(C1oHzt
COOH) 、5 ’y !J >酸(Ctt)hsc
OOH) 、)リゾシル酸(Cl2H211COOH)
、ミリスチンfili(C13H2? C00H) 、
へ> タデシk 酸(C141’129 C00H)、
パルミチン酸(C1s Hsx C00H)、ヘプタデ
シ/L/19(Ols Hss C00H)、ステアリ
ン酸(Cty Hss C00H)、/ + f js
 ン’rll (C1a Hst C00H) 、アラ
キン醜(C1e Hss C00H)、ベヘン酸(C2
1H43C0OH)等の飽和脂肪酸の金属塩が代表的に
使用される。この他、不飽和脂肪酸として、ウンデシル
酸、オレイン酸、エライジン酸、セトレイン酸、エルカ
酸等の金属塩の使用も可能である。
Fatty acids are carboxylic acids RCO with one carboxyl group.
Among OH, those with a chain structure are collectively referred to as C-
Above, caproic acid (C, 1 mouth C00H), enanthic acid (Cs Hls C00H), caprylic acid (octyl/
l' acid) ((4Ml 8 C00H), Vera A/
: f 779 ((4H1rCOOH), capric acid (
CoHt*C00H), undecylic acid (C1oHzt
COOH), 5'y! J>Acid(Ctt)hsc
OOH) ,) Lysosylic acid (Cl2H211COOH)
, myristin fili (C13H2? C00H),
to > Tadeshik acid (C141'129 C00H),
Palmitic acid (C1s Hsx C00H), heptadecy/L/19 (Ols Hss C00H), stearic acid (Cty Hss C00H), / + f js
N'rll (C1a Hst C00H), Alachin Ugly (C1e Hss C00H), Behenic acid (C2
Metal salts of saturated fatty acids such as 1H43C0OH) are typically used. In addition, metal salts of undecylic acid, oleic acid, elaidic acid, cetoleic acid, erucic acid, etc. can also be used as unsaturated fatty acids.

樹脂酸は、脂肪族と芳香族とに大別され、脂肪族として
はアビエチン酸、ネオアビエチン9、d−ピマル酸、イ
ソーd−ピマル酸等そして芳香族としては安息香酸、ケ
イ皮醗等が存在し、それらの金属塩の使用が考慮される
Resin acids are broadly classified into aliphatic and aromatic. Aliphatic acids include abietic acid, neoabietin9, d-pimaric acid, iso-d-pimaric acid, etc., and aromatic acids include benzoic acid, cinnamic acid, etc. exist and the use of their metal salts is considered.

ナフテン酸は、石油酸の主成分で、ナフテン核をもつ飽
和カルボン酸類を総称する。単環式、二環式、更に三環
式等が存在し、これらの金属塩が使用されうる。
Naphthenic acid is the main component of petroleum acids and is a general term for saturated carboxylic acids with a naphthene nucleus. There are monocyclic, bicyclic, and even tricyclic types, and metal salts of these types can be used.

代表的に使用されるものは、オクチル酸コバルト、オク
チル酸ニッケル、オクチル酸鉄、ナフテン酸コバルト、
ナフテン酸ニッケル、ナフテン酸鉄、ステアリン酸コバ
ルト、ステアリン酸ニッケル、ステアリン醪鉄等である
。尚、金属石鹸を構成する有機酸基が2以上である場合
に各々が同一の有機酸基である必要はない。これらは、
脂肪酸成るいはナフテン酸と、NaOHと、溶剤とを混
合鹸化し、そこに金属塩溶液を加えて複分解を行い、洗
浄後、固型製品を得るには脱水・脱溶剤を行って成型し
そして液状製品を得るには脱水及び調合を行ったもので
ある。その他の製法としては、脂肪酸等と金属粉末とを
反応させる直接法や脂肪酸等と金属の水酸化物、酸化物
、弱酸塩とを高温で反応させる溶融法等がある。
Typically used are cobalt octylate, nickel octylate, iron octylate, cobalt naphthenate,
These include nickel naphthenate, iron naphthenate, cobalt stearate, nickel stearate, and iron stearate. Incidentally, when there are two or more organic acid groups constituting the metal soap, it is not necessary that they are the same organic acid group. these are,
Fatty acid or naphthenic acid, NaOH, and a solvent are mixed and saponified, a metal salt solution is added thereto to perform double decomposition, and after washing, to obtain a solid product, dehydration and solvent removal are performed and molding is performed. The liquid product is obtained by dehydration and blending. Other manufacturing methods include a direct method in which fatty acids and the like are reacted with metal powder, and a melting method in which fatty acids and the like are reacted with metal hydroxides, oxides, and weak acid salts at high temperatures.

