JPS62253507A - Method of regulating damping force and device therefor - Google Patents

Method of regulating damping force and device therefor

Info

Publication number
JPS62253507A
JPS62253507A JP9857486A JP9857486A JPS62253507A JP S62253507 A JPS62253507 A JP S62253507A JP 9857486 A JP9857486 A JP 9857486A JP 9857486 A JP9857486 A JP 9857486A JP S62253507 A JPS62253507 A JP S62253507A
Authority
JP
Japan
Prior art keywords
damping force
mode
extension
modes
retraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9857486A
Other languages
Japanese (ja)
Other versions
JPH0756311B2 (en
Inventor
Seiji Komamura
駒村 清二
Ken Mimukai
水向 建
Takashi Umeno
梅野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP61098574A priority Critical patent/JPH0756311B2/en
Publication of JPS62253507A publication Critical patent/JPS62253507A/en
Publication of JPH0756311B2 publication Critical patent/JPH0756311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • F16F9/467Throttling control, i.e. regulation of flow passage geometry using rotary valves
    • F16F9/468Throttling control, i.e. regulation of flow passage geometry using rotary valves controlling at least one bypass to main flow path

Abstract

PURPOSE:To aim at making both relaxation of push-up feeling and prevention of vibration compatible, with the use of a variable extension and retraction type damping force regulating damper device, by setting four modes for the relationship between extending and retracting damping forces, and by using a rotary valve having a specific shape groove to control damping force. CONSTITUTION:There are set four modes, that is, a first mode in which the damping force is minimum on both extension and retraction sides, a second mode in which the damping force on both extension and retraction side is greater than that in the first mode, a third mode in which the damping force on the extension side is greater than that in the first mode but the damping force on the retraction side is smaller than that in the first mode and a fourth mode in which the damping force is maximum on both extension and retraction sides. Further, a controller performs comparing computation for a signal from a running condition sensor to select any one of the modes I-IV to change angular position (1)-(4) of a rotary valve 2 having extension and retraction side grooves 4 which therefore exhibit damping forces corresponding to several modes. With this arrangement it is possible to make both relaxation of push-up feeling and prevention of vehicle body vibration compatible.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、車輌用の伸圧比可変型減衰力調整式ショック
アブソーバシステムにおける減衰力の伸側対圧倒比を可
変する場合の設定方法並びにその為の装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a setting method for varying the expansion-to-overwhelm ratio of damping force in a variable expansion ratio type damping force adjustable shock absorber system for vehicles, and a setting method thereof. related to equipment for

〈従来の技術〉 車の走行時における乗心地を向上させるには、車体固有
(使用緩衝器固有)の−次及び二次共振点付近でのみ適
切な減衰力を発生し、それ以外の振動領域では減衰力が
ない方が好ましく、又、上記共振点付近における減衰力
も圧側は低く、伸側を高くすることにより、突き上げ感
の緩和を車体の振動防上との両立が計れることから、伸
圧比可変可能な減衰力調整式ショックアブソーバがすで
に提案されている。
<Prior art> In order to improve the riding comfort of a car while driving, it is necessary to generate an appropriate damping force only near the -order and secondary resonance points specific to the car body (specific to the shock absorber used), and to reduce vibration in other vibration areas. Therefore, it is preferable to have no damping force, and the damping force near the above resonance point is low on the compression side and high on the rebound side, which alleviates the uplifting feeling while also preventing vibration of the car body. Shock absorbers with variable damping force adjustment have already been proposed.

ところで、従来のこの種装胃によると、その減衰力特性
が第6図に示すように、ソフト(S)とハード()l)
との2段又はその中間に更に1段附加した3段制御であ
った。そして、一般にロール制御或いはノーズダイブ制
御時などの車体の大きな揺れに対しては、減衰力をハー
ド化して姿勢の変化を押えるような制御態様が採用され
ている。
By the way, according to this conventional type gasket, its damping force characteristics are soft (S) and hard ()l) as shown in Figure 6.
It was a three-stage control with two stages or an additional stage in between. In general, in response to large shaking of the vehicle body during roll control or nose dive control, a control mode is adopted in which the damping force is increased to suppress changes in attitude.

