JPS62252328A - Method for purifying inorganic compound - Google Patents

Method for purifying inorganic compound

Info

Publication number
JPS62252328A
JPS62252328A JP61096402A JP9640286A JPS62252328A JP S62252328 A JPS62252328 A JP S62252328A JP 61096402 A JP61096402 A JP 61096402A JP 9640286 A JP9640286 A JP 9640286A JP S62252328 A JPS62252328 A JP S62252328A
Authority
JP
Japan
Prior art keywords
water
slurry
exchange resin
precipitate
inorganic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61096402A
Other languages
Japanese (ja)
Inventor
Kazumitsu Abe
一允 安倍
Masashi Aoki
昌史 青木
Kazuhisa Hidaka
一久 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP61096402A priority Critical patent/JPS62252328A/en
Publication of JPS62252328A publication Critical patent/JPS62252328A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To purify an inorganic compound suitable as electronic material, etc., by simple facilities efficiently and in high degree, by bringing a specific inorganic compound into contact with an ion exchange resin in an aqueous medium. CONSTITUTION:A water-insoluble inorganic compound (e.g. metatitanic acid) containing a water-soluble ion as an impurity is washed with water once or more times, redispersed into an aqueous medium to give aqueous slurry. Then, the slurry is adjusted to a pH which is apart from the isoelectric point of precipitate in the slurry, brought into contact with >= equivalent based on the water-soluble ion in the slurry of strongly basic anion exchange resin and treated. Then, the pH of the slurry is adjusted in such a way that the pH is coincident with the isoelectric point to aggregate precipitate particles. Then, the ion exchange resin is removed from the slurry, the prepared cake of the precipitate is dried to give an inorganic compound having <=0.01wt% water-soluble ion as the impurity.

Description

【発明の詳細な説明】 良呈上生科尻氷国 本発明は、無機化合物の精製方法に関し、特に、水媒体
中において湿式沈殿法によって沈殿として得られた無機
化合物を高度に精製するのに好適である無機化合物の精
製方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for purifying an inorganic compound, and particularly to highly purifying an inorganic compound obtained as a precipitate by a wet precipitation method in an aqueous medium. The present invention relates to a suitable method for purifying inorganic compounds.

従来の技術 近年、電子材料、機能性セラミックス、構造用セラミッ
クス等の分野において、高純度の無機化合物、例えば、
酸化チタン、酸化鉄、硫酸バリウム、炭酸バリウム、水
酸化亜鉛、アルミナ、酸化ジルコニウム等が強く必要と
されるに至っている。
Background Art In recent years, in the fields of electronic materials, functional ceramics, structural ceramics, etc., high-purity inorganic compounds, such as
Titanium oxide, iron oxide, barium sulfate, barium carbonate, zinc hydroxide, alumina, zirconium oxide, and the like have come to be strongly needed.

一般に、無機化合物の多くは、水媒体中における湿式沈
殿反応における沈殿として製造されている。即ち、所定
の金属塩の水溶液に酸やアルカリ土類金属酸塩等を加え
、中和反応や加水分解反応等によって、目的とする無機
化合物を沈殿として得る。このような沈殿法においては
、通常は、生成した沈殿を濾過、水洗して、沈殿中に混
在する不純物としての水溶性イオンを除去することによ
って、精製品を得ている。
Generally, many inorganic compounds are produced as a precipitate in a wet precipitation reaction in an aqueous medium. That is, an acid, an alkaline earth metal salt, or the like is added to an aqueous solution of a predetermined metal salt, and the desired inorganic compound is obtained as a precipitate through a neutralization reaction, hydrolysis reaction, or the like. In such a precipitation method, a purified product is usually obtained by filtering the generated precipitate and washing it with water to remove water-soluble ions as impurities mixed in the precipitate.

しかし、かかる水洗法にて沈殿を高度に精製するために
は、沈殿法にて得られた沈殿のりパルプ及び、水洗及び
濾過の工程を繰り返さなければならないので、多大の労
力、用水及び設備費用を必要とすると共に、膨大な量の
排水を発生し、その処理にもまた費用を必要とする。し
かも、かかる水洗法によっては、沈殿中には尚、水溶性
イオンが、通常、不純物として0.1%以上も残留して
いる。水洗法によって、この不純物を0.01%以下と
することも可能ではあるが、一層の費用を要するので、
工業的には採用し難い。
However, in order to highly purify the precipitate using this water washing method, the precipitated paste pulp obtained by the precipitation method must be washed with water and the steps of filtration must be repeated, which requires a large amount of labor, water and equipment costs. At the same time, it also generates a huge amount of wastewater, which also costs money to treat. Furthermore, depending on the water washing method, 0.1% or more of water-soluble ions still remain as impurities in the precipitation. Although it is possible to reduce this impurity to 0.01% or less by washing with water, it is more expensive, so
Difficult to adopt industrially.

