JPS62243790A - Anode for electrolysis - Google Patents

Anode for electrolysis

Info

Publication number
JPS62243790A
JPS62243790A JP61086665A JP8666586A JPS62243790A JP S62243790 A JPS62243790 A JP S62243790A JP 61086665 A JP61086665 A JP 61086665A JP 8666586 A JP8666586 A JP 8666586A JP S62243790 A JPS62243790 A JP S62243790A
Authority
JP
Japan
Prior art keywords
coating layer
anode
overvoltage
mol
iro2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61086665A
Other languages
Japanese (ja)
Other versions
JPH0238669B2 (en
Inventor
Shingo Tokuda
徳田 晋吾
Shigeo Asada
茂雄 麻田
Toshio Muranaga
村永 外志雄
Masahiko Oosumi
雅彦 大炭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP61086665A priority Critical patent/JPS62243790A/en
Publication of JPS62243790A publication Critical patent/JPS62243790A/en
Publication of JPH0238669B2 publication Critical patent/JPH0238669B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a durable anode for electrolysis having low chlorine overvoltage and high oxygen overvoltage by forming the 1st coating layer consisting of Pt and IrO2 and the 2nd coating layer consisting of IrO2, RuO2 and SnO2 on a bulb-shaped metallic substrate. CONSTITUTION:One or plural unit layers each consisting of the 1st coating layer of a mixture of 20-80mol% Pt with 20-80mol% rutile type IrO2 and the 2nd coating layer of a mixture of 3-15mol% rutile type IrO2 with 5-25mol% RuO2 and 60-92mol% SnO2 are formed on a bulb-shaped metallic substrate to obtain an anode for electrolysis suitable for the anode of an electrolytic cell for producing chlorine and alkali. The anode maintains low chlorine overvoltage and high oxygen overvoltage peculiar to the Pt-IrO2 coating layer and high durability is provided to the anode because the dissolution and stripping of the expensive Pt group metals are inhibited.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は種々の電解に使用できる陽極、特に塩素−アル
カリ製造用電解槽、塩素酸アルカリ製造用電解槽、海水
電解槽の陽極として好ましい電解用陽極に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an anode that can be used for various electrolysis, particularly an electrolysis cell suitable for use as an anode for chlor-alkali production electrolyzers, chlorate-alkali production electrolyzers, and seawater electrolyzers. Regarding anodes for use.

(従来の技術) 近年イオン交換膜式食塩電解槽が実用化されるにつれ、
陽イオン交換膜の性能を劣化させない低塩素過電圧かつ
高酸素過電圧を示す電極の出現が望まれている。特公昭
46−21884号明細書にはバルブ金属基体上に酸化
ルテニウムと酸化チタンとの混晶物質を被覆した電極が
記載されており、工業規模の電解槽において広く利用さ
れ、寿命は十分満足すべきものであった。しかし酸素発
生量が比較的多く塩素ガスの発生効率が低いという問題
点があった。この酸素発生機構は次式の様な反応である
(Prior art) As ion exchange membrane type salt electrolyzers have been put into practical use in recent years,
It is desired to develop an electrode that exhibits low chlorine overvoltage and high oxygen overvoltage without deteriorating the performance of cation exchange membranes. Japanese Patent Publication No. 46-21884 describes an electrode in which a metal valve base is coated with a mixed crystal material of ruthenium oxide and titanium oxide, which is widely used in industrial-scale electrolytic cells and has a sufficiently satisfactory lifespan. It was a kimono. However, there was a problem that the amount of oxygen generated was relatively large and the efficiency of generating chlorine gas was low. This oxygen generation mechanism is a reaction as shown in the following equation.

1−12 0→2H+  1/202  +2e陽極液
は水素イオンのため酸性となる。また官能基としてカル
ボンM基を有する陽イオン交換膜はこの水素イオンによ
りR−COOHとなり、例解離性のために絶縁体となり
、膜抵抗が増大し、陽イオン交換膜が損傷し、性能が劣
化するという問題があり、特に陽極液のpHが2以下で
はこの傾向が著しかった。これは混晶物質中に酸化ルテ
ニウムが30モル%以上含まれているためであり、20
モル%程度に減らUば酸素発生量は若干減少さぜること
はできるが塩素過電圧が高くなるという欠点を有してい
た。また公知の白金−酸化イリジウム混合物被覆電極や
白金−イリジウム合金被覆電極は塩素過電圧が低く、酸
素過電圧が高いので、塩素発生効率が良好でありイオン
交換膜式食塩電解槽や塩素酸アルカリ製造用電解槽、海
水電解槽に非常に有利であったが、使用中に被覆の剥離
等が生じやすいという問題点があり、ざらに耐久性のあ
る電極が望まれていた。
1-12 0→2H+ 1/202 +2e The anolyte becomes acidic due to hydrogen ions. In addition, a cation exchange membrane that has a carbon M group as a functional group becomes R-COOH due to these hydrogen ions, and becomes an insulator due to its dissociative properties, increasing membrane resistance, damaging the cation exchange membrane, and deteriorating its performance. This problem was particularly severe when the pH of the anolyte was 2 or less. This is because the mixed crystal substance contains 30 mol% or more of ruthenium oxide, and 20
If the amount of oxygen is reduced to about mol %, the amount of oxygen generated can be slightly reduced, but it has the disadvantage of increasing the chlorine overvoltage. In addition, known platinum-iridium oxide mixture coated electrodes and platinum-iridium alloy coated electrodes have low chlorine overvoltage and high oxygen overvoltage, so they have good chlorine generation efficiency and are used in ion-exchange membrane salt electrolyzers and electrolyzers for alkali chlorate production. Although this method was very advantageous for use in electrolytic cells and seawater electrolytic cells, it had the problem that the coating was likely to peel off during use, and a more durable electrode was desired.