又、高速走行時には前輪(フロント)側の減衰力を予め
高め(ハード)に切り替えておき、このフロント側に大
きな振動入力が入来したことを、変位センサー、超音波
センサー或いは重力センサーなどの各種センサーで感知
した際に、後輪(リア)側の減衰力をハード側に切り換
えて、前輪に続き後輪に入来する路面からの振動に対処
して、車体振動を小さく押えるなど、前記数段の制御態
様の内走行条件に応じた適切なモードに切換ることによ
って、乗心地並ひに操安性の向上を計っていた。
Also, when driving at high speeds, the damping force on the front wheel (front) side is switched to a high (hard) level in advance, and various sensors such as displacement sensors, ultrasonic sensors, or gravity sensors are used to detect when large vibration inputs are received on the front side. When detected by a sensor, the damping force on the rear wheel (rear) side is switched to the hard side to deal with vibrations from the road surface that enter the rear wheels after the front wheels, thereby suppressing vehicle body vibration. By switching to an appropriate mode according to the driving conditions among the control modes of the stages, it was possible to improve not only ride comfort but also maneuverability.

〈発明が解決しようとする問題点ン しかし、ヒ述のように伸圧比を変えることによって乗心
地等の向上を計る従来装置においても、未だ欠点があり
、その改飾が強く望まれている状況にある。
<Problems to be Solved by the Invention> However, as mentioned above, the conventional device that improves riding comfort by changing the expansion ratio still has drawbacks, and there is a strong desire to improve it. It is in.

即ち、L記従来装置においては、減衰力切換を行う場合
でも、切換によって伸圧側共に同時に高い減衰力発生又
は低い減衰力となるので、例えば路面突起の乗越し時な
どに適応して減衰力設定をハード側に切り換ると、車体
振動は押えられるものの突き上げ感が大きくて、却って
乗心地が悪くなり、この突き上げ感を防ぐために減衰力
を低く設定すると、減衰力不足による車体振動が大きく
なるなど、その両立性を充分に満足させ得るものではな
かった。
In other words, in the conventional device described in L, even when switching the damping force, the switching causes a high damping force or a low damping force to be generated on both the extension side at the same time, so the damping force is set in accordance with, for example, when going over a road bump. If you switch to the hard side, the car body vibration will be suppressed, but there will be a strong thrusting feeling, which will actually make the ride uncomfortable.If you set the damping force low to prevent this thrusting feeling, the car body vibration will increase due to insufficient damping force. etc., it was not possible to fully satisfy the compatibility.

そこで、本発明は、この突き上げ感の緩和と車体振動防
止との両立を、比較的簡単な制御によりそのときの最適
の減衰力の発生を可能にするシステムの開発並びに装置
構成を目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention aims to develop a system and configure a device that can both alleviate this thrusting feeling and prevent vehicle body vibration by generating an optimal damping force at that time through relatively simple control.

く問題点を解決するための手段〉 而して1本発明では、振動入力の大きさに応じた最適な
走行状態を得るために、減衰力発生機構におけるピスト
ンの伸圧比の設定を次の方法により行う。
Means for Solving the Problems> Accordingly, in the present invention, in order to obtain an optimal running condition according to the magnitude of vibration input, the expansion ratio of the piston in the damping force generation mechanism is set by the following method. This is done by

即ち、伸圧側共に減衰力が最も小さい第mモードと、該
第1モードよりも伸圧側とも減衰力が大きい第IIモー
ドと、この第IIモードよりも伸側の減衰力が大きくて
圧側のそれが小さい第mモードと、伸圧側共に減衰力が
最も大きい第■モードとの四態様である。
That is, the mth mode has the smallest damping force on both the compression side, the II mode has a larger damping force on the compression side than the first mode, and the mode has a larger damping force on the compression side than the second mode. There are four modes: the m-th mode, where the damping force is small, and the (2)-th mode, where the damping force is the largest on both the extension side.