例えば、触媒用の酸化ニッケルは、硫酸ニッケルの水溶
液に炭酸ナトリウムを加えて塩基性炭酸ニッケルを沈殿
させ、これを濾過、水洗した後、乾燥焼成することによ
って製造されている。しかし、この沈殿法による塩基性
炭酸ニッケルの製造においては、その沈殿に際して硫酸
ナトリウムが副生し、これを水洗によって完全に除去す
ることは極めて困難であって、通常、沈殿中には硫酸ナ
トリウムが0.1〜1.0%程度混在している。
For example, nickel oxide for catalysts is produced by adding sodium carbonate to an aqueous solution of nickel sulfate to precipitate basic nickel carbonate, filtering it, washing it with water, and then drying and calcining it. However, in the production of basic nickel carbonate using this precipitation method, sodium sulfate is produced as a by-product during the precipitation, and it is extremely difficult to completely remove this by washing with water. About 0.1 to 1.0% is mixed.

他方、上記の方法において、炭酸ナトリウムに代えて、
重炭酸アンモニウムを用いれば、沈殿として生成する塩
基性炭酸ニッケル中には不純物として硫酸アンモニウム
が混在することとなるので、この場合は、得られた塩基
性炭酸ニッケル沈殿を焼成することによって、硫酸アン
モニウムを熱分解させて除去することができる。しかし
、硫酸アンモニウムを効率よく熱分解させるためには、
塩基性炭酸ニッケルの沈殿を700℃程度以上の高温に
加熱することを必要とするために、結果的には、この加
熱過程において、生成する酸化ニッケルが焼結し、粒径
の大きい粒子に成長する。所謂ファイン・セラミックス
や触媒用には、微粒子状の酸化ニッケルを必要とするの
で、上記のようにして得られる粒径の大きい酸化ニッケ
ルは、用いるに適さない。
On the other hand, in the above method, instead of sodium carbonate,
If ammonium bicarbonate is used, ammonium sulfate will be present as an impurity in the basic nickel carbonate that is formed as a precipitate. It can be decomposed and removed. However, in order to thermally decompose ammonium sulfate efficiently,
Since the precipitation of basic nickel carbonate requires heating to a high temperature of approximately 700°C or higher, the resulting nickel oxide is sintered during this heating process and grows into large particles. do. Since nickel oxide in the form of fine particles is required for so-called fine ceramics and catalysts, the nickel oxide having a large particle size obtained as described above is not suitable for use.

このような問題を解決するために、例えば、蒸留精製し
た金属アルコキシド又は蒸留精製した金属カルボニルを
用いて、副生物の生成を伴わないで、沈殿を生成させる
方法も提案されているが、この方法は、容易に理解され
るように、製造費用が極めて高価とならざるを得ない。
In order to solve this problem, a method has been proposed in which, for example, a distilled metal alkoxide or a distilled metal carbonyl is used to generate a precipitate without producing any by-products. As is easily understood, manufacturing costs are extremely high.

勿論、無機化合物の精製における上記した問題は、水媒
体中において所定の反応によって生成した沈殿自体をそ
の後の処理として引き続いて精製する場合のみならず、
一般に、市販品として入手される無機化合物を高度に精
製する場合も同様である。
Of course, the above-mentioned problems in the purification of inorganic compounds occur not only when the precipitate itself produced by a predetermined reaction in an aqueous medium is subsequently purified as a subsequent treatment.
Generally, the same applies when highly refining inorganic compounds obtained as commercial products.

■が ° しようとする鍔 占 従って、本発明は、一般的には、市販品として入手され
る無機化合物を含む無機化合物の精製方法に関し、特に
、水媒体中において湿式沈殿法によって沈殿として得ら
れた無機化合物をその後に引き続く処理として、簡単な
設備を用いながら、従来の水洗法による精製に比べて、
不純物を格段に低減させることができる無機化合物の精
製方法を提供することを目的とする。
Accordingly, the present invention generally relates to a method for purifying an inorganic compound including an inorganic compound obtained as a commercially available product, and particularly relates to a method for purifying an inorganic compound including an inorganic compound obtained as a precipitate by a wet precipitation method in an aqueous medium. As a subsequent treatment for inorganic compounds, it uses simple equipment, compared to the conventional water washing method.
An object of the present invention is to provide a method for purifying inorganic compounds that can significantly reduce impurities.

このようにして精製された無機化合物は、例えば、前記
したように、電子材料やファイン・セラミックス材料等
として好適に用いることができる。
Inorganic compounds purified in this way can be suitably used, for example, as electronic materials, fine ceramic materials, etc., as described above.