本出願人はこれらの問題点を解決するために上記白金−
酸化イリジウム混合物層の上にMn0x(×は1,5以
上で2.0より小)で表わされる非化学量論的化合物を
含む酸化マンガン2〜50重量%とルチル構造を有する
酸化チタン50〜98重量%との混合物である第2被覆
層を設けることにより、白金−酸化イリジウムの触媒活
性層が剥離、溶解。
In order to solve these problems, the applicant has proposed that the above-mentioned platinum-
2 to 50% by weight of manganese oxide containing a non-stoichiometric compound represented by Mn0x (x is 1.5 or more and less than 2.0) on the iridium oxide mixture layer and 50 to 98% titanium oxide having a rutile structure. By providing the second coating layer, which is a mixture of platinum and iridium oxide, the platinum-iridium oxide catalytically active layer is peeled off and dissolved.

摩耗することを著しく低下できることを見出している(
特開昭58−136790@ )。
We have found that wear can be significantly reduced (
JP-A-58-136790@).

しかしながら、耐久性についてざらに改善されることが
望ましい。
However, it is desirable that the durability be roughly improved.

特に最近のイオン交換膜式食塩電解槽に使用されている
陽極は電流密度30A/dm2においテ約100mvの
塩素過電圧を有しており、ざらに低下させる余地が残っ
ている。特に電力式の高い近年においては省エネルギー
型の電解槽が望まれており、陽極においても塩素過電圧
が低く、酸素発生量の少ない陽極の開発が重要である。
In particular, the anodes used in recent ion-exchange membrane salt electrolyzers have a chlorine overvoltage of about 100 mV at a current density of 30 A/dm2, and there remains room for a rough reduction. Especially in recent years, when electric power is high, energy-saving electrolytic cells are desired, and it is important to develop an anode that has a low chlorine overvoltage and generates a small amount of oxygen.

(発明の構成) 本発明は以上の問題点を解決するためのものである。(Structure of the invention) The present invention is intended to solve the above problems.

すなわち本発明は、バルブ金属基体上に(a)白金20
〜80モル%とルチル構造体を有する酸化イリジウム2
0〜80モル%との混合物よりなる第1被覆層、(b)
ルチル構造を有する、酸化イリジ1クム3〜15モル%
と酸化ルテニウム5〜25モル%及び酸化スズ60〜9
2モル%の混合物よりなる第2被覆層、上記(a)(b
)中位層を1層もしくは複数層設けたことを特徴とする
電解用陽極である。
That is, the present invention provides (a) platinum 20 on the valve metal base.
Iridium oxide 2 with ~80 mol% and rutile structure
(b) a first coating layer consisting of a mixture of 0 to 80 mol%;
Iridium oxide 1cum 3-15 mol% having rutile structure
and ruthenium oxide 5-25 mol% and tin oxide 60-9
A second coating layer consisting of a 2 mol% mixture of (a) and (b) above;
) An anode for electrolysis characterized by having one or more intermediate layers.

白金−酸化イリジウム混合物の被覆層は塩素過電圧が低
く、電流密度3OA/dm2において約40mvの塩素
過電圧を有するに過ぎず、塩素発生に非常に触媒活性な
層である。しかしながら電解中に発生ガスによる剥離や
溶解が生じ易いという欠点がある。
The coating layer of the platinum-iridium oxide mixture has a low chlorine overpotential of only about 40 mv at a current density of 3 OA/dm2, and is a highly catalytically active layer for chlorine generation. However, it has the disadvantage that it is likely to peel off or dissolve due to gas generated during electrolysis.

本発明者らは、この白金−酸化イリジウム被覆層上に酸
化イリジウム−酸化ルテニウム−酸化スズ混合物の第2
被覆層を設けることにより白金−酸化イリジウム層の剥
離・溶解・摩耗等の欠点を著しく改善することが可能で
あり、且つ塩素過電圧は上昇Uず酸素過電圧の低下も生
じないことを見出したものである。
The present inventors deposited a second layer of iridium oxide-ruthenium oxide-tin oxide mixture on this platinum-iridium oxide coating layer.
It was discovered that by providing a coating layer, it is possible to significantly improve the defects of the platinum-iridium oxide layer such as peeling, dissolution, and wear, and that the chlorine overvoltage does not increase and the oxygen overvoltage does not decrease. be.

第2被覆層は塩素発生に触媒活性な第1被覆層の保護層
としての役割を果たしているが、この層自体塩素発生に
対する触媒能を成る程度有している。
The second coating layer serves as a protective layer for the first coating layer which is catalytically active for chlorine generation, but this layer itself has a certain degree of catalytic ability for chlorine generation.