カルボン酸の炭素数を6以上としたのは、(1)炭素数
5以下のカルボン酸塩は、有機溶剤に難溶または不溶の
ためか良好な分散が得られないこと、さらには、 (2)炭素数1〜3のカルボン酸塩は、結晶を生成する
ためか、得られる還元金属粉の粒度が粗いこと、 等の理由による。
The reason for setting the number of carbon atoms in the carboxylic acid to be 6 or more is that (1) good dispersion cannot be obtained with carboxylic acid salts having 5 or less carbon atoms, perhaps because they are poorly soluble or insoluble in organic solvents; and (2) ) This is because carboxylic acid salts having 1 to 3 carbon atoms form crystals, or the particle size of the resulting reduced metal powder is coarse.

本発明の製造工程についてWC−Co系を例にとって説
明する。WCは各種粒径のものが市販入手しうるので、
その適宜のものを出発材料とする。市販品が無い場合に
は、先きに従来技術で説明したようにタングステンと炭
素とを出発材料としてWCの製造が可能である。
The manufacturing process of the present invention will be explained by taking the WC-Co system as an example. Since WC is commercially available in various particle sizes,
The appropriate material is used as the starting material. If a commercially available product is not available, WC can be manufactured using tungsten and carbon as starting materials, as described above in the prior art.

先ず、WC粉末と代表例としてC0石鹸(例えば、オク
チル酸コバルト)が配合される。カーボンブラック等の
炭素が、使用WCの分析値に従い、必要に応じて補償用
に添加されうる。別途に依存するが、WC粉末は細いも
のの使用が好ましい。
First, WC powder and, as a typical example, CO soap (eg, cobalt octylate) are blended. Carbon, such as carbon black, may be added for compensation as necessary, depending on the analysis of the WC used. Although it depends on the case, it is preferable to use thin WC powder.

一般に4.5μm以下の細粉が好ましい。微細工具製造
目的には、1μm未満、特にはα3〜α7μm1最適に
は0.5μm前後のものが好ましい。
Generally, fine powder of 4.5 μm or less is preferred. For the purpose of manufacturing fine tools, a thickness of less than 1 μm, particularly α3 to α7 μm1, optimally around 0.5 μm is preferred.

使用するコバルト石鹸もなるたけ高純度のものが好まし
い。コバルト石鹸中のCo純度として99ffiffi
%以上で、Sフリーのものが好ましい。
It is preferable that the cobalt soap used be of as high a purity as possible. 99ffiffi as Co purity in cobalt soap
% or more and is S-free.

Co石酷の量は、用徐に応じて、Co換芦で1〜30重
盪%、代表的には5〜20ffifi%に相当すく量と
される。
The amount of Co stone is set to be equivalent to 1 to 30% by weight, typically 5 to 20% by weight of Co, depending on the usage.

カーボンブラックのような補償用炭素は、全量の0.2
重機%までにおいて必要量添加される。
Compensating carbon, such as carbon black, accounts for 0.2 of the total amount.
It is added in the required amount up to % of heavy machinery.

少fiのTic、TaC,NbC,VC,Cr3C2を
加えることも多(、TicはWC/T s c < 重
量比)ニア0/30または50150の複炭化物で添加
されることもある。TaC,NbCは単独で或いは複炭
化物の形で添加される。
A small amount of Tic, TaC, NbC, VC, Cr3C2 is often added (Tic is WC/T sc < weight ratio) and is sometimes added as a double carbide of near 0/30 or 50150. TaC and NbC may be added alone or in the form of multiple carbides.