そして、部分的に溝巾が異なり且つその形状が伸側と圧
側とで異なる長溝孔に構成したロータリバルブによって
、上記各モードでの減衰力制御が可能となる。
The damping force control in each of the above-mentioned modes is made possible by the rotary valve formed into a long slot with partially different groove widths and different shapes on the expansion side and the compression side.

く作  用〉 前記第1モードは通常走行時などの小振幅の入力時、即
ち、車体固有の一次又は二次共振点以外の振動状態に対
して適用して乗心地を良くし、−次共振点付近の振動が
生じた際に、第IIモードに切換えてバランシング制御
あるいはボトミング制御に有効に作用し、路面突起乗越
え時あるいは悪路走行時等に生じ勝ちな二次共振点付近
の振動で第mモードに切換って共振を防ぎ、第■モード
を姿勢制御用モードとしてノーズダウン等の糠幅の大き
い振動に対処させることが出来る。
Function> The first mode is applied to vibration conditions other than the primary or secondary resonance points unique to the vehicle body when inputting a small amplitude during normal driving, etc., to improve ride comfort and reduce -order resonance. When vibrations occur near the point, the mode is switched to the second mode, which effectively acts on balancing control or bottoming control, and suppresses vibrations near the secondary resonance point, which are likely to occur when riding over road bumps or driving on rough roads. It is possible to switch to the m mode to prevent resonance, and use the 2nd mode as an attitude control mode to cope with large vibrations such as nose-down.

部分的に溝巾の異なる長溝孔はこれが臨む伸側又は圧側
ボートの孔径の規制下に異なる部分の溝巾に応じた作動
油の流れを許容する調整オリフィスとして作用するので
、ロータリロッドの回転位置即ち該長溝孔の前記ボート
に対する占位位行によって、流油゛駿を加減しての減衰
力規制が行われる。
The long groove holes with partially different groove widths act as adjustment orifices that allow the flow of hydraulic oil according to the groove widths of the different portions under the restriction of the hole diameter of the extension side or compression side boat that it faces, so the rotational position of the rotary rod can be adjusted. That is, the damping force is regulated by controlling the flow rate by adjusting the position of the long slot with respect to the boat.

更に、伸側ボートに対する長溝孔と圧倒ボートに対する
長溝孔の形状を変えること、換言すればこれ等両長溝孔
の相対する部分の溝巾を異ならせることによって、伸側
と圧側との減衰力発生比を可変することが可能であると
共に、長溝からなるこれ搾孔は前記各モード位社への切
換に際して無段階的に円滑な移行が出来る。
Furthermore, by changing the shape of the long slot for the rebound side boat and the long slot for the overwhelming boat, in other words, by making the groove widths of the opposing parts of both long slots different, damping force can be generated on the growth side and the compression side. In addition to being able to vary the ratio, the hole made of long grooves allows smooth transition in a stepless manner when switching to each mode.