例えば酸化イリジウム10モル%、酸化ルテニウム15
モル%及び酸化スズ75モル%の混合物よりなる第2被
覆層を有する電極の塩素過電圧を飽和食塩水(NaC1
310g/(J 、 pH1,0)中80℃でカレント
インタブラタ−法にて測定した結果を第1表に示した。
For example, iridium oxide 10 mol%, ruthenium oxide 15
The chlorine overpotential of an electrode having a second coating layer consisting of a mixture of 75 mol% of tin oxide and 75 mol% of tin oxide was reduced by saturated saline (NaC1
Table 1 shows the results of measurement at 80° C. in 310 g/(J, pH 1,0) using the current interblader method.

また、触媒活性な白金70モル%と酸化イリジウム30
モル%の混合物よりなる第1被覆層を有する電極の塩素
過電圧を同条件で測定した結果を第1表に併せて示した
In addition, 70 mol% of catalytically active platinum and 30 mol% of iridium oxide
Table 1 also shows the results of measuring the chlorine overvoltage of the electrode having the first coating layer made of a mixture of mol % and 20% under the same conditions.

第1表から明らかなように、第1被覆層と第2被覆層の
塩素″過電圧は電流密度3OA/dm2において100
mVの差異がある。
As is clear from Table 1, the chlorine overvoltage of the first coating layer and the second coating layer is 100% at a current density of 3OA/dm2.
There is a mV difference.

酸素過電圧について、同じ第1又は第2被覆層を夫々有
する電極を2N−H2SOs水溶液中80’Cでカレン
トインタラプタ−法にて測定した結果を第2表に示した
Regarding oxygen overvoltage, electrodes having the same first or second coating layer were measured in a 2N-H2SOs aqueous solution at 80'C by the current interrupter method, and the results are shown in Table 2.

第2表 この表から第1被覆層と第2被覆層の酸素過電圧は電流
密度3OA / d m 2において僅か10mvの差
異であり、第2被覆層の方が低いことが分る。
Table 2 From this table, it can be seen that the oxygen overvoltage of the first and second coating layers differs by only 10 mv at a current density of 3 OA/d m 2 , and the second coating layer is lower.

本発明は第1被覆層である触媒活性層と第2被覆層であ
る触媒保護層を交互に単位層又は複数層設けてなる陽極
であり、その塩素過電圧は触媒活性層の示す低い値を示
し、その酸素過電圧は触媒活性層の示す高い値を低下さ
せず、白金−酸化イリジウム層の剥離、溶解を最小限に
抑えた耐久性のある陽極を提供するものでおる。
The present invention is an anode in which a catalytic active layer as a first coating layer and a catalyst protective layer as a second coating layer are alternately provided as a unit layer or a plurality of layers. The oxygen overvoltage does not reduce the high value exhibited by the catalytic active layer, and provides a durable anode that minimizes peeling and dissolution of the platinum-iridium oxide layer.

本発明の陽極は触媒活性層の性能劣化が生じても電圧の
急激な上昇がなく、高々触媒保護層の示す電位となるの
で、その状態になれば電解を停止して陽極を再コーテイ
ングすればよく、電解槽の管理が非常に容易になるのも
特徴の1つである。
In the anode of the present invention, even if the performance of the catalytic active layer deteriorates, the voltage does not rise suddenly, and the potential is at most the same as that of the catalytic protective layer.When this happens, electrolysis can be stopped and the anode can be recoated. One of the features is that the electrolytic cell can be managed very easily.

本発明の第1被覆層は白金20〜80モル%と酸化イリ
ジウム20〜80モル%の組成である。
The first coating layer of the present invention has a composition of 20 to 80 mol% platinum and 20 to 80 mol% iridium oxide.

酸化イリジウムが20モル%未満では電極電位の安定性
が得られず塩素過電圧の経時変動が生じ易い。
If the iridium oxide content is less than 20 mol %, stability of the electrode potential cannot be obtained and the chlorine overvoltage tends to fluctuate over time.

また80モル%を超えると塩素発生効率が低下する傾向
にある。
Moreover, when it exceeds 80 mol%, the chlorine generation efficiency tends to decrease.

本発明の第2被覆層は酸化イリジウム3〜15モル%と
酸化ルテニウム5〜25モル%及び酸化スズ60〜92
モル%の組成である。
The second coating layer of the present invention includes 3 to 15 mol% of iridium oxide, 5 to 25 mol% of ruthenium oxide, and 60 to 92 mol% of tin oxide.
The composition is in mol%.

酸化イリジウムと酸化ルテニウムは上記範囲より小なる
ときは塩素過電圧が上昇する傾向にあり、逆に−り記範
囲より大なるときは酸素過電圧が低下するのでいずれも
好ましくない。
When iridium oxide and ruthenium oxide are less than the above range, the chlorine overpotential tends to increase, and conversely, when it is greater than the above range, the oxygen overpotential decreases, so both are unfavorable.