次いで、これら混合物は、溶剤として例えばアセトンを
使用して、振動ボールミル、回転ボールミル、遠心ボー
ルミル等のボールミルにおいて充分に混合される。混合
は、充分なる混合をもたらすべく20〜60時間もたら
される。溶剤としては、アセトンの池へ午サン、アルコ
ールなどが用いられる。
These mixtures are then thoroughly mixed in a ball mill, such as a vibratory ball mill, a rotary ball mill, or a centrifugal ball mill, using for example acetone as a solvent. Mixing is allowed for 20 to 60 hours to provide sufficient mixing. As the solvent, acetone, alcohol, etc. are used.

次は、溶媒分離工程である。これは、真空ライカイ機、
遠心分離機、ウオターバス等の設備を使用して行われる
。溶媒を除去するに充分の温度、一般に70〜95℃、
好ましくは80〜90°Cの温度で実施される。通常、
ステンレス醜製のウス、キネ等で攪拌を行う。
Next is the solvent separation step. This is a vacuum laikai machine,
This is done using equipment such as centrifuges and water baths. a temperature sufficient to remove the solvent, generally 70-95°C;
Preferably it is carried out at a temperature of 80-90°C. usually,
Stir with a stainless steel bowl, kine, etc.

その後、混合物は、還元処理を受ける。還元処理は、代
表的には、水素還元炉を使用して750〜1000°C
の湿度で水素気流を流しつつ実施される。温度、被処理
物証等に応じて充分の還元が行われるよう還元時間が設
定される。
The mixture is then subjected to a reduction treatment. Reduction treatment is typically performed at 750 to 1000°C using a hydrogen reduction furnace.
It is carried out with a hydrogen stream flowing at a humidity of . The reduction time is set to ensure sufficient reduction depending on the temperature, material to be treated, etc.

こうして、結合相としてコバルトを均一に分散したスポ
ンジ状WCが得られる。粉砕後、これに、バインダー(
パラフィン、カン7アー、ポリエチレングリコール、ポ
リブテン等)を溶媒(例えばパラフィン溶媒として四塩
化炭素)に溶かした溶液の添加の下で(1〜5重ffi
%)、例えば真空ライカイ機を使用して造粒が行われ、
その後篩別を行って目標寸法の粉末を回収する。
In this way, a spongy WC in which cobalt is uniformly dispersed as a binder phase is obtained. After grinding, add a binder (
Paraffin, carbon dioxide, polyethylene glycol, polybutene, etc.) in a solvent (e.g. carbon tetrachloride as paraffin solvent) (1 to 5 times ffi
%), granulation is carried out using a vacuum laikai machine, for example,
Thereafter, sieving is performed to collect powder having the target size.

得られた微粉は、その後、通常の成形及び焼結工程に供
せられる。成形は、カム式プレス機、油圧プレス機、静
水圧プレス機等を使用して段階的に圧力を高めて或いは
一定圧力の下で0.5t/cm2〜4t/cm2の圧力
において行われる。
The resulting fine powder is then subjected to conventional shaping and sintering steps. The molding is carried out at a pressure of 0.5 t/cm 2 to 4 t/cm 2 using a cam press, a hydraulic press, a hydrostatic press, etc., and increasing the pressure stepwise or under a constant pressure.

成形物は、必要に応じ、700〜1000℃において予
備焼結されうる。これは、例えば、真空炉において実施
される。その後、中間加工を行ってもよい。
The molded product may be pre-sintered at 700 to 1000°C, if necessary. This is carried out, for example, in a vacuum furnace. After that, intermediate processing may be performed.

最後に焼結が行われる。焼結は、1400〜1500℃
、通常1450℃において1〜4時間行われる。
Finally, sintering takes place. Sintering is at 1400-1500℃
, usually at 1450°C for 1 to 4 hours.

以上はWC−Co、l=について述べたが、本発明は結
合相を前述したような有@酸塩として導入することを特
徴とするものであり、W C−Co糸量外にも同様の処
理条件を設定しうることは明らかである。
The above description has been about WC-Co, l=, but the present invention is characterized by introducing the binder phase as an @ acid salt as described above, and similar It is clear that the processing conditions can be set.

発明の効果 t 従来技術では得られない超硬合金用結合相金属の超
微粉を、所1insltu法で容易にかつ安価に得られ
る。
Effects of the Invention t Ultrafine powder of binder phase metal for cemented carbide, which cannot be obtained by conventional techniques, can be easily and inexpensively obtained by the 1insltu method.

