JPH04280815A - Fine particulate alkali titanate and its production - Google Patents

Fine particulate alkali titanate and its production

Info

Publication number
JPH04280815A
JPH04280815A JP12567491A JP12567491A JPH04280815A JP H04280815 A JPH04280815 A JP H04280815A JP 12567491 A JP12567491 A JP 12567491A JP 12567491 A JP12567491 A JP 12567491A JP H04280815 A JPH04280815 A JP H04280815A
Authority
JP
Japan
Prior art keywords
pure water
water
aqueous solution
alkali metal
alkali titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12567491A
Other languages
Japanese (ja)
Inventor
Koichi Takahara
耕一 高原
Mutsuhiko Saiki
齋木 睦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Color Works Ltd
Original Assignee
Sanyo Color Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Color Works Ltd filed Critical Sanyo Color Works Ltd
Priority to JP12567491A priority Critical patent/JPH04280815A/en
Publication of JPH04280815A publication Critical patent/JPH04280815A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a fine particulate alkali titanate having active surface free from sintered particles by reacting a water suspension of a specific reaction condensate of hydrated titanium oxide and an organic acid with an alkali metal at a given pH and >= a given temperarture. CONSTITUTION:An aqueous solution system at >=50 deg.C, preferably 50-100 deg.C, having dissolved one or more dibasic or tribasic organic carboxylic acids is heated to a fixed temperature. Then, an aqueous solution of titanium tetrachloride, preferably one obtained by dissolving 0.25-2.5 mol titanium tetrachloride in 1.0-5.0 1 pure water is poured at a fixed rate, preferably within 5 hours to the heated aqueous solution while stirring, the reaction condensate of hydrated titanium oxide, thus an organic acid is prescribed, and is filtered, wached with water and dried. The reaction condensate is suspended in pure water, mixed with an alkali metal hydroxide while stirring. Then the suspension is reacted with the alkali metal hydroxide at pH >=8 and at 50 deg.C, filtered, washed with water and dried to give the objective fine particulate alkali titanate.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、微粒子チタン酸アルカ
リ及びその製造法に関するものである。本発明により得
られる微粒子チタン酸アルカリ粉末は、セラミックス、
触媒、イオン交換体等の原料として利用されるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to fine particles of alkali titanate and a method for producing the same. Fine particle alkali titanate powder obtained by the present invention can be used for ceramics,
It is used as a raw material for catalysts, ion exchangers, etc.

【0002】0002

【従来の技術】チタン酸アルカリは通常繊維状の形状を
持ち、その比表面積は小さく、活性のある微粒子粉末で
はない。チタン酸アルカリの製造法としては、焼成法、
溶融法、水熱法、フラックス法及び、融体法等が報告さ
れているが、いずれも高温及び(又は)高圧の合成条件
が必要であり、経済的ではない。又、得られたチタン酸
アルカリは通常、繊維状に大きく成長し、堅く凝集して
いる。従つて、その後の粉砕操作が不可欠であるが、機
械的粉砕では超微粒子まで粉砕することは不可能である
BACKGROUND OF THE INVENTION Alkali titanates usually have a fibrous shape, have a small specific surface area, and are not active fine powder particles. Methods for producing alkali titanate include calcination method,
Melting methods, hydrothermal methods, flux methods, melt methods, etc. have been reported, but all require high temperature and/or high pressure synthesis conditions and are not economical. Further, the obtained alkali titanate usually grows in a large fibrous form and is tightly aggregated. Therefore, a subsequent pulverization operation is essential, but it is impossible to pulverize ultrafine particles by mechanical pulverization.

【0003】チタン酸アルカリ及び製造法に関しては、
これまでに多くの文献、特許に開示されており、これ等
のチタン酸アルカリは、通常数μm〜数十μmの長径を
もつ繊維状であり、比表面積も約20m2/g以下と小
さく、活性な表面を持つものではなかつた。又、これ等
の製造法は、焼成法、溶融法、水熱法、フラックス法、
融体法等が知られているが、いずれも高温及び(又は)
、高圧の合成条件が必要であり、実質的に焼結のない表
面活性な微粒子チタン酸アルカリを得ることは困難なば
かりでなく、経済的ではない。
Regarding alkali titanate and manufacturing method,
These alkali titanates, which have been disclosed in many documents and patents, are usually fibrous with a long axis of several μm to several tens of μm, have a small specific surface area of about 20 m2/g or less, and are highly active. It didn't have a typical surface. In addition, these manufacturing methods include firing method, melting method, hydrothermal method, flux method,
Melt method etc. are known, but all of them require high temperature and/or
, high-pressure synthesis conditions are required, and it is not only difficult to obtain surface-active fine-particle alkali titanates that are substantially free from sintering, but also uneconomical.