酸化イリジウムや酸化ルテニウムは単独では酸素過電圧
が低いが、本発明のよ゛うに両者を混合することにより
高い酸素過電圧を示すことが分った。
It has been found that iridium oxide and ruthenium oxide have a low oxygen overvoltage when used alone, but when they are mixed as in the present invention, they exhibit a high oxygen overvoltage.

この理由ははっきりしないが、酸化イリジウムと酸化ル
テニウムとが混合されると結晶構造に歪みが生じ電気化
学的特性に変化をもたらすものと考えられる。
Although the reason for this is not clear, it is thought that when iridium oxide and ruthenium oxide are mixed, the crystal structure is distorted and the electrochemical properties change.

本発明のバルブ金属基体に用いられる金属としては、チ
タン、タンタル、ジルコニウム、ニオブ。
The metals used in the valve metal base of the present invention include titanium, tantalum, zirconium, and niobium.

タングステン、モリブデン等の不!11態皮膜を形成す
る金属及び/又はその合金が挙げられる。通常は経演性
、電気的機械的性質や加工性等の点からみてチタン及び
/又はその合金が好ましく用いられる。
No tungsten, molybdenum, etc.! Examples include metals and/or alloys thereof that form an 11-state film. Usually, titanium and/or its alloys are preferably used from the viewpoint of performance, electromechanical properties, workability, etc.

電極としては、板状、棒状、エキスバンド状。The electrodes can be plate-shaped, rod-shaped, or expanded band-shaped.

多孔状等種々の形状が可能である。Various shapes such as porous are possible.

本発明の被覆層の形成は次のようにして行われる。The coating layer of the present invention is formed as follows.

(a)の第1被覆層は上記バルブ金属基体の表面を脱脂
後、酸処理、ブラスト処理等の方法でエツチングを行い
表面を粗面化させ、白金化合物とイリジウム化合物との
混合溶液をハケ塗り、ロール塗り、スプレー法、浸漬法
等の手段で塗布する。
The first coating layer in (a) is obtained by degreasing the surface of the valve metal base, roughening the surface by etching with acid treatment, blasting, etc., and then brushing the surface with a mixed solution of a platinum compound and an iridium compound. , by roll coating, spraying, dipping, or other means.

該白金化合物としては塩化白金酸、塩化白金酸アンモニ
ウム、塩化白金酸カリウム、ジニトロジアミノ白金酸等
が、該イリジウム化合物としては三塩化イリジウム、塩
化イリジウム酸、塩化イリジウム酸アンモン、塩化イリ
ジウム酸ソーダ等が挙げられ、該混合溶液の触媒として
は、水、エチルアルコール、メチルアルコール、プロピ
ルアルコール、ブチルアルコール、ラベンダー油、アニ
ス油、リナロエ油、テレピン油、トルエン、メチルエー
テル、エチルエーテル等が挙げられる。
The platinum compounds include chloroplatinic acid, ammonium chloroplatinate, potassium chloroplatinate, dinitrodiaminoplatinic acid, etc., and the iridium compounds include iridium trichloride, chloroiridic acid, ammonium chloroiridate, sodium chloroiridate, etc. Examples of the catalyst for the mixed solution include water, ethyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol, lavender oil, anise oil, linaloe oil, turpentine oil, toluene, methyl ether, and ethyl ether.

これを塗布後、溶媒を蒸発させるために150〜200
℃で数十分間乾燥し、空気又は酸素雰囲気の電気炉中で
300〜800℃にて10〜20分間熱処理を行う。
After applying this, apply 150 to 200 ml to evaporate the solvent.
It is dried at a temperature of 300 to 800 degrees for 10 to 20 minutes in an electric furnace in an air or oxygen atmosphere.

熱処理温度が300℃未満では熱分解が完全に起らず、
800℃を超えると金属基体の酸化が進行して基体がR
傷を受ける。
If the heat treatment temperature is less than 300°C, thermal decomposition will not occur completely;
When the temperature exceeds 800℃, oxidation of the metal substrate progresses and the substrate becomes R.
get hurt.

(b)の第2被覆層は上記第1被’71層の表面に、塩
化第1スズ、硫酸第1スズ、酢酸第1スズ、2−エチル
ヘキサンスズの如きスズ化合物、塩化ルテニウム、塩化
ルテニウム酸の如きルテニウム化合物及び塩化イリジウ
ム、塩化イリジウム酸の如きイリジウム化合物の混合溶
液を塗布して乾燥及び焼成して形成させる。溶媒として
は、水、エチルアルコール、メチルアルコール、プロピ
ルアルコール、ブチルアルコール、メチルエーテル、エ
チルエーテル等が用いられる。中でもアルコール類が好
ましい。
The second coating layer (b) is formed by coating a tin compound such as stannous chloride, stannous sulfate, stannous acetate, or 2-ethylhexanetin, ruthenium chloride, or ruthenium chloride on the surface of the first coated layer. It is formed by applying a mixed solution of a ruthenium compound such as an acid and an iridium compound such as iridium chloride or chloroiridic acid, followed by drying and firing. As the solvent, water, ethyl alcohol, methyl alcohol, propyl alcohol, butyl alcohol, methyl ether, ethyl ether, etc. are used. Among these, alcohols are preferred.