2 結合相金属の超微粉は非常に不安定であり、流通商
品として取扱うことは種々制約を生じることが予想され
るが、本発明によれば極めて安全に超硬合金用基材に結
合相金属が理想的なまでに分散した形で得られる。
2. Ultrafine powder of binder phase metal is extremely unstable, and it is expected that handling it as a commercial product will be subject to various restrictions. However, according to the present invention, it is possible to extremely safely apply binder phase metal to a base material for cemented carbide. can be obtained in an ideally dispersed form.

五 本発明から得られる超硬合金はその用途を特に限定
するものではないが、従来技術では、ユーザーの要求に
対応出来ないマイクロドリル等微細でかつ強度、切削性
が望まれる用途に最適である。
5. The use of the cemented carbide obtained from the present invention is not particularly limited, but it is most suitable for applications that require fineness, strength, and machinability, such as micro drills, where conventional technology cannot meet user requirements. .

実施例1 平均粒径0.5 pmのWCα95ky、TlC59、
およびTaC10りの混合物に対し、Coとして60り
に相当するオクチル酸Coとカーボンブラック5りおよ
びアセトン500−を加えた混合物をボールミルに張込
み、48Hr混合した。次いで内容物を真空ライカイ機
に移し、ライカイしながら80℃に加温しアセトンを留
去した。内容物を取り出し水素還元炉中にセットし本案
気流500ゴ/ m 1 mを保ちながら炉内温度を4
00°Cとした。還元の開始と共に排気口にオクチル酸
の蒸気が凝縮する。JHr後炉内炉内温度00°Cとし
21’Ir処理した。次にP内気流を窒素に切り替え説
水素処理後放冷した。かくして、結合相としてCoを均
一に分散したスポンジ状WCが得られ、これをライカイ
機に移しパラフィン10%を溶解した四塩化炭素を20
0ゴ加えて48Hrライカイした後、100meshの
ふるいでし別し、通過率95%微粉を得た。得られた微
粉をカム式プレスを用い、圧力1t/口2の条件で23
×16×6×6R(mm)の寸法に成型した。この成型
物を真空炉中800°CX24Hr(g変度1〜50 
mmHg)予備焼結した後、1450°CX2 Hr 
(5〜10 ) XjOrrmH9の条件で焼結し超硬
合金を得た。この合金を常法によりエツチングした後、
顕微鏡で組織を観察すると非常に緻密かつ理想的な分散
状態にあることが認められた。また、得られた材料につ
いてJIS−17762、B−0601に規定された硬
度と抗折力を測定し、表−1の結果を得た。
Example 1 WCα95ky with an average particle size of 0.5 pm, TlC59,
A mixture of Co octylate corresponding to 60 mol of Co, 5 ml of carbon black, and 500 ml of acetone was charged into a ball mill and mixed for 48 hours. Next, the contents were transferred to a vacuum cleaner and heated to 80°C under vacuum to distill off acetone. The contents were taken out and placed in a hydrogen reduction furnace, and the temperature inside the furnace was raised to 4.5 m while maintaining an air flow of 500 g/m 1 m.
The temperature was 00°C. Octylic acid vapor condenses at the exhaust port as reduction begins. After JHr, the temperature inside the furnace was set to 00°C, and 21'Ir treatment was performed. Next, the air flow inside the P was changed to nitrogen, and after the hydrogen treatment, the reactor was allowed to cool. In this way, a sponge-like WC in which Co was uniformly dispersed as a binder phase was obtained, and this was transferred to a Raikai machine where 20% of carbon tetrachloride in which 10% of paraffin was dissolved was added.
After adding 0.0% of the powder and rinsing for 48 hours, it was sieved through a 100 mesh sieve to obtain a fine powder with a passing rate of 95%. The obtained fine powder was heated using a cam press at a pressure of 1 t/mouth for 23 hours.
It was molded into dimensions of x16 x 6 x 6R (mm). This molded product was placed in a vacuum furnace at 800°C for 24 hours (g variation 1 to 50
mmHg) After pre-sintering, 1450°CX2 Hr
(5-10) A cemented carbide was obtained by sintering under the conditions of XjOrrmH9. After etching this alloy by a conventional method,
When the structure was observed under a microscope, it was found to be extremely dense and in an ideal dispersed state. Further, the hardness and transverse rupture strength of the obtained material as specified in JIS-17762 and B-0601 were measured, and the results shown in Table 1 were obtained.