〈実施例〉 第1図及び第2図は本発明に基き構成したけ−タリへル
ブの一実施例を夫々示すもので、第1図(a)は伸側ボ
ートに臨む該バルブの断面図及び同図(b)はその周面
の展開図で、減衰力発生機(第3図示参照)のピストン
ロッドl内に形成したロータリバルブ2には、それが伸
側ボート3に臨む周壁の一部4aを残して時計回り向き
に、溝巾が徐々に狭くなる喫状の長溝孔4を開穿してあ
り、他方、開口端にチェック弁5を備えた圧側ボート6
に臨む部分には、第2図(a)及び(b)に示すように
、同じく周壁の一部7aを残して時計回り向きに溝l]
が狭くなる特異点を経て溝巾を広げ、再び狭くなる隘れ
模型の長溝孔7を開穿しである。しかも、これ等間長溝
孔7は、第1図及び第2図の各図に示十回動占位位置■
乃至■が互いに一致する位置に形成されている。
<Embodiment> FIGS. 1 and 2 show an embodiment of the valve valve constructed based on the present invention, and FIG. 1(a) is a sectional view of the valve facing the extension boat. FIG. 3B is a developed view of the peripheral surface of the rotary valve 2 formed in the piston rod l of the damping force generator (see the third diagram). A long groove hole 4 with a draft shape whose groove width gradually narrows is bored in a clockwise direction while leaving a portion 4a, and a pressure side boat 6 is provided with a check valve 5 at the open end.
As shown in FIGS. 2(a) and 2(b), in the part facing the wall, a groove 1 is formed in a clockwise direction, leaving a part 7a of the peripheral wall.
The groove width widens after passing through a singular point where it becomes narrow, and then the long groove hole 7 of the narrowing model is drilled. In addition, these long slot holes 7 are located at ten rotation positions shown in FIGS. 1 and 2.
.about.(■) are formed at positions that coincide with each other.

かかる構成下において、加振動作に応じてピストンロッ
ド1がシリンダ8内をそのピストン9と共に移動すると
き、シリンダ内容室の油が前記伸側及び圧制の両ボート
3及び6、各バルブの各長溝孔4及び7更にピストンロ
ッドlの通路lOからなる送油路を通って、前記ピスト
ン9を境に他方の容室へと流れる。
Under such a configuration, when the piston rod 1 moves within the cylinder 8 together with its piston 9 in response to an excitation operation, oil in the cylinder inner chamber flows into both the expansion side and compression boats 3 and 6, and each long groove of each valve. The oil flows through the holes 4 and 7 and through the passage 10 of the piston rod 1 to the other chamber with the piston 9 as a boundary.

このピストン動作時に、ロータリバルブ2がその回動占
位位置d)を保持しているとすれば、ピストンロッド1
の伸側動作で、チェック弁5の状態により閉鎖された圧
倒ボート6側に対して伸側ボート3と一致した長溝孔4
の溝巾の最も広い部分を調整オリフィスとする作動油の
流れは、左程の抵抗を受けることなく上下容室間を流れ
るので、このときの減衰力発生は、第4図図示の特性図
に示す如く、その伸側減衰力域の特性曲線Iで示される
程度のものとなり、圧側動作では、前記チェック弁5が
開放されるので、先の伸側ボート3を通る作動油の流れ
に加えて長溝孔7の占位位置■における巾広溝部で規制
されて圧側ボート6を通る作動油の流れが加算される結
果、更に減衰力が低下した第4図上圧側減衰力域の特性
曲線■で示す状態になる。即ち、この減衰力制御態様を
第■モードとする。
If the rotary valve 2 maintains its rotational position d) during this piston movement, then the piston rod 1
With the expansion side operation, the long slot hole 4 which coincides with the expansion side boat 3 is opened to the overwhelming boat 6 side which is closed due to the state of the check valve 5.
The flow of hydraulic oil, which uses the widest part of the groove width as the adjustment orifice, flows between the upper and lower chambers without experiencing much resistance, so the damping force generated at this time is as shown in the characteristic diagram shown in Figure 4. As shown, the damping force on the rebound side is approximately as shown by characteristic curve I, and in the compression side operation, since the check valve 5 is opened, in addition to the flow of hydraulic oil through the rebound side boat 3, As a result of the addition of the flow of hydraulic oil that is regulated by the wide groove at the position ■ of the long groove hole 7 and passes through the pressure side boat 6, the damping force is further reduced in the characteristic curve ■ of the upper pressure side damping force region in Fig. 4. It will be in the state shown. That is, this damping force control mode is set as mode (2).