塗布後150〜200℃にて数十分乾燥して溶媒を蒸発
さU、次いで空気又は酸素雰囲気の電気炉中で400〜
600℃にて熱処理を行うことににす、これらの化合物
の熱分解を行う。
After coating, dry at 150 to 200°C for several minutes to evaporate the solvent, and then heat in an electric furnace in an air or oxygen atmosphere for 400 to 200°C.
These compounds will be thermally decomposed by heat treatment at 600°C.

この様にして生成した第1被覆層をなす白金−酸化イリ
ジウム混合物及び第2被覆層をなす酸化スズと酸化ルテ
ニウム及び酸化イリジウムは上記焼成温度では共通のル
ヂル構造を有する結晶を多く含み、単位格子体積も類似
しているのでこれら異種金属相互間の密着性が高まり二
層間の密着力が高まるものと思われる。
The platinum-iridium oxide mixture forming the first coating layer and the tin oxide, ruthenium oxide, and iridium oxide forming the second coating layer produced in this way contain many crystals having a common Ludyl structure at the above firing temperature, and the unit cell Since the volumes are similar, it is thought that the adhesion between these dissimilar metals increases and the adhesion between the two layers increases.

本発明においては上記(a)(b)層を交互に多数回積
層被着させることか好ましく、そのような陽極を使用す
ることによりその効果は顕著に現われる。
In the present invention, it is preferable to alternately deposit the layers (a) and (b) many times, and by using such an anode, the effect will be noticeable.

通常の使用目的においては(a)(b)各被覆層を夫々
3回以上被着させることが望ましく、その操作は溶a!
aを適当に調節することによって可能となる。
For normal purposes, it is desirable to apply each of the coating layers (a) and (b) three or more times, and the procedure is as follows:
This is possible by appropriately adjusting a.

(a)層の白金−酸化イリジウムの合K1ff1は7g
/rdもあれば充分であり高価な白金族金属の使用を節
減することができる。
(a) The platinum-iridium oxide mixture K1ff1 of the layer is 7 g.
/rd is sufficient, and the use of expensive platinum group metals can be reduced.

また(b)層の酸化チタンと酸化ルテニウム及び酸化イ
リジウムの合計量は49/TIi以上必要であり、それ
未満では触媒保護層としての能力が十分でない。
Further, the total amount of titanium oxide, ruthenium oxide, and iridium oxide in the layer (b) must be 49/TIi or more, and if it is less than that, the ability as a catalyst protective layer is insufficient.

(発明の効果) この様にして白金−酸化イリジウム被覆層の有する低い
塩素過電圧と高い酸素過電圧を保持しつつ且つ高価な白
金族金属の電解液中における溶解剥離現象を抑制しつつ
耐久性のある電解用陽極を得ることが可能である。
(Effects of the Invention) In this way, the platinum-iridium oxide coating layer maintains the low chlorine overvoltage and high oxygen overvoltage, suppresses the dissolution and peeling phenomenon of expensive platinum group metals in electrolytes, and achieves durability. It is possible to obtain an anode for electrolysis.

以下実施例により本発明を更に詳説する。例中の組成%
は特記なき限りモル基準である。
The present invention will be explained in more detail with reference to Examples below. Composition % in example
are on a molar basis unless otherwise specified.

実施例1 比較例1 市販チタン板(1xlOxO,10)をアセトン脱脂後
10重量%熱蓚酸溶液中でエツチング処理を行い、その
表面に下記組成の溶液を塗布した。
Example 1 Comparative Example 1 A commercially available titanium plate (1xlOxO, 10) was degreased with acetone, etched in a 10% by weight hot oxalic acid solution, and a solution having the following composition was applied to its surface.

HzPtα6・6)(201,00g 1−+21 roe ・6H200,43ttテレピン
油       2.0− ラベンダー油      10. O〃エチルアルコー
ル    20.0//濃塩酸         0.
5〃 これを120℃で20分間乾燥し、その後500℃の電
気炉内で10分間焼成することによりP t 70%と
IrO230%の第1被覆層を形成させた。この表面に
下記組成の溶液を塗布した。
HzPtα6・6) (201,00g 1-+21 roe ・6H200,43tt Turpentine oil 2.0- Lavender oil 10. O Ethyl alcohol 20.0 // Concentrated hydrochloric acid 0.
5〃 This was dried at 120°C for 20 minutes, and then fired in an electric furnace at 500°C for 10 minutes to form a first coating layer of 70% Pt and 30% IrO. A solution having the following composition was applied to this surface.

5nCf123.70g RuCh  6 3H201,00//1−12 I 
mega ・6H201,30//濃塩酸      
   1.0m1 n−ブチルアルコール  30.0# これを120°Cで20分間乾燥し、その後480℃の
電気炉内で10分間焼成することにより5n0275%
とRuO215%とIrozlO%の第2被覆層′を形
成させた。
5nCf123.70g RuCh 6 3H201,00//1-12 I
mega ・6H201,30//concentrated hydrochloric acid
1.0ml n-butyl alcohol 30.0# This was dried at 120°C for 20 minutes, and then baked in an electric furnace at 480°C for 10 minutes to give 5n0275%.
Then, a second coating layer' of 15% RuO2 and 15% IrozlO was formed.