間 占を ゛するための手 本発明は、水溶性イオンを不純物として含有する水不溶
性の無機化合物を水媒体中にてイオン交換樹脂と接触さ
せることを特徴とする 特に、本発明による方法において、好ましい態様は、水
媒体中における所定の化学反応によって生成した沈殿と
しての無機化合物をその後に引き続く処理として、上記
沈殿を水媒体中に分散させ、これをイオン交換樹脂に接
触させるものであり、特に好ましい態様は、水媒体中に
おける所定の化学反応によって沈殿として生成した無機
化合物を少なくとも一度水洗、濾過した後、再び、水に
分散させて、これをイオン交換樹脂に接触させ、このよ
うにして、沈殿として得られた無機化合物に含まれる水
溶性イオンを通常0.01%以下とするものである。
In particular, the present invention provides a method according to the invention, characterized in that a water-insoluble inorganic compound containing water-soluble ions as impurities is brought into contact with an ion exchange resin in an aqueous medium. In a preferred embodiment, as a subsequent treatment of the inorganic compound as a precipitate produced by a predetermined chemical reaction in an aqueous medium, the precipitate is dispersed in an aqueous medium and brought into contact with an ion exchange resin. In a preferred embodiment, an inorganic compound produced as a precipitate by a predetermined chemical reaction in an aqueous medium is washed with water and filtered at least once, and then dispersed in water again and brought into contact with an ion exchange resin, and in this way, The amount of water-soluble ions contained in the inorganic compound obtained as a precipitate is usually 0.01% or less.

本発明の方法は、前述したように、既に市販されている
無機化合物を含めて、一般に無機化合物の精製に適用す
ることがで、きるが、特に、水媒体中における所定の化
学反応によって生成した沈殿としての無機化合物をその
後に引き続く処理として、これを高度に精製するのに好
適であり、ここに、沈殿を生成させるための化学反応、
即ち、湿式沈殿法自体は、何ら限定されるものではなく
、沈殿として生成する無機化合物中に不純物として水溶
性イオンが含まれるような反応にはすべて適用すること
ができる。
As mentioned above, the method of the present invention can be applied to the purification of inorganic compounds in general, including inorganic compounds that are already commercially available, but in particular can be applied to the purification of inorganic compounds produced by a predetermined chemical reaction in an aqueous medium. The subsequent treatment of the inorganic compound as a precipitate is suitable for highly purifying it, comprising: a chemical reaction to produce the precipitate;
That is, the wet precipitation method itself is not limited in any way, and can be applied to any reaction in which water-soluble ions are contained as impurities in the inorganic compound produced as a precipitate.

本発明の方法において用いるイオン交換樹脂は、沈殿を
含む水媒体、即ち、水性のスラリーから除去すべき不純
物としての水溶性イオンに応じて、陽イオン交換樹脂、
陰イオン交換樹脂又はこれらの組み合わせが適宜に選ば
れる。例えば、一般に、純水の製造において用いられる
強酸性陽イオン交換樹脂及び/又は強塩基性陰イオン交
換樹脂が好ましく用いられる。
The ion exchange resin used in the method of the present invention may be a cation exchange resin, a cation exchange resin,
Anion exchange resins or combinations thereof are appropriately selected. For example, strongly acidic cation exchange resins and/or strongly basic anion exchange resins that are generally used in the production of pure water are preferably used.

本発明において、これらイオン交換樹脂に上記スラリー
を接触させる態様は、特に限定されるものではないが、
例えば、沈殿の生成後のスラリーにイオン交換樹脂を加
えて攪拌して、接触させる流動床力によるのが有利であ
る。しかし、イオン交換樹脂を固定床に構成し、これに
スラリーを接触させてもよい。この場合、イオン交換樹
脂の分野において、よく知られているように、イオン交
換樹脂床は、陽イオン交換樹脂と陰イオン交換樹脂の混
合床からなる温床式や、陽イオン交換樹脂と陰イオン交
換樹脂の個別の床構造からなる二床式等、いずれをも用
いることができる。
In the present invention, the manner in which the slurry is brought into contact with these ion exchange resins is not particularly limited, but
For example, it is advantageous to add the ion exchange resin to the slurry after the formation of the precipitate, stir it, and bring it into contact by means of a fluidized bed force. However, the ion exchange resin may be arranged in a fixed bed with which the slurry is contacted. In this case, as is well known in the field of ion exchange resins, the ion exchange resin bed may be a hot bed type consisting of a mixed bed of cation exchange resin and anion exchange resin, or a hot bed type consisting of a mixed bed of cation exchange resin and anion exchange resin. Any method can be used, such as a two-bed structure consisting of individual bed structures of resin.

本発明においては、水媒体中における所定の化学反応に
よって生成した沈殿を精製する場合は、沈殿を含むスラ
リーを少なくとも一度濾過し、大部分の水溶性イオンを
除去した後、沈殿を水に再度リパルプし、これを攪拌下
にイオン交換樹脂と接触させるのが好ましい。かかる方
法によって、沈殿中に混在する不純物としての水溶性イ
オンの大部分を予め除去し、この後にイオン交換樹脂と
接触させることによって、多量のイオン交換樹脂を用い
ることなく、且つ効率よく沈殿を高度に精製することが
できるからである。
In the present invention, when purifying a precipitate generated by a predetermined chemical reaction in an aqueous medium, the slurry containing the precipitate is filtered at least once to remove most of the water-soluble ions, and then the precipitate is repulped into water. However, it is preferable to bring this into contact with an ion exchange resin while stirring. By this method, most of the water-soluble ions as impurities mixed in the precipitate are removed in advance, and then brought into contact with an ion exchange resin, thereby efficiently removing the precipitate to a high degree without using a large amount of ion exchange resin. This is because it can be refined into