同様にロータリバルブ2がその回動占位位置■を保持し
ているとすれば、第4図上特性曲線Hの減衰力を生じさ
せ、特に圧側動作で溝巾の狭い特異点位置偉)の調整オ
リフィス機能によって大きな減衰力を発生させる。即ち
、この状態を第1!モードとする。
Similarly, if the rotary valve 2 maintains its rotational position (2), the damping force shown in the characteristic curve H in Fig. 4 will be generated, and the singular point position (W) with a narrow groove width will occur, especially in the compression side operation. A large damping force is generated by the adjustable orifice function. In other words, this state is the first! mode.

更に、ロータリバルブ2が回動占位位置■にあるとき、
長溝孔4の溝巾が更に狭くなる一方、長溝孔7の溝巾が
再び広くなるので、第4図上特性曲線mで示すところの
第■モードの減衰力発生状態となる。
Furthermore, when the rotary valve 2 is in the rotating position ■,
While the groove width of the long slot hole 4 becomes narrower, the groove width of the long slot hole 7 becomes wider again, so that the damping force generation state of the mode (2) shown by the characteristic curve m in FIG. 4 is reached.

そして、両ボート3及び6が夫々部分4a及び7aによ
って閉鎖される回動占位位置■にあっては、そのときの
減衰力が第4図上特性曲線■で示す如く極めて大きくな
る第■モードの制御状態を得ることが出来る。
In the rotating position ■ where both boats 3 and 6 are closed by the portions 4a and 7a, respectively, the damping force at that time becomes extremely large as shown by the characteristic curve ■ in FIG. control state can be obtained.

この各モードの制御態様は、周知の如く、サスペンショ
ン変位センサー、車速センサー、ハンドル角速度センサ
ー、スロットルポジションセンサー、加速度センサーあ
るいはブレーキ圧センサーなどの各種センサーからの状
態検出信号をコントローラ11(第5図参照)で比較演
算して、例えば−上記各センサーからの信号値が有る設
定値以下のとき、減衰力モード切換器12が第1モード
を選択するように設定して置き、該器12からの出力に
よって前記ロータリバルブ2の回動占位位置を決定する
アクチュエータを制御する。従って、これ等センサーが
比較的安定した走行状態を検出している通常走行時に第
エモードによる減衰力の小さい乗心地の良い制御がなさ
れる。
As is well known, the control mode of each mode is such that state detection signals from various sensors such as a suspension displacement sensor, vehicle speed sensor, steering wheel angular velocity sensor, throttle position sensor, acceleration sensor, or brake pressure sensor are sent to a controller 11 (see FIG. ), and the damping force mode switch 12 is set to select the first mode when the signal value from each of the above sensors is below a certain set value, and the output from the switch 12 is set so that the damping force mode switch 12 selects the first mode. controls the actuator that determines the rotational position of the rotary valve 2. Therefore, during normal driving when these sensors detect a relatively stable driving state, the second emode provides control with a small damping force and a good ride comfort.

そして、サスペンション変位センサー及び車速センサー
更に加速度センサーが夫々一定の設置値以との値を検出
したとき、即ち、−次共振点付近の振動が生じる虞れが
あるとき、コントローラ11からの出力信号で減衰力モ
ード切換器12は第IIモードを選択して、伸圧側共に
比較的大きな減衰力を発生させて、バランシング制御及
びボトミング制御として有効に作用する。
When the suspension displacement sensor, the vehicle speed sensor, and the acceleration sensor each detect a value greater than a certain set value, that is, when there is a possibility that vibration near the -th order resonance point will occur, an output signal from the controller 11 is sent. The damping force mode switch 12 selects the II mode to generate a relatively large damping force on both the expansion side and effectively act as balancing control and bottoming control.

更に、この第Hモードへの切換えセンサーが更に大きな
値を検出するときの悪路走行時等における二次共振点付
近の振動発生で第■モードへの切換えが行われる。
Furthermore, when the switching sensor to the H-th mode detects an even larger value and vibrations occur near the secondary resonance point when driving on rough roads, etc., the switching to the H-th mode is performed.