【0004】0004

【発明が解決しようとする課題】本発明の目的は、従来
技術では得られない表面活性な微粒子チタン酸アルカリ
(粒子径は約0.5μm以下であり、比表面積は約10
0m2/g以上)及び、その製造法を提供することにあ
る。
[Problems to be Solved by the Invention] The object of the present invention is to produce surface-active fine particles of alkali titanate (particle size is about 0.5 μm or less, specific surface area is about 10
0 m2/g or more) and a method for producing the same.

【0005】[0005]

【課題を解決するための手段及び作用】本発明は、粒子
の大きさが0.01〜0.5μm、比表面積が100m
2/g以上であるという従来技術では得られなかつた表
面活性な微粒子チタン酸アルカリを提供するものであり
、更にその製造法としての二塩基性又は、三塩基性有機
カルボン酸の一種又は、二種以上を溶解した50℃以上
の水溶液系に四塩化チタンの水溶液を注加し、生成する
水和酸化チタン〜有機酸の反応縮合物を▲ろ▼過、水洗
し、次いで、この水懸濁液に水酸化アルカリ金属を添加
し、pH8以上、50℃以上の温度にて、反応せしめた
後、▲ろ▼過、水洗、乾燥することを特徴とする製造法
である。以下に、この微粒子チタン酸アルカリ粉末の具
体的製造方法を説明する。
[Means and effects for solving the problems] The present invention provides particles with a size of 0.01 to 0.5 μm and a specific surface area of 100 m
2/g or more, which could not be obtained by conventional techniques, and furthermore, it provides a surface-active fine particle alkali titanate which cannot be obtained by the conventional technology, and furthermore, as a method for producing the same, one type of dibasic or tribasic organic carboxylic acid or dibasic organic carboxylic acid is used. An aqueous solution of titanium tetrachloride is poured into an aqueous solution system at 50°C or higher in which at least one of the above species has been dissolved, and the resulting reaction condensate of hydrated titanium oxide and an organic acid is filtered and washed with water. This is a production method characterized by adding an alkali metal hydroxide to a liquid, reacting at a pH of 8 or higher and a temperature of 50°C or higher, followed by ▲filtration, washing with water, and drying. A specific method for producing this fine-particle alkali titanate powder will be described below.

【0006】本発明の第一基本は、二塩基性又は、三塩
基性有機カルボン酸、例えばシュウ酸、マロン酸、コハ
ク酸、リンゴ酸、酒石酸、クエン酸、グルコン酸等の一
種又は、二種以上の所定濃度溶液(好ましくは、有機酸
の合計0.5〜5.0モルを純水5〜20lに溶かした
もの)を50℃〜100℃の一定温度に加温し、これを
撹拌しつつ四塩化チタンの所定濃度溶液(好ましくは、
四塩化チタンの0.25〜2.5モルを純水1.0〜5
.0lに溶かしたもの)を一定速度(好ましくは、5時
間以内)にて注加し、水和酸化チタン〜有機酸の反応縮
合物として析出せしめ、これを▲ろ▼過、水洗すること
を特徴とする。
The first basis of the present invention is to use one or two dibasic or tribasic organic carboxylic acids such as oxalic acid, malonic acid, succinic acid, malic acid, tartaric acid, citric acid, and gluconic acid. The solution with the above predetermined concentration (preferably, a total of 0.5 to 5.0 moles of organic acid dissolved in 5 to 20 liters of pure water) is heated to a constant temperature of 50 to 100 °C, and this is stirred. A predetermined concentration solution of titanium tetrachloride (preferably,
0.25 to 2.5 mol of titanium tetrachloride to 1.0 to 5 mol of pure water
.. 0 liter) at a constant rate (preferably within 5 hours) to precipitate a reaction condensate of hydrated titanium oxide and an organic acid, which is then filtered and washed with water. shall be.