実施例2 実施例1においてオクチル酸COに代えてオクチル@N
lを使用して同じ処理を行い、非強磁性超硬合金を得た
。以下、同様の評価を行なった。
Example 2 Octyl@N instead of octylic acid CO in Example 1
The same treatment was carried out using L to obtain a non-ferromagnetic cemented carbide. Similar evaluations were made below.

結果を表−1に示す。The results are shown in Table-1.

実施例3 実施例1においてオクチル酸coに代えてナフテン酸C
oを用いて同じ処理を行い、同様の結果を得た。以下、
同様の評価を行なった。結果を表−1に示す。
Example 3 In Example 1, naphthenic acid C was substituted for octylic acid co.
The same process was performed using o and similar results were obtained. below,
A similar evaluation was conducted. The results are shown in Table-1.

実施例4 実施例1においてオクチルi!iICoに代えてステア
リンfi Caを用いて同じ処理を行い、同様の結果を
得た。以下、同様の評価を行なった。結果を表−1に示
す。
Example 4 In Example 1, Octyl i! The same treatment was performed using stearin fi Ca instead of iICo and similar results were obtained. Similar evaluations were made below. The results are shown in Table-1.

比較例 実施例1のオクチル酸Coに代えてコバルト粉末(平均
粒径to−tsμm)を用いまた、水素還元の工程を経
ない以外は、総て同様にして超硬合金を得た。以下、同
様の評価を行ない、それらの測定結果を表−1に示した
Comparative Example A cemented carbide was obtained in the same manner as in Example 1 except that cobalt powder (average particle size to-ts μm) was used instead of Co octylate and the hydrogen reduction step was not performed. Similar evaluations were carried out below, and the measurement results are shown in Table 1.

Claims (1)

【特許請求の範囲】 1)少くとも1種の高融点セラミクスとコバルト、ニッ
ケル及び鉄のうちから選択される少くとも1種の結合用
金属とから成る混合物を成形及び焼結することにより焼
結複合材料を製造する方法において、前記混合物を、前
記セラミクスと前記結合用金属の炭素数6以上のカルボ
ン酸塩との混合物を還元処理することにより調製するこ
とを特徴とする焼結複合材料の製造方法。 2)セラミクスが酸化物、炭化物、ホウ化物、窒化物及
びケイ化物のうちから選択される特許請求の範囲第1項
記載の方法。 3)セラミクスが周期律表IVa族金属(Ti、Zr、H
f)、Va族金属(V、Nb、Ta)及びVIa族金属(
Cr、Mo、W)の炭化物である特許請求の範囲第1項
記載の方法。 4)炭素数6以上のカルボン酸塩が脂肪酸、樹脂酸及び
ナフテン酸の金属塩から選択される特許請求の範囲第1
項記載の方法。 5)炭素数6以上のカルボン酸塩が、オクチル酸、ナフ
テン酸及びステアリン酸の金属塩から選択される特許請
求の範囲第1項記載の方法。
[Claims] 1) Sintering by forming and sintering a mixture consisting of at least one type of high melting point ceramic and at least one type of bonding metal selected from cobalt, nickel, and iron. A method for producing a composite material, characterized in that the mixture is prepared by reducing a mixture of the ceramic and the carboxylic acid salt having 6 or more carbon atoms of the bonding metal. Method. 2) A method according to claim 1, wherein the ceramic is selected from oxides, carbides, borides, nitrides and silicides. 3) Ceramics contain group IVa metals of the periodic table (Ti, Zr, H
f), Va group metals (V, Nb, Ta) and VIa group metals (
The method according to claim 1, wherein the carbide is a carbide of Cr, Mo, W). 4) Claim 1 in which the carboxylic acid salt having 6 or more carbon atoms is selected from metal salts of fatty acids, resin acids, and naphthenic acids.
The method described in section. 5) The method according to claim 1, wherein the carboxylic acid salt having 6 or more carbon atoms is selected from metal salts of octylic acid, naphthenic acid, and stearic acid.
JP61101995A 1986-05-06 1986-05-06 Manufacture of sintered composite material Pending JPS62260027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101995A JPS62260027A (en) 1986-05-06 1986-05-06 Manufacture of sintered composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101995A JPS62260027A (en) 1986-05-06 1986-05-06 Manufacture of sintered composite material