尚、従来の精製方法においては、沈殿を高度に精製する
必要があるときは、反応後に沈殿を濾過した後、これを
薫留水やイオン交換水等のような純度の高い水にリパル
プさせ、水洗、濾過を繰り返す方法によっている。しか
し、本発明の方法によれば、沈殿をリパルプさせる水は
、固形分を含まない限りは、水中に含まれるイオン成分
もイオン交換樹脂によって除去されるので、例えば、−
船上水を用いることがでる。従って、特に上記したよう
な純水を用いる必要はないので、本発明の方法によれば
、用水費用が節減される。
In addition, in conventional purification methods, when it is necessary to highly purify the precipitate, the precipitate is filtered after the reaction, and then repulped into high purity water such as smoked water or ion exchange water. This is done by repeatedly washing with water and filtering. However, according to the method of the present invention, as long as the water used to repulp the precipitate does not contain any solid content, the ionic components contained in the water are also removed by the ion exchange resin.
Onboard water can be used. Therefore, since there is no need to use pure water as described above, the method of the present invention reduces water costs.

用いるイオン交換樹脂の量は、スラリー中に存在する水
溶性イオンの当量以下の量のイオン交換樹脂を用いるこ
とを排除するものではないが、通常は、スラリー中に存
在する水溶性イオンの当量以上を用いる。特に、スラリ
ー中に存在する水溶性イオンの2倍当量以上のイオン交
換樹脂と接触させれば、イオン交換樹脂の再生回数を減
することができる。スラリーをイオン交換樹脂と接触さ
せる温度は何ら限定されるものではないが、通常、室温
でよい。
The amount of ion exchange resin used is usually equal to or greater than the equivalent amount of water soluble ions present in the slurry, although this does not preclude using an amount of ion exchange resin that is less than the equivalent amount of water soluble ions present in the slurry. Use. In particular, the number of times the ion exchange resin can be regenerated can be reduced by contacting the slurry with an ion exchange resin having twice the equivalent amount or more of the water-soluble ions present in the slurry. The temperature at which the slurry is brought into contact with the ion exchange resin is not limited at all, but usually room temperature may be used.

本発明においては、イオン交換樹脂に接触させるべき沈
殿を含むスラリーは、先ず、その沈殿の等電点を離れた
pHに設定して、イオン交換樹脂と接触させ、この後、
スラリーのpiを等電点に一致させるのが好ましい。即
ち、先ず、スラリーのpHをその等電点よりも高くする
か、又は低くすることによって、スラリー中における沈
殿の分散性を高めて、沈殿に吸蔵されている水溶性イオ
ンとイオン交換樹脂との反応性を高めることができる。
In the present invention, the slurry containing the precipitate to be brought into contact with the ion exchange resin is first set at a pH far from the isoelectric point of the precipitate and brought into contact with the ion exchange resin, and then,
It is preferable to match the pi of the slurry to the isoelectric point. That is, first, by raising or lowering the pH of the slurry than its isoelectric point, the dispersibility of the precipitate in the slurry is increased, and the water-soluble ions occluded in the precipitate and the ion exchange resin are separated. Reactivity can be increased.

この場合、スラリーをイオン交換樹脂にて処理する間に
そのpHが等電点に近接しないように、予め陽イオン交
換樹脂と陰イオン交換樹脂のそれぞれの量を適宜に設定
しておくことが望ましい。例えば、スラリーのpiを高
く維持する場合には、用いる陰イオン交換樹脂量を、他
方、スラリーのpHを低く維持する場合には、用いる陽
イオン交換樹脂量をそれぞれ多く設定すればよい。
In this case, it is desirable to set the amounts of each of the cation exchange resin and anion exchange resin appropriately in advance so that the pH of the slurry does not approach the isoelectric point while the slurry is treated with the ion exchange resin. . For example, if the pi of the slurry is maintained high, the amount of anion exchange resin used may be increased, and if the pH of the slurry is maintained low, the amount of cation exchange resin used may be increased.

この後、上記処理のために用いたイオン交換樹脂とは逆
電荷のイオン交換樹脂をスラリーに加えることによって
、スラリーのpHを等電点とするか、又はイオン交換樹
脂をスラリーから除去した後、製品に有害な影響を与え
ない酸若しくはアルカリ、例えば、炭酸ガス、有機酸、
アンモニア等を加えて、等電点をpHに合わせる。即ち
、このように、最終的にスラリーの等電点にpHを一致
させることによって、沈殿粒子が容易に凝集し、濾過を
容易に行なうことができる。よく知られているように、
沈殿を含むスラリーのpl+を等電点から離間させると
きは、沈殿粒子が相互に静電的に反発して分散するので
、濾過が困難となる。
After this, the pH of the slurry is adjusted to the isoelectric point by adding to the slurry an ion exchange resin having an opposite charge to that of the ion exchange resin used for the above treatment, or after removing the ion exchange resin from the slurry, Acids or alkalis that do not have a harmful effect on the product, such as carbon dioxide, organic acids,
Add ammonia etc. to adjust the isoelectric point to pH. That is, by finally adjusting the pH to the isoelectric point of the slurry in this manner, the precipitated particles are easily aggregated and filtration can be easily performed. As is well known,
When the pl+ of the slurry containing the precipitate is moved away from the isoelectric point, the precipitate particles electrostatically repel each other and disperse, making filtration difficult.