【0007】本発明の第二基本は、第一基本で得られた
水和酸化チタン〜有機酸の反応縮合物を純水に懸濁させ
(好ましくは、酸化チタンとして50〜200gを純水
5.0〜15.0lに懸濁させる)、これを50℃〜1
00℃の一定温度に加温し、撹拌しつつ水酸化アルカリ
金属又は、水と反応して水酸化アルカリ金属となりうる
アルカリ金属化合物の所定濃度溶液(好ましくは、水酸
化アルカリ金属の1.0〜10.0モルを純水1.0〜
5.0lに溶かしたもの)を添加し、懸濁液をpH8以
上とし、1〜5時間の間処理することを特徴とする。こ
の操作により、第一基本で得られた水和酸化チタン〜有
機酸の反応縮合物の有機酸は、反応縮合物から中和、離
脱し、離脱した有機酸の代わりにアルカリ金属が水和酸
化チタンと結合し、ついにはチタン酸アルカリと成り得
るのである。以下、実施例をもつて本発明を更に詳細に
説明するが、本発明はこれらによつて限定されるもので
はない。
The second basis of the present invention is to suspend the reaction condensate of hydrated titanium oxide and organic acid obtained in the first basis in pure water (preferably, 50 to 200 g of titanium oxide is suspended in pure water .0 to 15.0 l), and then suspended at 50°C to 15.0 l.
A solution of a predetermined concentration of an alkali metal hydroxide or an alkali metal compound that can react with water to form an alkali metal hydroxide (preferably 1.0 to 1.0% of the alkali metal hydroxide) is heated to a constant temperature of 00°C and stirred. 10.0 mol to pure water 1.0 ~
(dissolved in 5.0 liters) to adjust the pH of the suspension to 8 or higher, and treat for 1 to 5 hours. Through this operation, the organic acid of the reaction condensate of hydrated titanium oxide and organic acid obtained in the first basic process is neutralized and separated from the reaction condensate, and the alkali metal is hydrated and oxidized in place of the separated organic acid. It can combine with titanium and eventually become alkali titanate. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

【0008】[0008]

【実施例、比較例】実施例1 シュウ酸2.0モルを純水に溶解して9.0lとし、撹
拌しつつ90℃に昇温する。これとは別に四塩化チタン
1.0モルを純水に溶解して1.0lとし、これを10
ml/min.の速度で撹拌下のシュウ酸溶液に添加す
ると、四塩化チタンは直ちに加水分解し、白色状の懸濁
液となつて水和酸化チタン〜シュウ酸の反応縮合物の微
粒子が析出する。添加終了後更に1.0時間、90℃に
維持する。これを▲ろ▼過し、▲ろ▼液がpH5.0に
なるまで純水にて水洗し、この水湿ケーキを純水に懸濁
して5.0lとし、撹拌しつつ90℃に昇温する。次い
で、水酸化カリウム2.0モルを純水に溶解して1.0
lとし、上記懸濁液がpH9.0になるまで注加し、更
に1.5時間、90℃に維持した後、▲ろ▼過し、▲ろ
▼液がpH8.0になるまで純水で水洗して水湿ケーキ
として取り出し、これを90℃で乾燥すると粉砕を必要
としない良好な粉末となる。これを電子顕微鏡で確認し
たところ、数十〜数百Åの球状粒子の集合体で、大きさ
は0.03〜0.3μmであり、BET法による比表面
積の実測値は220m2/gと非常に大きな数値であつ
た。又、X線回折分析で確認したところ非晶質であつた
が、750℃で1時間処理をしたところ、六チタン酸カ
リK2Ti6O13が確認された。
[Examples and Comparative Examples] Example 1 2.0 mol of oxalic acid was dissolved in pure water to make 9.0 liters, and the temperature was raised to 90°C while stirring. Separately, 1.0 mol of titanium tetrachloride was dissolved in pure water to make 1.0 liters, and 1.0 mol of titanium tetrachloride was dissolved in pure water.
ml/min. When added to a stirred oxalic acid solution at a rate of 1, titanium tetrachloride is immediately hydrolyzed to form a white suspension in which fine particles of a reaction condensate of hydrated titanium oxide and oxalic acid are precipitated. After the addition is complete, the temperature is maintained at 90°C for an additional 1.0 hour. ▲Filter this, ▲Wash with pure water until the filtrate reaches pH 5.0, suspend this wet cake in pure water to make 5.0L, and raise the temperature to 90℃ while stirring. do. Next, 2.0 mol of potassium hydroxide was dissolved in pure water to give 1.0 mol of potassium hydroxide.
1, and added the suspension until the pH reached 9.0. After maintaining the temperature at 90°C for another 1.5 hours, ▲filtrate, and ▲pour the filtrate with pure water until the pH reached 8.0. The cake is washed with water and taken out as a wet cake, which is then dried at 90°C to form a good powder that does not require pulverization. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of several tens to hundreds of angstroms in size, with a size of 0.03 to 0.3 μm, and the actual value of the specific surface area measured by the BET method was 220 m2/g, which is extremely large. This was a large number. Further, it was confirmed by X-ray diffraction analysis that it was amorphous, but when it was treated at 750° C. for 1 hour, potassium hexatitanate K2Ti6O13 was confirmed.

【0009】比較例1 シュウ酸を使用しない他は、実施例1と同一条件及び要
領で白色状の粒状物を得たが、非常に固い数mm前後の
乾燥粒子となつた。これを粉砕し、電子顕微鏡で確認し
たところ、数μm〜数百μmの不定形粒状物であり、微
粒子と言えるものではなかつた。又、BET法による比
表面積の実測値は2.8m2/gと非常に小さく、X線
回折分析で確認したところ実施例1と同様非晶質であつ
たが、750℃で1時間処理したところ、アナターゼ型
酸化チタンだけが確認された。
Comparative Example 1 White granules were obtained under the same conditions and procedure as in Example 1, except that oxalic acid was not used, but the result was very hard dry particles around several mm in size. When this was crushed and confirmed using an electron microscope, it was found to be irregularly shaped particles with a size of several μm to several hundred μm, and could not be called fine particles. In addition, the actual value of the specific surface area measured by the BET method was very small at 2.8 m2/g, and it was confirmed by X-ray diffraction analysis that it was amorphous as in Example 1, but when treated at 750 ° C. for 1 hour. , only anatase-type titanium oxide was confirmed.

【0010】実施例2 実施例1で、水酸化カリウムの代わりに水酸化ナトリウ
ムを使用する他は、実施例1と同一条件及び要領で白色
の微粉末を得た。これを電子顕微鏡で確認したところ、
数十〜数百Åの球状粒子の集合体で、大きさは0.05
〜0.5μmであり、BET法による比表面積の実測値
は175m2/gであつた。又、X線回折分析では、非
晶質であつたが、750℃で1時間処理をしたところ、
六チタン酸ナトリウムNa2Ti6O13が確認された
Example 2 A fine white powder was obtained under the same conditions and procedure as in Example 1, except that sodium hydroxide was used instead of potassium hydroxide. When this was confirmed using an electron microscope,
An aggregate of spherical particles of several tens to hundreds of angstroms, with a size of 0.05
~0.5 μm, and the actual value of the specific surface area measured by the BET method was 175 m 2 /g. Also, in X-ray diffraction analysis, it was found to be amorphous, but when treated at 750°C for 1 hour,
Sodium hexatitanate Na2Ti6O13 was confirmed.

【0011】実施例3 酒石酸1.5モルとグルコン酸0.8モルを純水に溶解
し15.0lとし、撹拌しつつ100℃に昇温する。こ
れとは別に四塩化チタン1.5モルを純水に溶解し3.
0lとし、これを20ml/min.の速度にて、撹拌
下の酒石酸、グルコン酸の混合溶液に添加すると、白色
状の懸濁液となつて水和酸化チタン〜酒石酸〜グルコン
酸の反応縮合物の微粒子が析出する。更に100℃で1
時間維持した後、▲ろ▼過し純水でpH5.0になるま
で水洗する。この水湿ケーキを純水に懸濁して10lと
し、撹拌しつつ100℃に昇温する。次いで、水酸化カ
リウム4.0モルを純水で溶解して5.0lとし、上記
懸濁液がpH10.0になるまで注加し、更に100℃
で2時間処理した後、▲ろ▼過し、純水でpH8.0に
なるまで水洗する。この水湿ケーキを取り出し、70℃
で乾燥すると、粉砕を必要としない良好な粉末となる。 これを電子顕微鏡で確認したところ、数十〜数百Åの球
状粒子の集合体で、大きさは0.02〜0.1μmであ
り、図1にそのトレース図を示す。BET法による比表
面積の実測値は290m2/gと非常に大きな数値であ
つた。又、X線回折分析で確認したところ、六チタン酸
カリK2Ti6O13が確認された。図2にその分析図
を示す。
Example 3 1.5 mol of tartaric acid and 0.8 mol of gluconic acid were dissolved in pure water to make 15.0 liters, and the temperature was raised to 100° C. while stirring. Separately, 1.5 mol of titanium tetrachloride was dissolved in pure water.3.
0 liters, and the flow rate was 20 ml/min. When it is added to a mixed solution of tartaric acid and gluconic acid under stirring at a speed of , fine particles of a reaction condensate of hydrated titanium oxide, tartaric acid, and gluconic acid are precipitated as a white suspension. Furthermore, 1 at 100℃
After maintaining for a certain period of time, ▲filtrate▼ and wash with pure water until the pH becomes 5.0. This wet cake was suspended in pure water to make 10 liters, and the temperature was raised to 100° C. while stirring. Next, 4.0 mol of potassium hydroxide was dissolved in pure water to make 5.0 liters, poured into the suspension until the pH reached 10.0, and further heated at 100°C.
After treating for 2 hours, ▲filter▼ and wash with pure water until the pH becomes 8.0. Take out this wet cake and heat it at 70℃.
When dried, it becomes a good powder that does not require grinding. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of several tens to several hundred angstroms, with a size of 0.02 to 0.1 μm, and a trace diagram thereof is shown in FIG. The actual value of the specific surface area measured by the BET method was 290 m2/g, which was a very large value. Further, when confirmed by X-ray diffraction analysis, potassium hexatitanate K2Ti6O13 was confirmed. Figure 2 shows the analysis diagram.

【0012】実施例4 シュウ酸1.0モルとクエン酸2.0モルを純水に溶解
し12.0lとし、撹拌しつつ95℃に昇温する。これ
とは別に四塩化チタン2.0モルを純水に溶解し5.0
lとし、これを20ml/min.の撹拌下のシュウ酸
、クエン酸の混合溶液に添加すると、白色状の懸濁液と
なつて水和酸化チタン〜シュウ酸〜クエン酸の反応縮合
物の微粒子が析出する。更に95℃で2時間維持した後
、▲ろ▼過し、純水で▲ろ▼液がpH5.0になるまで
水洗し、水和酸化チタン〜シュウ酸〜クエン酸の反応縮
合物の水湿ケーキを得る。この水湿ケーキを純水に懸濁
して10.0lとし、撹拌しつつ95℃に昇温する。 次いで、水酸化カリウム4.0モルを純水で溶解して5
.0lとし、上記懸濁液がpH12.0になるまで注加
し、更に95℃で1時間処理した後、▲ろ▼過し、pH
8.0になるまで純水で水洗する。この水湿ケーキを取
り出し、80℃で乾燥すると、粉砕を必要としない良好
な粉末となる。これを電子顕微鏡で確認したところ、数
十〜数百Åの球状粒子の集合体で、大きさは0.05〜
0.5μmであり、BET法による比表面積の実測値は
140m2/gと非常に大きな数値であつた。又、X線
回折分析で確認したところ、六チタン酸カリK2Ti6
O13が確認された。
Example 4 1.0 mol of oxalic acid and 2.0 mol of citric acid were dissolved in pure water to make 12.0 liters, and the mixture was heated to 95° C. with stirring. Separately, 2.0 mol of titanium tetrachloride was dissolved in pure water and 5.0 mol of titanium tetrachloride was dissolved in pure water.
1, and this is 20ml/min. When added to a mixed solution of oxalic acid and citric acid under stirring, fine particles of a reaction condensate of hydrated titanium oxide, oxalic acid, and citric acid are precipitated as a white suspension. After further maintaining the temperature at 95°C for 2 hours, it was filtered and washed with pure water until the pH of the filtrate reached 5.0. get cake. This wet cake was suspended in pure water to make 10.0 liters, and the temperature was raised to 95° C. while stirring. Next, 4.0 mol of potassium hydroxide was dissolved in pure water to give 5.0 mol of potassium hydroxide.
.. 0 liters, and added the above suspension until the pH reached 12.0. After further treatment at 95°C for 1 hour, ▲filtration, and pH
Wash with pure water until it reaches 8.0. When this wet cake is taken out and dried at 80°C, it becomes a good powder that does not require pulverization. When this was confirmed using an electron microscope, it was found to be an aggregate of spherical particles of several tens to hundreds of angstroms, with sizes ranging from 0.05 to several hundred angstroms.
The specific surface area was 0.5 μm, and the actual value of the specific surface area measured by the BET method was 140 m 2 /g, which was a very large value. In addition, as confirmed by X-ray diffraction analysis, potassium hexatitanate K2Ti6
O13 was confirmed.

【0013】[0013]

【発明の効果】本発明の微粒子チタン酸アルカリは多孔
質ゼオライト微粒子と同程度の比表面積を有し、従来の
繊維状チタン酸アルカリに比べ、表面は非常に活性であ
り、且つ、高温及び(又は)、高圧の合成条件を必要と
しないため、製造方法は非常に経済的である。
Effects of the Invention The fine particle alkali titanate of the present invention has a specific surface area comparable to that of porous zeolite fine particles, and has a very active surface compared to the conventional fibrous alkali titanate. or), the production method is very economical as it does not require high pressure synthesis conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例3で得られた本発明の微粒子チタン酸ア
ルカリの形状を示す電子顕微鏡写真のトレース図であり
、倍率は60,000倍である。
FIG. 1 is a trace diagram of an electron micrograph showing the shape of the fine particle alkali titanate of the present invention obtained in Example 3, and the magnification is 60,000 times.

【図2】実施例3によつて得た六チタン酸カリK2Ti
6O13のX線回折分析図である。
[Figure 2] Potassium hexatitanate K2Ti obtained in Example 3
It is an X-ray diffraction analysis diagram of 6O13.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  粒子の大きさが0.01〜0.5μm
、比表面積が100m2/g以上である微粒子チタン酸
アルカリ粉末。
Claim 1: Particle size is 0.01 to 0.5 μm
, a fine particle alkali titanate powder having a specific surface area of 100 m2/g or more.
【請求項2】  二塩基性又は、三塩基性有機カルボン
酸の一種又は、二種以上を溶解した50℃以上の水溶液
系に四塩化チタンの水溶液を注加し、生成する水和酸化
チタン〜有機酸の反応縮合物を▲ろ▼過、水洗し、次い
で、この水懸濁液に水酸化アルカリ金属を添加し、pH
8以上、50℃以上の温度にて、反応せしめた後、▲ろ
▼過、水洗、乾燥することを特徴とする第1項記載の微
粒子チタン酸アルカリ粉末の製造法。
Claim 2: Hydrated titanium oxide produced by pouring an aqueous solution of titanium tetrachloride into an aqueous solution system at 50°C or higher in which one or more dibasic or tribasic organic carboxylic acids are dissolved. The reaction condensate of organic acids is filtered and washed with water, and then alkali metal hydroxide is added to this aqueous suspension to adjust the pH.
8. The method for producing fine-particle alkali titanate powder according to item 1, which comprises reacting at a temperature of 8° C. or higher and 50° C. or higher, followed by ▲filtration, washing with water, and drying.
JP12567491A 1991-03-06 1991-03-06 Fine particulate alkali titanate and its production Pending JPH04280815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12567491A JPH04280815A (en) 1991-03-06 1991-03-06 Fine particulate alkali titanate and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12567491A JPH04280815A (en) 1991-03-06 1991-03-06 Fine particulate alkali titanate and its production

Publications (1)

Publication Number Publication Date
JPH04280815A true JPH04280815A (en) 1992-10-06

Family

ID=14915856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12567491A Pending JPH04280815A (en) 1991-03-06 1991-03-06 Fine particulate alkali titanate and its production

Country Status (1)

Country Link
JP (1) JPH04280815A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611039A1 (en) * 1993-02-10 1994-08-17 Tioxide Specialties Limited Preparation of titanium dioxide
EP1036766A1 (en) * 1999-03-08 2000-09-20 Kawatetsu Mining Co., LTD. Potassium titanate fine particles
JP2001019430A (en) * 1999-07-06 2001-01-23 Kawatetsu Mining Co Ltd Potassium titanate particles
JP2008110918A (en) * 2008-01-28 2008-05-15 Jfe Mineral Co Ltd Nonfibrous potassium titanate
JP2009184921A (en) * 2009-05-25 2009-08-20 Jfe Mineral Co Ltd Potassium octatitanate particle
JP2011256255A (en) * 2010-06-08 2011-12-22 Akebono Brake Ind Co Ltd Friction material and granule for friction material
WO2014148374A1 (en) 2013-03-18 2014-09-25 東邦チタニウム株式会社 Method for producing potassium titanate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0611039A1 (en) * 1993-02-10 1994-08-17 Tioxide Specialties Limited Preparation of titanium dioxide
US5456899A (en) * 1993-02-10 1995-10-10 Tioxide Specialties Limited Preparation of titanium dioxide
EP1036766A1 (en) * 1999-03-08 2000-09-20 Kawatetsu Mining Co., LTD. Potassium titanate fine particles
JP2001019430A (en) * 1999-07-06 2001-01-23 Kawatetsu Mining Co Ltd Potassium titanate particles
JP2008110918A (en) * 2008-01-28 2008-05-15 Jfe Mineral Co Ltd Nonfibrous potassium titanate
JP2009184921A (en) * 2009-05-25 2009-08-20 Jfe Mineral Co Ltd Potassium octatitanate particle
JP2011256255A (en) * 2010-06-08 2011-12-22 Akebono Brake Ind Co Ltd Friction material and granule for friction material
WO2014148374A1 (en) 2013-03-18 2014-09-25 東邦チタニウム株式会社 Method for producing potassium titanate
KR20150127110A (en) 2013-03-18 2015-11-16 도호 티타늄 가부시키가이샤 Method for producing potassium titanate
US9796598B2 (en) 2013-03-18 2017-10-24 Toho Titanium Co., Ltd. Method for producing potassium titanate

Similar Documents

Publication Publication Date Title
JPH0524844A (en) Production of hydrated zirconia sol and zirconia powder
CN104894636A (en) Preparation method of potassium octatitanate whisker
AU605965B2 (en) Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide
JPH04280815A (en) Fine particulate alkali titanate and its production
JPS59111922A (en) Production of fine powder of zirconium oxide
JPH04280816A (en) Production of porous fine particulate titanium oxide
KR102256399B1 (en) Method for preparing titanium dioxide powder
JPS61141619A (en) Production of zirconia fine powder
JPS62252328A (en) Method for purifying inorganic compound
JPH06171944A (en) Production of zirconium oxide powder
KR100503858B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
KR100395218B1 (en) METHOD FOR MANUFACTURING BaTiO3 BASED POWDERS
JPH0617232B2 (en) Method for producing hydrated spherical titanium oxide
JP4829771B2 (en) Spherical peroxotitanium hydrate and method for producing spherical titanium oxide
JPH072598A (en) Production of acicular titanium oxide
JP4247812B2 (en) Plate-like titanic acid composite oxide particles and method for producing the same
JPS61270217A (en) Production of crystalline zirconium oxide fine powder
JP2000119023A (en) Production of bismuth(iii) oxide
JP3254693B2 (en) Preparation of hydrated zirconia sol and zirconia powder
JPS59232920A (en) Manufacture of zirconium oxide powder containing yttrium as solid solution
JPS62212224A (en) Production of zirconia solid solution crystal fine powder
JPH0361609B2 (en)
KR100413720B1 (en) Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
JPS6051617A (en) Preparation of zirconium oxide powder containing yttrium in the state of solid solution
JPS63144116A (en) Production of oxide particle