急発進或いは急停止l:などの際のノーズダウンおよび
跳ね返りスフオート或いはローリングなどの振幅の天き
い振動が生じる虞れがある時の車速センサー及びハンド
ル角速度センサー又はスロ?)ルボジションセンサー若
しくはブレーキ圧センサーなどからの一定値以上の信号
出力で、第■モードに切換えて、そのときの極めて大き
い減衰力発生の下で姿勢制御を良く行うことが出来る。
Vehicle speed sensor and steering wheel angular velocity sensor or throttle when there is a risk of high amplitude vibrations such as nose-down, rebounding, rolling, etc. during a sudden start or sudden stop. ) When a signal output from a position sensor or a brake pressure sensor exceeds a certain value, it is possible to switch to mode (2) and perform attitude control well under the extremely large damping force generated at that time.

〈発明の効果〉 このように、本発明方法によれば、前述の四態様の各減
衰力発生モーVに設定することによって各種の走行条件
に合せて、予測される若しくは発生した振動入力の大き
さに応じて、そのときの最適な減衰力発生状態にモード
切換を行うことが出来、しかも、減衰力の極めて大きい
第■モードを姿勢制御モードとして有効に活用すること
が出来る。そして、本発明装置によれば、ロータリバル
ブを伸側と圧側作用部とでは形状が異なり且つ溝巾が部
分的に変化する長溝孔に構成したことによって、−上記
各モードへの連続した無段階切換を行うことが出来、し
かも、この装置構成によって。
<Effects of the Invention> As described above, according to the method of the present invention, the magnitude of the predicted or generated vibration input can be adjusted according to various driving conditions by setting each of the four damping force generation modes V described above. Accordingly, the mode can be switched to the optimal damping force generation state at that time, and mode (2), which has an extremely large damping force, can be effectively used as the attitude control mode. According to the device of the present invention, by configuring the rotary valve as a long groove hole whose shape is different between the expansion side and the compression side working part and whose groove width partially changes, the continuous and stepless operation of each of the above-mentioned modes is achieved. Switching can be done, and moreover, with this device configuration.

前記各モードの切換を各センサーからの検出信号をコン
ピュータ操作等による複雑な制御処理を行うことなくて
、比較的簡単なコントローラの構成でもって適切に行う
ことが可能である等、この種伸圧可変型減衰力調整式シ
ョックアプンーバシステムとして実用に供して極めて有
効なるものである。
This type of expansion allows the switching of each of the modes described above to be performed appropriately using a relatively simple controller configuration without the need for complicated control processing using computer operations or the like on the detection signals from each sensor. This is extremely effective in practical use as a variable damping force adjustable shock damping system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明装置の一実施例を示す伸側バ
ルブ及び圧側バルブの構成図で、各図において(a)は
断面図、及び(b)は周面の展開図。 第3図は前記両パルプを適用する減衰力発生機構の一例
を示す要部の縦断面図、第4図は本発明方法における減
衰力設定モードの各特性を示す特性図、第5図は本発明
装置における制御系の一例を示す構成図、第6図は従来
システムにおける減衰力設定モードを示す特性図である
。 2・Φロータリバルブ、3赤−伸側ポート、4.7Φφ
長溝孔、6拳・圧側ボート、(0乃至■・拳回転占位位
置、■乃至■φ令第1モード乃至第■モード。
1 and 2 are configuration diagrams of an expansion side valve and a compression side valve showing one embodiment of the device of the present invention, in each figure, (a) is a sectional view, and (b) is a developed view of the circumferential surface. FIG. 3 is a vertical cross-sectional view of the main parts showing an example of a damping force generation mechanism to which both of the pulps are applied, FIG. 4 is a characteristic diagram showing each characteristic of the damping force setting mode in the method of the present invention, and FIG. FIG. 6 is a block diagram showing an example of a control system in the invention device, and a characteristic diagram showing damping force setting modes in a conventional system. 2・Φ rotary valve, 3 red - expansion side port, 4.7Φφ
Long groove hole, 6 fists, pressure side boat, (0 to ■, fist rotation position, ■ to ■φ order 1st mode to ■mode.