本発明の方法において、沈殿を含むスラリーをイオン交
換樹脂に接触させる処理時間は、スラリー中に存在する
水溶性イオンの種類やその量、また、これらを除去すべ
き程度等にも依存するが、例えば、前述した塩基性炭酸
ニッケルの製造の場合であれば、短時間の処理にて硫酸
ナトリウムの残留量を0.01%以下とすることができ
る。
In the method of the present invention, the treatment time for contacting the slurry containing the precipitate with the ion exchange resin depends on the type and amount of water-soluble ions present in the slurry, as well as the extent to which these should be removed. For example, in the case of producing basic nickel carbonate as described above, the residual amount of sodium sulfate can be reduced to 0.01% or less in a short time.

以上のようにして、沈殿を含むスラリーをイオン交換樹
脂に接触させた後、スラリーからイオン交換樹脂を除去
し、得られた沈殿のケーキを任意の方法にて乾燥するこ
とによって、目的とする高純度の無機化合物を得ること
ができる。
After bringing the slurry containing the precipitate into contact with the ion exchange resin as described above, the ion exchange resin is removed from the slurry, and the resulting precipitate cake is dried by any method to achieve the desired high Purity of inorganic compounds can be obtained.

光1虫肱栗 本発明の方法によれば、大規模な設備を何ら必要とせず
して、しかも、従来のりパルプ、水洗及び濾過による方
法に比べて、沈殿中に残留する不純物を格段に減少させ
ることができる。
According to the method of the present invention, no large-scale equipment is required, and impurities remaining in the sediment are significantly reduced compared to the conventional method using glue pulp, water washing, and filtration. be able to.

本発明の方法によれば、市販されている通常の無機化合
物も容易に高度に精製することができるが、特に、本発
明の方法によれば、水媒体中において湿式沈殿法によっ
て目的とする化合物を沈殿として生成させ、これをその
後に引き続く処理として精製処理する場合に、容易に且
つ効率よく、高度に精製することができる。
According to the method of the present invention, commercially available ordinary inorganic compounds can also be easily purified to a high degree. In particular, according to the method of the present invention, the target compound can be purified by wet precipitation in an aqueous medium. When a precipitate is produced and then purified as a subsequent treatment, it can be easily and efficiently purified to a high degree.

このように高度に精製された無機化合物は、例えば、フ
ァイン・セラミックスや電子材料として好適に用いるこ
とができる。
Such highly purified inorganic compounds can be suitably used, for example, as fine ceramics or electronic materials.

叉施炎 以下に実施例及び比較例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。
The present invention will be explained below with reference to Examples and Comparative Examples.
The present invention is not limited in any way by these Examples.

比較例1 硫酸性酸化チタンの製造工程から得られたメタチタン酸
のフィルターケーキ(Tiltとして35重量%のチタ
ンを含み、このTiO2に対して8重量%のso’−を
含む。)125gを蒸留水250m1中にリパルプし、
攪拌下に10重量%水酸化ナトリウム水溶液を滴下し、
pH7,0に中和した。
Comparative Example 1 125 g of metatitanic acid filter cake obtained from the sulfuric acid titanium oxide production process (containing 35% by weight of titanium as Tilt and 8% by weight of so'- with respect to this TiO2) was mixed with distilled water. Repulp into 250m1,
A 10% by weight aqueous sodium hydroxide solution was added dropwise while stirring,
Neutralized to pH 7.0.

このスラリーをヌツチェにて濾過し、フィルターケーキ
の一部をサンプリングし、これを120℃で一夜加熱乾
燥した後、原子吸光法にて分析した。その結果、得られ
た水酸化チタンの沈殿中には、Ti0zに対して1.4
重量%のナトリウムが混在していた。
This slurry was filtered using a Nutsche filter, a portion of the filter cake was sampled, and the sample was heated and dried at 120° C. overnight, and then analyzed by atomic absorption spectrometry. As a result, during the precipitation of the obtained titanium hydroxide, 1.4
% by weight of sodium was present.

実施例1 比較例1において、サンプリング後のフィルターケーキ
を三等分し、一方を本実施例1において試料として用い
、他方を後述する実施例2のための試料とした。
Example 1 In Comparative Example 1, the filter cake after sampling was divided into three equal parts, one was used as a sample in this Example 1, and the other was used as a sample for Example 2 described later.