Publications (1)

Publication Number Publication Date
JPS62260027A true JPS62260027A (en) 1987-11-12

Family

ID=14315406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101995A Pending JPS62260027A (en) 1986-05-06 1986-05-06 Manufacture of sintered composite material

Country Status (1)

Country Link
JP (1) JPS62260027A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518195A (en) * 1999-12-22 2003-06-03 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Powder mixtures and composite powders, their preparation and their use in composites
JP2010121192A (en) * 2008-11-21 2010-06-03 Japan New Metals Co Ltd Composite powder and method for producing the same
WO2017195695A1 (en) 2016-05-11 2017-11-16 日立金属株式会社 Composite member manufacturing method and composite member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885406A (en) * 1972-02-17 1973-11-13
JPS5024799A (en) * 1973-07-04 1975-03-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4885406A (en) * 1972-02-17 1973-11-13
JPS5024799A (en) * 1973-07-04 1975-03-17

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518195A (en) * 1999-12-22 2003-06-03 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Powder mixtures and composite powders, their preparation and their use in composites
JP4969008B2 (en) * 1999-12-22 2012-07-04 エイチ・シー・スタルク・ゲゼルシヤフト・ミツト・ベシュレンクテル・ハフツング Powder mixtures and composite powders, methods for their production and their use in composite materials
JP2010121192A (en) * 2008-11-21 2010-06-03 Japan New Metals Co Ltd Composite powder and method for producing the same
WO2017195695A1 (en) 2016-05-11 2017-11-16 日立金属株式会社 Composite member manufacturing method and composite member
US11786967B2 (en) 2016-05-11 2023-10-17 Proterial, Ltd. Composite member manufacturing method and composite member

Similar Documents

Publication Publication Date Title
JP4969008B2 (en) Powder mixtures and composite powders, methods for their production and their use in composite materials
US6858060B2 (en) Process for the production of composite components by powder injection molding, and composite powders suitable for this purpose
CN1829820A (en) Sputtering target and method for production thereof
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
FR2784690A1 (en) Pre-alloyed tungsten and-or molybdenum and transition metal based powder, useful for sintered parts or cermet binders, comprises micron-size elementary particles
JP2008527167A (en) Metal powder mixture
TW200909102A (en) Homogeneous granulated metal based and metal-ceramic based powders
JP2005314806A (en) Powder of nano crystalline copper metal and nano crystalline copper alloy having high hardness and high electric conductivity, bulk material of nano crystalline copper or copper alloy having high hardness, high strength, high electric conductivity and high toughness, and production method thereof
WO2000023631A1 (en) Micronic pre-alloyed metal powder based on three-dimensional transition metal
JP2012052237A (en) Cemented carbide, method for production thereof, and rotating tool using the cemented carbide
JPH05209248A (en) High hardness and wear-resistant material
Chuankrerkkul et al. Application of polyethylene glycol and polymethyl methacrylate as a binder for powder injection moulding of hardmetals
JPS62260027A (en) Manufacture of sintered composite material
JPH10298606A (en) Injection molding material composition containing metal oxide, for forming metallic molding
JP4889198B2 (en) Cemented carbide, method for producing the same, and rotary tool using the same
KR102611118B1 (en) The hard metal and method for manufacturing the same
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPH05147916A (en) Production of fine tungsten-based carbide powder
Talijan et al. Processing and properties of silver-metal oxide electrical contact materials
KR970001558B1 (en) Method for composite powder
JP2004256852A (en) Cemented carbide and drill using it
Salea et al. CuFeO2 formation using fused deposition modeling 3D printing and sintering technique
JPH0754001A (en) Production of fine composite carbide powder for producing tungsten carbide base cemented carbide
CN116694975A (en) Processing method of nanoscale hard alloy
JPH03134102A (en) Additional powder for sintering and sintering method