Claims (2)

【特許請求の範囲】[Claims] (1)伸圧比可変型減衰力調整式ショックアブソーバシ
ステムにおいて、車体への振動入力の大きさに応じて切
換える減衰力発生態様を、伸圧側を共に最も小さい減衰
力発生状態に制御する第 I モードと、伸圧側の減衰力
が共に前記第 I モードのそれよりも大きい第IIモード
と、伸側の減衰力が前記第IIモードのそれよりも大きく
圧側の減衰力が第IIモードのそれよりも小さい第IIIモ
ード及び伸圧側を共に最も大きい減衰力発生状態に制御
する第IVモードとの四態様に設定してなることを特徴と
する減衰力調整方法。
(1) In a compression ratio variable damping force adjustable shock absorber system, mode I controls the damping force generation mode, which switches depending on the magnitude of vibration input to the vehicle body, to the lowest damping force generation state on both the expansion side. , a mode II in which the damping force on the compression side is both greater than that in the mode I, and a damping force on the compression side is greater than that in the mode II, and a damping force on the compression side is greater than that in the mode II. A damping force adjustment method characterized in that the damping force adjustment method is set in four modes: a small mode III and a mode IV in which both the expansion side is controlled to a state in which the largest damping force is generated.
(2)伸圧比可変型減衰力調整式ショックアブソーバシ
ステムにおいて、減衰力発生機構のロータリバルブを、
部分的に溝巾が異なり且つその形状が伸側と圧側とで異
なる長溝孔に構成し、該バルブの各回動占位位置におい
て、伸圧側を共に最も小さい減衰力発生状態に制御する
第 I モードと、伸圧側の減衰力が共に前記第 I モード
のそれよりも大きい第IIモードと、伸側の減衰力が前記
第IIモードのそれよりも大きく圧側の減衰力が第IIモー
ドのそれよりも小さい第IIIモード及び伸圧側を共に最
も大きい減衰力発生状態に制御する第IVモードに対応し
た減衰力切換を無段階的に行うように構成したことを特
徴とする減衰力調整装置。
(2) In a variable expansion ratio damping force adjustable shock absorber system, the rotary valve of the damping force generation mechanism is
The I mode is configured with long slots that have partially different groove widths and different shapes on the expansion side and the compression side, and controls both the expansion side to the minimum damping force generation state at each rotational position of the valve. , a mode II in which the damping force on the compression side is both greater than that in the mode I, and a damping force on the compression side is greater than that in the mode II, and a damping force on the compression side is greater than that in the mode II. 1. A damping force adjusting device characterized in that the damping force adjustment device is configured to perform stepless damping force switching corresponding to a fourth mode in which both a small third mode and an expansion side are controlled to a state in which the largest damping force is generated.
JP61098574A 1986-04-28 1986-04-28 Damping force adjustment device Expired - Fee Related JPH0756311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098574A JPH0756311B2 (en) 1986-04-28 1986-04-28 Damping force adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098574A JPH0756311B2 (en) 1986-04-28 1986-04-28 Damping force adjustment device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6181838A Division JPH0752627A (en) 1994-07-11 1994-07-11 Damping force adjusting method

Publications (2)

Publication Number Publication Date
JPS62253507A true JPS62253507A (en) 1987-11-05
JPH0756311B2 JPH0756311B2 (en) 1995-06-14

Family

ID=14223440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098574A Expired - Fee Related JPH0756311B2 (en) 1986-04-28 1986-04-28 Damping force adjustment device

Country Status (1)