上記フィルターケーキを蒸留水250m1にリパルプし
、これに再生処理した陽イオン交換樹脂(三菱化成工業
側型ダイヤイオンSKIB)100mlと陰イオン交換
樹脂(三菱化成工業■製ダイヤイオンSA20A)10
0mlとを加え、室温にて1時間攪拌した後、金網にて
イオン交換樹脂を濾別した。
The above filter cake was repulped into 250 ml of distilled water, and this was mixed with 100 ml of recycled cation exchange resin (Diaion SKIB, manufactured by Mitsubishi Chemical Industries, Ltd.) and 10 ml of anion exchange resin (Diaion SA20A, manufactured by Mitsubishi Chemical Industries, Ltd.).
After stirring at room temperature for 1 hour, the ion exchange resin was filtered off using a wire mesh.

得られた濾過ケーキを120°Cで一夜加熱乾燥した後
、原子吸光法にて分析した結果、沈殿中のナトリウムは
、TiO□に対してO,OO5重量%以下であった。
The obtained filter cake was heated and dried at 120° C. overnight, and then analyzed by atomic absorption spectrometry. As a result, the sodium content in the precipitate was 5% by weight or less of O and OO based on TiO□.

実施例2 比較例1において得たフィルターケーキを蒸留水250
m1にリパルプし、これに再生処理した前記と同じ陰イ
オン交換樹脂100m1を加え、室温にて1時間攪拌し
た後、金網にてイオン交換樹脂を濾別した。次いで、ス
ラリーに前記と同じ陽イオン交換樹脂100m1を加え
、同様に、室温にて1時間攪拌した後、金網にてイオン
交換樹脂を濾別した。
Example 2 The filter cake obtained in Comparative Example 1 was mixed with distilled water at 250 ml.
ml was repulped, and 100 ml of the same anion exchange resin as above which had been regenerated was added thereto, and after stirring at room temperature for 1 hour, the ion exchange resin was filtered off using a wire mesh. Next, 100 ml of the same cation exchange resin as above was added to the slurry, and after stirring at room temperature for 1 hour, the ion exchange resin was filtered off using a wire mesh.

得られたスラリーをヌッチェにて濾過し、この濾過ケー
キを120℃で一夜加熱乾燥した後、原子吸光法にて分
析した結果、沈殿中のナトリウムは、TiO□に対して
0.005重量%以下であった。
The resulting slurry was filtered using a Nutsche filter, and the filter cake was heated and dried at 120°C overnight, and analyzed by atomic absorption spectrometry. As a result, the sodium content in the precipitate was 0.005% by weight or less based on TiO□. Met.

比較例2 比較例1におけると同じメタチタン酸のフィルターケー
キ125gを蒸留水250m1中にリパルプし、攪拌下
に10重量%水酸化ナトリウム水溶液を滴下し、pH7
,0に中和した。このスラリーをヌツチェにて濾過し、
ケーキAを得た後、120°Cで一夜加熱乾燥した。
Comparative Example 2 125 g of the same filter cake of metatitanic acid as in Comparative Example 1 was repulped in 250 ml of distilled water, and a 10% by weight aqueous sodium hydroxide solution was added dropwise to the mixture with stirring to adjust the pH to 7.
, neutralized to 0. This slurry is filtered through Nutsche,
After obtaining Cake A, it was heated and dried at 120°C overnight.

上記ケーキAについて、同様にこれをリパルプした後、
中和する精製処理を繰り返してケーキBを得、これを1
20℃で一夜加熱乾燥した。更に、同様に、上記ケーキ
Bについて、同じ精製処理を繰り返してケーキCを得、
上記と同様に処理した後、120℃で一夜加熱乾燥した
Regarding the above cake A, after repulping it in the same way,
Cake B was obtained by repeating the purification process of neutralization, and this was
It was dried by heating at 20°C overnight. Furthermore, similarly, the same purification process was repeated for the cake B to obtain a cake C,
After being treated in the same manner as above, it was heated and dried at 120° C. overnight.

このようにして得られたそれぞれのケーキについて、原
子吸光法にて分析した結果、ケーキA、B及びCからの
沈殿中には、TiO□に対してそれぞれナトリウムが1
.4重量%、0.5重量%及び0.2重量%含まれてい
た。
As a result of analyzing each of the cakes obtained in this way by atomic absorption spectrometry, it was found that the precipitates from cakes A, B, and C each contained 1 sodium to TiO□.
.. It contained 4% by weight, 0.5% by weight and 0.2% by weight.

部ち、従来の方法に従って、ケーキをリパルプし、水洗
する処理を多数回にわたって繰り返すことは、多量の洗
浄水を必要としながら、ケーキ中には尚多量の不純物が
含まれている。
On the other hand, according to the conventional method, repeating the process of repulping the cake and washing it with water many times requires a large amount of washing water, and the cake still contains a large amount of impurities.

これに対して、本発明の方法によれば、迅速にしかも、
従来の方法に比べて蟲かに少量の水を用いるのみにて、
沈殿を格段に高度に精製することができる。
In contrast, according to the method of the present invention, it is possible to quickly and
By using only a small amount of water compared to traditional methods,
The precipitate can be purified to a much higher degree.

実施例3 蒸留水250m1に硫酸ニッケルをニッケル換算で10
g溶解させた後、この水溶液に攪拌下に10重量%ソー
ダ灰水溶液を加え、pHが8.0になるまで中和し、沈
殿を生成させた。得られたスラリーをヌッチェにて濾過
し、ケーキを水250m1で洗浄した後、濾過した。
Example 3 10 nickel sulfate in 250 ml of distilled water in terms of nickel
After dissolving g, a 10% by weight aqueous soda ash solution was added to this aqueous solution while stirring, and the pH was neutralized to 8.0 to form a precipitate. The resulting slurry was filtered using a Nutsche filter, and the cake was washed with 250 ml of water and then filtered.

得られたケーキを三等分し、一方を後述する比較例3の
ための試料とし、他方を本実施例における試料として、
これを蒸留水250w++にリパルプし、実施例1と同
様にして、イオン交換樹脂にて処理した。
The obtained cake was divided into three equal parts, one was used as a sample for Comparative Example 3 described later, and the other was used as a sample in this example.
This was repulped in 250 w++ of distilled water and treated with an ion exchange resin in the same manner as in Example 1.

処理後のスラリーをヌッチェにて濾過し、ケーキを得た
後、120℃で一夜加熱乾燥し、原子吸光法にて分析し
た結果、沈殿中のナトリウムはNiOに対して0.00
7重量%であった。
The slurry after the treatment was filtered through a Nutsche filter to obtain a cake, which was then heated and dried at 120°C overnight and analyzed by atomic absorption spectrometry. As a result, the sodium content in the precipitate was 0.00% compared to NiO.
It was 7% by weight.

比較例3 実施例3において得られたケーキAについて、同じ精製
処理を繰り返してケーキBを得、上記と同様に処理した
後、120℃で一夜加熱乾燥した。
Comparative Example 3 Cake B was obtained by repeating the same purification process for cake A obtained in Example 3, treated in the same manner as above, and then heated and dried at 120°C overnight.

更に、上記ケーキBについて、同じ精製処理を繰り返し
てケーキCを得、上記と同様に処理した後、120℃で
一夜加熱乾燥した。
Furthermore, Cake C was obtained by repeating the same purification process for Cake B, which was treated in the same manner as above, and then heated and dried at 120° C. overnight.

このようにして得られたそれぞれのケーキについて、原
子吸光法にて分析した結果、ケーキA、B及びCからの
沈殿中には、NiOに対してそれぞれナトリウムが6重
量%、1.5重量%及び0.4重量%含まれていた。
As a result of analyzing each of the cakes thus obtained by atomic absorption spectrometry, it was found that the precipitates from cakes A, B, and C contained 6% by weight and 1.5% by weight of sodium, respectively, based on NiO. and 0.4% by weight.

実施例4 第1表に示すように、反応物Aの水溶液(0,5mol
e/l) 250mlを反応物Bの1Of!It%水溶
液にてpH7,0になるまで中和し、得られたスラリー
をヌツチェにて濾過した後、得られたケーキをメツチェ
上で蒸留水250m1を注いで洗浄した。
Example 4 As shown in Table 1, an aqueous solution of reactant A (0.5 mol
e/l) 250 ml of reactant B! The resulting slurry was neutralized with an It% aqueous solution until the pH reached 7.0, and the resulting slurry was filtered using a Nutsche, and then the resulting cake was washed on the Metsche by pouring 250 ml of distilled water.

これらケーキをそれぞれ蒸留水250m1にリパルプし
、これに前記と同じ陽イオン交換樹脂及び陰イオン交換
樹脂それぞれ100m1を加え、室温にて1時間攪拌し
た後、金網にてイオン交換樹脂を濾別した。
Each of these cakes was repulped in 250 ml of distilled water, 100 ml each of the same cation exchange resin and anion exchange resin as above were added thereto, and after stirring at room temperature for 1 hour, the ion exchange resin was filtered off using a wire mesh.

このようにして得られた濾過ケーキをそれぞれ120℃
で一夜加熱乾燥した後、乾燥物中のナトリウムを原子吸
光法にて分析した。結果を第1表に示す。得られた沈殿
中のナトリウム量は、いずれの場合も、0.001〜0
.004重量%の範囲であって、簡単な操作にて高純度
の沈殿を得ることができることが明らかである。
Each of the filter cakes thus obtained was heated to 120°C.
After drying by heating overnight, sodium in the dried product was analyzed by atomic absorption spectrometry. The results are shown in Table 1. In each case, the amount of sodium in the obtained precipitate was 0.001 to 0.
.. 0.004% by weight, and it is clear that a highly pure precipitate can be obtained with simple operations.

Claims (2)

【特許請求の範囲】[Claims] (1)水溶性イオンを不純物として含有する水不溶性の
無機化合物を水媒体中にてイオン交換樹脂と接触させる
ことを特徴とする無機化合物の精製方法。
(1) A method for purifying an inorganic compound, which comprises bringing a water-insoluble inorganic compound containing water-soluble ions as impurities into contact with an ion exchange resin in an aqueous medium.
(2)水媒体中における反応によって沈殿として生成し
た無機化合物を少なくとも一度水洗した後、再び、水媒
体中に分散させて、イオン交換樹脂に接触させることを
特徴とする特許請求の範囲第1項記載の無機化合物の精
製方法。
(2) The inorganic compound produced as a precipitate by a reaction in an aqueous medium is washed with water at least once, and then dispersed again in an aqueous medium and brought into contact with an ion exchange resin. Method for purifying the described inorganic compounds.
JP61096402A 1986-04-24 1986-04-24 Method for purifying inorganic compound Pending JPS62252328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61096402A JPS62252328A (en) 1986-04-24 1986-04-24 Method for purifying inorganic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61096402A JPS62252328A (en) 1986-04-24 1986-04-24 Method for purifying inorganic compound

Publications (1)

Publication Number Publication Date
JPS62252328A true JPS62252328A (en) 1987-11-04

Family

ID=14163967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61096402A Pending JPS62252328A (en) 1986-04-24 1986-04-24 Method for purifying inorganic compound

Country Status (1)

Country Link
JP (1) JPS62252328A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241529A (en) * 2005-03-03 2006-09-14 Taiheiyo Kinzoku Kk Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
JP2008050261A (en) * 2007-09-28 2008-03-06 Dowa Holdings Co Ltd Barium sulfate and its producing method
JP2009084139A (en) * 2007-09-11 2009-04-23 Sumitomo Metal Mining Co Ltd Manufacturing process of high purity zinc oxide powder
JP2010208863A (en) * 2009-03-06 2010-09-24 Toho Titanium Co Ltd Method for producing titanium oxide powder
JP2015056275A (en) * 2013-09-11 2015-03-23 旭硝子株式会社 Process of manufacturing positive electrode active material for lithium ion secondary battery and process of manufacturing positive electrode for lithium ion secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137041A (en) * 1979-04-14 1980-10-25 Nippon Carbide Ind Co Ltd Washing method for solid by ion exchange resin
JPS55157331A (en) * 1979-05-29 1980-12-08 Mitsubishi Electric Corp Ion exchange apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137041A (en) * 1979-04-14 1980-10-25 Nippon Carbide Ind Co Ltd Washing method for solid by ion exchange resin
JPS55157331A (en) * 1979-05-29 1980-12-08 Mitsubishi Electric Corp Ion exchange apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241529A (en) * 2005-03-03 2006-09-14 Taiheiyo Kinzoku Kk Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
JP2009084139A (en) * 2007-09-11 2009-04-23 Sumitomo Metal Mining Co Ltd Manufacturing process of high purity zinc oxide powder
JP2008050261A (en) * 2007-09-28 2008-03-06 Dowa Holdings Co Ltd Barium sulfate and its producing method
JP2010208863A (en) * 2009-03-06 2010-09-24 Toho Titanium Co Ltd Method for producing titanium oxide powder
JP2015056275A (en) * 2013-09-11 2015-03-23 旭硝子株式会社 Process of manufacturing positive electrode active material for lithium ion secondary battery and process of manufacturing positive electrode for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US4923682A (en) Preparation of pure titanium dioxide with anatase crystal structure from titanium oxychloride solution
EP0828690B1 (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
JP2634211B2 (en) Method for producing titanium dioxide powder
CA1325879C (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
JP3674009B2 (en) Method for producing amorphous titanium oxide sol
JPS62252328A (en) Method for purifying inorganic compound
US3956474A (en) Process for producing ammonium metatungstate from ammonium tungstate by digestion in silica
AU742966B2 (en) Pure titanium dioxide hydrate and a process for the production thereof
JPS62235215A (en) Production of rutile titanium oxide sol
JPH04280815A (en) Fine particulate alkali titanate and its production
CN109219577B (en) Preparation of nanoparticulate titanium dioxide
US3451764A (en) Preparation of new tungstic acids
JPH07196323A (en) Production of cobalt oxide of low sodium content
JPS61132519A (en) Production of bismuth oxide fine powder
JPH0350119A (en) Production of fine zinc oxide particles
JP3824709B2 (en) Manufacturing method of high purity iron oxide powder
RU2281913C2 (en) Titanium dioxide production process
JPH0617232B2 (en) Method for producing hydrated spherical titanium oxide
JPH04280816A (en) Production of porous fine particulate titanium oxide
JPH06166519A (en) Production of zirconia sol
JPH072598A (en) Production of acicular titanium oxide
JP3257094B2 (en) Method for producing zirconia powder
RU2019511C1 (en) Process for preparing zinc oxide from zinc containing products
JPH01278417A (en) Novel reactive derivative of zirconium and method for its manufacture
JPH06171944A (en) Production of zirconium oxide powder