この第1,2被覆層の被着操作を交互に4回ずつ繰返す
ことにより、第1被覆層は合計0.46η/cti。
By repeating the deposition operation of the first and second coating layers alternately four times each, the total thickness of the first coating layer was 0.46 η/cti.

第2被覆層は合削0.50η/CUtとなった。The second coating layer had a total cutting rate of 0.50η/CUt.

上記の第1被覆層のみを同様に合計0.46mff/ 
crA被覆した電極を比較電極として各塩素過電圧を飽
和食塩水(Na(J 310CJ/、1) 、 1)H
l、O)中80℃でカレントインタラプタ−法にて測定
した。
Similarly, the total amount of only the first coating layer is 0.46 mff/
Using the crA-coated electrode as a reference electrode, each chlorine overvoltage was measured using saturated saline (Na(J 310CJ/, 1), 1)H
The measurement was carried out using the current interrupter method at 80° C. in O.L.

その結果両電極とも電流密度30A/dm2にて塩素過
電圧は30mVを示した。
As a result, both electrodes showed a chlorine overvoltage of 30 mV at a current density of 30 A/dm2.

次に1NH2304980℃の酸素過電圧を測定したと
ころ、電流密度3OA/dm2にて本発明電極は410
mV、比較電極は410mvであり、酸素過電圧に差は
なかった。
Next, we measured the oxygen overvoltage at 1NH2304980°C, and found that the electrode of the present invention was 410°C at a current density of 3OA/dm2.
mV, the reference electrode was 410 mV, and there was no difference in oxygen overpotential.

更に、両電極をHClO4(2moN/fl >とN 
acIl (1mof /、1! >との混合液中50
℃電流密度20OA/dm2にて促進消耗試朕を行い、
電極表面が不働態化し急激に電位上昇するまでの時間を
測定した。その結果本発明電極は310時間、比較電極
は56時間で電位上昇が生じ、前者は後者の5倍以上の
耐久性を示し、耐久性に大きな差のあることが分った。
Furthermore, both electrodes were heated with HClO4 (2 moN/fl > and N
50 in a mixture with acIl (1mof/, 1!>
An accelerated wear test was carried out at a current density of 20 OA/dm2.
The time required for the electrode surface to become passivated and for the potential to rise rapidly was measured. As a result, the electrode of the present invention showed a potential increase after 310 hours, and the comparison electrode after 56 hours, and the former exhibited durability more than 5 times that of the latter, indicating a large difference in durability.

実施例2 比較例2 実施例1における第1被覆層(4回塗布)は同様にし、
第2被覆層(4回塗布0.50m9/ ctil >の
組成比を第5表の如く変化ざUた以外は実施例1と同様
にして電極を作製した。この電極の塩素過電圧を飽和食
塩水(NaC1300q/、11 、1)H2,0>中
 80℃、電流密度3OA/dm2で実施例1と同様に
塩素過電圧を測定した。
Example 2 Comparative Example 2 The first coating layer (coated 4 times) in Example 1 was made in the same manner as in Example 1.
An electrode was prepared in the same manner as in Example 1, except that the composition ratio of the second coating layer (coated 4 times, 0.50 m9/ctil) was changed as shown in Table 5.The chlorine overvoltage of this electrode was (NaC1300q/, 11, 1) H2,0> The chlorine overvoltage was measured in the same manner as in Example 1 at 80°C and a current density of 3OA/dm2.

また発生する塩素中に含まれる酸素量をガスクロマ1〜
グラフイーで分析し、第3表の結果fi:2(!iた。
In addition, the amount of oxygen contained in the generated chlorine is measured by Gas Chroma 1~
It was analyzed using Graphee, and the results shown in Table 3 were fi: 2 (!i ta).

実施例3 エキスバンドチタン(10xlOx0.12cm、目開
き8.0.1! WX3.65WX1.2 S t、 
N Wは長径履。
Example 3 Extracted titanium (10xlOx0.12cm, opening 8.0.1! WX3.65WX1.2 St,
NW is long diameter shoes.

SWは短径s、Stは切り幅m)に、実施例1と同様の
方法でP t 70%とIr0230%の第1被覆層及
σ5n0275%とIr0210%とRu0z15%の
第2被覆層を交互に6回ずつ被覆して第1゜被覆層は合
計0.69m3/ cti、第2被覆層は合計0、80
m1/ ctrtとした。
In the same manner as in Example 1, a first coating layer of 70% Pt and 30% of IrO and a second coating layer of σ5N0275%, 10% of Ir0, and 15% of Ru0z were alternately applied to SW (minor axis s, St: cutting width m). The first coating layer has a total of 0.69m3/cti, and the second coating has a total of 0.80m3/cti.
m1/ctrt.

この電極を陽イオン交換膜(商品名ナフィオン901、
デュポン社製)を設けた電解槽の陽極とし、略同面積の
ニッケル製エキスバンドメタルを陰極として極間距離3
IIl!r1として食塩水の電解を行った。
This electrode is connected to a cation exchange membrane (trade name Nafion 901,
(manufactured by DuPont) as the anode of the electrolytic cell, and a nickel expanded metal with approximately the same area as the cathode, with a distance of 3.
IIl! As r1, electrolysis of saline water was performed.

陽極液組成はNaCl1280q/、1! 、 pl−
13,0、陰極液組成は32重量%NaOH水溶液であ
る。電解温度80℃、電流密度3OA/dm2にて塩素
過電圧を測定したところ30rnvであり、600日間
の運転期間中略一定であった。
The anolyte composition is NaCl1280q/, 1! , pl-
13.0, catholyte composition is 32% by weight NaOH aqueous solution. The chlorine overvoltage was measured at an electrolysis temperature of 80°C and a current density of 3OA/dm2 and was found to be 30rnv, which remained approximately constant during the 600 days of operation.

また、この間の塩素ガス中の酸素ガス濃度は約0.5容
量%で運転中略一定であった。
Further, during this period, the oxygen gas concentration in the chlorine gas was approximately 0.5% by volume, which was approximately constant during the operation.

実施例4 比較例3 市販チタン板(30x25xO,3cm’)に実施例1
と同様の方法でPt40%とIr0z60%の第1被覆
層と5n0275%と110215%とRu0210%
の第2被覆層を交互に6回ずつ被覆して第1被覆層は合
its、 69atf/ ci 、第2被覆層は合計0
.80*/ciとした。 この電極を陽極とし、略同面
積のステンレス鋼板(SuS304製)を陰極として極
間距離3#tlltで海水電解を行った。電流密度15
A/dm2にて摺電圧は3.90vとなり、300日間
の運転期間中摺電圧の上昇は認められなかった。また塩
素発生の効率は85%であった。
Example 4 Comparative Example 3 Example 1 was applied to a commercially available titanium plate (30x25xO, 3cm')
In the same manner as above, a first coating layer of 40% Pt and 60% Ir0z, 5n0275%, 110215% and Ru0210% was formed.
The second coating layer is alternately coated 6 times, the first coating layer has a total of 69 atf/ci, and the second coating layer has a total of 0.
.. It was set to 80*/ci. Seawater electrolysis was performed using this electrode as an anode and a stainless steel plate (made of SuS304) of approximately the same area as a cathode with an interelectrode distance of 3 #tllt. Current density 15
The sliding voltage was 3.90 V at A/dm2, and no increase in the sliding voltage was observed during the 300 days of operation. Moreover, the efficiency of chlorine generation was 85%.

比較のために、上記第1被覆層のみを6回被覆して合計
o、69Ir1g/c=とした以外は実施例4と同様に
試験した。初期の摺電圧は3.90Vと略一定であり、
塩素発生効率は85%であったが、運転開始後93日目
より徐々に摺電圧が上昇し、150日経過後には4.2
5vとなった。また塩素発生効率は76%に低下してい
た。
For comparison, a test was conducted in the same manner as in Example 4, except that only the first coating layer was coated six times to give a total of o, 69Ir1g/c. The initial sliding voltage is approximately constant at 3.90V,
The chlorine generation efficiency was 85%, but the sliding voltage gradually increased from the 93rd day after the start of operation, and after 150 days it reached 4.2%.
It became 5v. Moreover, the chlorine generation efficiency had decreased to 76%.

Claims (1)

【特許請求の範囲】 バルブ金属基体上に (a)白金20〜80モル%とルチル構造を有する酸化
イリジウム20〜80モル%との混合物よりなる第1被
覆層、 (b)ルチル構造を有する、酸化イリジウム3〜15モ
ル%と酸化ルテニウム5〜25モル%及び酸化スズ60
〜92モル%の混合物よりなる第2被覆層、上記(a)
(b)単位層を1層もしくは複数層設けたことを特徴と
する電解用陽極。
[Scope of Claims] A first coating layer on a valve metal substrate (a) comprising a mixture of 20 to 80 mol % of platinum and 20 to 80 mol % of iridium oxide having a rutile structure; (b) having a rutile structure; 3-15 mol% iridium oxide, 5-25 mol% ruthenium oxide and 60 mol% tin oxide
A second coating layer consisting of a mixture of ~92 mol %, (a) above.
(b) An anode for electrolysis characterized by having one or more unit layers.
JP61086665A 1986-04-15 1986-04-15 Anode for electrolysis Granted JPS62243790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086665A JPS62243790A (en) 1986-04-15 1986-04-15 Anode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086665A JPS62243790A (en) 1986-04-15 1986-04-15 Anode for electrolysis

Publications (2)

Publication Number Publication Date
JPS62243790A true JPS62243790A (en) 1987-10-24
JPH0238669B2 JPH0238669B2 (en) 1990-08-31

Family

ID=13893329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086665A Granted JPS62243790A (en) 1986-04-15 1986-04-15 Anode for electrolysis

Country Status (1)

Country Link
JP (1) JPS62243790A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707095A1 (en) * 1994-10-11 1996-04-17 SOLVAY (Société Anonyme) Electrode for electrochemical processes and use thereof
JP2010059549A (en) * 2009-11-09 2010-03-18 Eltech Systems Corp Pd-CONTAINING COATING FOR LOW CHLORINE OVERVOLTAGE
JP2011017084A (en) * 2003-03-24 2011-01-27 De Nora Tech Inc Electrocatalytic coating with platinum group metals and electrode made therefrom
EP2390385A1 (en) 2010-05-25 2011-11-30 Permelec Electrode Ltd. Anode for electrolysis and manufacturing method thereof
EP2450475A2 (en) 2010-11-04 2012-05-09 Permelec Electrode Ltd. An anode for metal electrowinning
CN103210122A (en) * 2010-11-26 2013-07-17 德诺拉工业有限公司 Anode for electrolytic evolution of chlorine
CN104562078A (en) * 2014-12-24 2015-04-29 蓝星(北京)化工机械有限公司 Electrode for electrolysis, preparation method of electrode and electrolytic bath
WO2016083319A1 (en) * 2014-11-24 2016-06-02 Industrie De Nora S.P.A. Anode for electrolytic evolution of chlorine
IT201800010760A1 (en) * 2018-12-03 2020-06-03 Industrie De Nora Spa ELECTRODE FOR THE ELECTROLYTIC EVOLUTION OF GAS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS59190381A (en) * 1983-03-11 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Catalyst for coating anode and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328262A (en) * 1976-08-30 1978-03-16 Nippon Electric Co Method of examining capacitor
JPS59190381A (en) * 1983-03-11 1984-10-29 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Catalyst for coating anode and manufacture

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707095A1 (en) * 1994-10-11 1996-04-17 SOLVAY (Société Anonyme) Electrode for electrochemical processes and use thereof
JP2011017084A (en) * 2003-03-24 2011-01-27 De Nora Tech Inc Electrocatalytic coating with platinum group metals and electrode made therefrom
JP2010059549A (en) * 2009-11-09 2010-03-18 Eltech Systems Corp Pd-CONTAINING COATING FOR LOW CHLORINE OVERVOLTAGE
EP2390385A1 (en) 2010-05-25 2011-11-30 Permelec Electrode Ltd. Anode for electrolysis and manufacturing method thereof
US8366889B2 (en) 2010-05-25 2013-02-05 Permelec Electrode Ltd. Anode for electrolysis and manufacturing method thereof
US8617377B2 (en) 2010-11-04 2013-12-31 Permelec Electrode Ltd. Method for a metal electrowinning
EP2450475A2 (en) 2010-11-04 2012-05-09 Permelec Electrode Ltd. An anode for metal electrowinning
CN103210122A (en) * 2010-11-26 2013-07-17 德诺拉工业有限公司 Anode for electrolytic evolution of chlorine
JP2013543933A (en) * 2010-11-26 2013-12-09 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Anode for electrolysis of chlorine
WO2016083319A1 (en) * 2014-11-24 2016-06-02 Industrie De Nora S.P.A. Anode for electrolytic evolution of chlorine
CN107002257A (en) * 2014-11-24 2017-08-01 德诺拉工业有限公司 The anode that electrolysis for chlorine is separated out
CN107002257B (en) * 2014-11-24 2019-11-05 德诺拉工业有限公司 The anode that electrolysis for chlorine is precipitated
CN104562078A (en) * 2014-12-24 2015-04-29 蓝星(北京)化工机械有限公司 Electrode for electrolysis, preparation method of electrode and electrolytic bath
IT201800010760A1 (en) * 2018-12-03 2020-06-03 Industrie De Nora Spa ELECTRODE FOR THE ELECTROLYTIC EVOLUTION OF GAS
WO2020115028A1 (en) 2018-12-03 2020-06-11 Industrie De Nora S.P.A. Electrode for electrolytic evolution of gas

Also Published As

Publication number Publication date
JPH0238669B2 (en) 1990-08-31

Similar Documents

Publication Publication Date Title
US3773555A (en) Method of making an electrode
US4797182A (en) Electrode with a platinum metal catalyst in surface film and its use
CA2519522C (en) Electrocatalytic coating with platinum group metals and electrode made therefrom
JP4464023B2 (en) Cathode that can be used for electrolysis of aqueous solutions
JP2006515389A5 (en)
US4336282A (en) Process for production of electrode for use in electrolysis
FI72149C (en) Electrocatalytic electrode.
US4530742A (en) Electrode and method of preparing same
US4253933A (en) Electrode substrate alloy for use in electrolysis
JP2641584B2 (en) Anode with dimensional stability
JPS62243790A (en) Anode for electrolysis
US6231731B1 (en) Electrolyzing electrode and process for the production thereof
AU2009299918B2 (en) Cathode member and bipolar plate for hypochlorite cells
US5665218A (en) Method of producing an oxygen generating electrode
JP4532471B2 (en) Method for forming a metal oxide film on a conductive substrate, the resulting active cathode and its use in the electrolysis of aqueous alkali metal chloride solutions
JPS6134519B2 (en)
US5004626A (en) Anodes and method of making
JP5317012B2 (en) Manufacturing method of low hydrogen overvoltage cathode
JP2596821B2 (en) Anode for oxygen generation
JPS62240780A (en) Anode for electrolysis
JPH0499294A (en) Oxygen generating anode and its production
US4153742A (en) Manufacture of electrodes
JP2008156684A (en) Anode electrode for hydrochloric acid electrolysis
JPH02282490A (en) Oxygen generating anode and production thereof
JPS6125789B2 (en)