Country Link
JP (1) JPH0756311B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993001947A1 (en) * 1991-07-19 1993-02-04 Nippondenso Co., Ltd. Variable damping force shock absorber controller
JPH0525043U (en) * 1991-06-11 1993-04-02 株式会社アツギユニシア Variable damping force buffer
US5425436A (en) * 1992-08-26 1995-06-20 Nippondenso Co., Ltd. Automotive suspension control system utilizing variable damping force shock absorber
EP0668175A1 (en) * 1994-02-22 1995-08-23 Unisia Jecs Corporation Hydraulic shock absorber having variable damping force characteristic structure
EP0728603A1 (en) * 1994-09-14 1996-08-28 Unisia Jecs Corporation Vehicle suspension apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616351B2 (en) * 2009-10-06 2013-12-31 Tenneco Automotive Operating Company Inc. Damper with digital valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747323A (en) * 1980-09-04 1982-03-18 Nitto Electric Ind Co Ltd Epoxy resin composition having improved resistance to hot water at high temperature
JPS57182506A (en) * 1981-05-01 1982-11-10 Kayaba Ind Co Ltd Damping force controller of hydraulic pressure buffer
JPS5923786A (en) * 1982-07-29 1984-02-07 ヤマハ発動機株式会社 Shock absorber for motorcycle
JPS59121220U (en) * 1983-02-07 1984-08-15 日産自動車株式会社 Vehicle wheel suspension system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747323A (en) * 1980-09-04 1982-03-18 Nitto Electric Ind Co Ltd Epoxy resin composition having improved resistance to hot water at high temperature
JPS57182506A (en) * 1981-05-01 1982-11-10 Kayaba Ind Co Ltd Damping force controller of hydraulic pressure buffer
JPS5923786A (en) * 1982-07-29 1984-02-07 ヤマハ発動機株式会社 Shock absorber for motorcycle
JPS59121220U (en) * 1983-02-07 1984-08-15 日産自動車株式会社 Vehicle wheel suspension system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525043U (en) * 1991-06-11 1993-04-02 株式会社アツギユニシア Variable damping force buffer
WO1993001947A1 (en) * 1991-07-19 1993-02-04 Nippondenso Co., Ltd. Variable damping force shock absorber controller
US5425436A (en) * 1992-08-26 1995-06-20 Nippondenso Co., Ltd. Automotive suspension control system utilizing variable damping force shock absorber
EP0668175A1 (en) * 1994-02-22 1995-08-23 Unisia Jecs Corporation Hydraulic shock absorber having variable damping force characteristic structure
EP0728603A1 (en) * 1994-09-14 1996-08-28 Unisia Jecs Corporation Vehicle suspension apparatus
EP0728603A4 (en) * 1994-09-14 1997-02-26 Unisia Jecs Corp Vehicle suspension apparatus
US5718446A (en) * 1994-09-14 1998-02-17 Unisia Jecs Corporation Vehicle suspension system

Also Published As

Publication number Publication date
JPH0756311B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
US5467280A (en) Vehicular suspension system utilizing variable damping force shock absorber
JPH05330325A (en) Suspension control device
JP2006273316A (en) Air suspension and electronic control suspension device
JPH05155222A (en) Suspension device for vehicle
JP3084054B2 (en) Vehicle suspension device
JPH0885321A (en) Suspension control device
JP3083113B2 (en) Vehicle suspension system
JP2515099B2 (en) Damping force control method for vehicle
JP3137209B2 (en) Semi-active suspension system
JPS62253507A (en) Method of regulating damping force and device therefor
JPH06219125A (en) Method and device for closed and/or open loop control of vehicle chassis
JPS63145114A (en) Suspension device for automobile
JPH06106945A (en) Damping force variable shock absorber control device
JPH02208108A (en) Active type suspension
JP2770026B2 (en) Shock absorber damping force control method
JP3325130B2 (en) Vehicle suspension system
JPH0699717A (en) Damping force-changeable shock absorber control device
JP3095398B2 (en) Vehicle suspension device
JP2561869Y2 (en) Vehicle suspension system
JP2954370B2 (en) Vehicle suspension system
JPH0752627A (en) Damping force adjusting method
JPH03217311A (en) Suspension device for vehicle
JPH0577624A (en) Vehicle suspension device
JP3016528B2 (en) Vehicle suspension system
JPH0632132A (en) Damping force variable shock absorber and control device thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees