JP2008156684A - Anode electrode for hydrochloric acid electrolysis - Google Patents

Anode electrode for hydrochloric acid electrolysis Download PDF

Info

Publication number
JP2008156684A
JP2008156684A JP2006345236A JP2006345236A JP2008156684A JP 2008156684 A JP2008156684 A JP 2008156684A JP 2006345236 A JP2006345236 A JP 2006345236A JP 2006345236 A JP2006345236 A JP 2006345236A JP 2008156684 A JP2008156684 A JP 2008156684A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
base material
electrode
metal
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345236A
Other languages
Japanese (ja)
Inventor
Tasuku Arimoto
佐 有本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2006345236A priority Critical patent/JP2008156684A/en
Publication of JP2008156684A publication Critical patent/JP2008156684A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anodic electrode for hydrochloric acid electrolysis which is capable of suppressing erosion of a base material and has long term durability as the electrode. <P>SOLUTION: The anodic electrode for hydrochloric acid electrolysis which has a catalytic layer provided on the base material comprising titanium and comprising iridium oxide, ruthenium oxide or the mixture is provided with an intermediate layer comprising one of metal iridium, metal rhodium and metal ruthenium between the base material and the catalytic layer. In the anodic electrode for hydrochloric acid electrolysis, the erosion of the base material is suppressed to keep the durability even in the long term use. Further, high chlorine-generation efficiency is attained by the use of the electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塩酸電解用の陽極電極に関し、特に、長期間の使用においても高い耐久性を有するものに関する。   The present invention relates to an anode electrode for hydrochloric acid electrolysis, and more particularly, to an electrode having high durability even in long-term use.

食品、医療、畜産等の分野において、殺菌のために使用される塩素は、塩酸の電気分解により生成する方法が知られている。この塩酸電解に用いる陽極電極としては、特許文献1のように、チタニウム、ニオブ、タンタル等の弁金属からなる基材上に、白金族金属の酸化物からなる触媒層が形成されたものが一般的に知られている。触媒層を備える電極によれば、塩酸の電気分解効率を良好なものとすることができる。そして、かかる触媒層を備える電極は、溶媒等を用いて白金族金属を基材上に塗布し、高温下で焼成を行う焼成法によって形成されるものが通常知られている。   In the fields of food, medicine, livestock, etc., a method is known in which chlorine used for sterilization is generated by electrolysis of hydrochloric acid. As an anode electrode used for this hydrochloric acid electrolysis, as in Patent Document 1, a catalyst layer made of a platinum group metal oxide is generally formed on a base material made of a valve metal such as titanium, niobium, or tantalum. Known. According to the electrode provided with the catalyst layer, the electrolysis efficiency of hydrochloric acid can be improved. And as for the electrode provided with this catalyst layer, what is formed by the baking method which apply | coats a platinum group metal on a base material using a solvent etc., and bakes at high temperature is generally known.

特公昭48−3954号公報Japanese Patent Publication No. 48-3954

上記した焼成法により触媒層を形成した電極は、焼成時の溶媒の揮発等に起因して触媒層に気孔が生じる場合や、基材と触媒層との熱膨張率の差によって触媒層にクラックが生じることがある。このような気孔やクラックが生じると、それらの部分を介して、基材が侵食される原因となる。そして、上記した触媒層を備える電極を長期間使用した場合や、高い電流密度において電気分解した場合には、基材の侵食が促進されて触媒層が剥離することがあり、充分な耐久性を有するものではなかった。   An electrode having a catalyst layer formed by the above-mentioned calcination method has cracks in the catalyst layer due to the occurrence of pores in the catalyst layer due to volatilization of the solvent during calcination or the difference in thermal expansion coefficient between the base material and the catalyst layer. May occur. When such pores and cracks are generated, the base material is eroded through those portions. When the electrode having the catalyst layer described above is used for a long period of time or electrolyzed at a high current density, erosion of the base material is promoted and the catalyst layer may be peeled off. Did not have.

そこで本発明は、基材の侵食が抑制され、電極として長期間の耐久性を有する塩酸電解用の陽極電極の提供を目的とする。   Accordingly, an object of the present invention is to provide an anode electrode for hydrochloric acid electrolysis that has a long-term durability as an electrode, in which erosion of the substrate is suppressed.

上記課題解決のため、本発明者らは、塩酸電解用の陽極電極において、基材と触媒層との間に中間層を備えることにより、基材の侵食を抑制する本願発明に想到した。そして、この中間層は、金属イリジウム、金属ロジウム、金属ルテニウムのいずれかからなる、緻密な層となっている場合に、基材の侵食が抑制可能となることを見出した。   In order to solve the above-mentioned problems, the present inventors have arrived at the present invention that suppresses erosion of a base material by providing an intermediate layer between the base material and the catalyst layer in an anode electrode for hydrochloric acid electrolysis. And when this intermediate | middle layer became a dense layer which consists of either metal iridium, metal rhodium, and metal ruthenium, it discovered that erosion of a base material could be suppressed.

即ち、本願発明は、チタンからなる基材上に、酸化イリジウム又は酸化ルテニウム、もしくは、これらの混合物からなる触媒層を備える塩酸電解用の陽極電極において、該基材と該触媒層との間に、金属イリジウム、金属ロジウム、金属ルテニウムのいずれかからなる中間層を備えることを特徴とする塩酸電解用の陽極電極に関する。   That is, the present invention relates to an anode electrode for hydrochloric acid electrolysis comprising a catalyst layer made of iridium oxide or ruthenium oxide or a mixture thereof on a base material made of titanium, and between the base material and the catalyst layer. Further, the present invention relates to an anode electrode for hydrochloric acid electrolysis, comprising an intermediate layer made of any one of metal iridium, metal rhodium, and metal ruthenium.

本発明において、電極上の中間層を「金属」イリジウム等と純金属であることを明示するのは、上記従来の電極で適用される触媒層のような酸化物等の形態を含まないことを意味すると共に、焼成法等の気孔を含む組織を排除し、緻密層であることを示すものである。そして、電極上に、かかる純金属からなる緻密な中間層を設けることで、塩酸と基材との接触が抑制され、基材の侵食を防ぐことができる。尚、純金属とは、不可避不純物の包含を許容し得る範囲の純度のものである。   In the present invention, it is clearly stated that the intermediate layer on the electrode is “metal” iridium or the like and pure metal does not include the form of an oxide or the like such as the catalyst layer applied in the conventional electrode. It means that it is a dense layer by eliminating the structure containing pores such as a firing method. And by providing the precise | minute intermediate layer which consists of this pure metal on an electrode, the contact with hydrochloric acid and a base material is suppressed and the erosion of a base material can be prevented. In addition, a pure metal is a thing of the purity of the range which can accept inclusion of an unavoidable impurity.

そして、本発明は、中間層を構成する金属種を、イリジウム、ロジウム、ルテニウムに限定するものである。これは、本発明者等の検討から、これら3種の貴金属からなる中間層でなければ、塩酸による侵食を抑制できないことが確認されたことによる。この点、イリジウム、ロジウム、ルテニウムと共に、白金族の貴金属に属する白金やパラジウムは、塩酸電解用電極の中間層としての作用を有することなく、基材の侵食が生じ、電極の耐久性向上には何らの作用も及ぼさない。また、貴金属以外の高耐食性金属についても同様である。   And this invention limits the metal seed | species which comprises an intermediate | middle layer to iridium, rhodium, and ruthenium. This is due to the fact that the investigation by the present inventors confirmed that erosion by hydrochloric acid cannot be suppressed unless the intermediate layer is composed of these three kinds of noble metals. In this respect, platinum and palladium belonging to noble metals in the platinum group, together with iridium, rhodium, and ruthenium, do not act as an intermediate layer of the electrode for hydrochloric acid electrolysis, and the base material is eroded, thereby improving the durability of the electrode. It has no effect. The same applies to highly corrosion-resistant metals other than noble metals.

ここで、中間層の膜厚は、0.5〜10μmであることが望ましい。0.5μm未満では、塩酸中の塩素イオンと基材との接触を充分に防ぐことが困難な傾向があり、10μmを超える場合、耐食性に問題はないが、高コストとなってしまう傾向がある。   Here, the film thickness of the intermediate layer is desirably 0.5 to 10 μm. If it is less than 0.5 μm, it tends to be difficult to sufficiently prevent contact between chlorine ions in hydrochloric acid and the substrate, and if it exceeds 10 μm, there is no problem in corrosion resistance, but it tends to be expensive. .

また、中間層は、めっき、CVD法、スパッタリング等のPVD法、により形成されたものを利用できるが、めっきにより形成されたものであることが好ましい。真空等の条件を調製する必要がないため、簡易的に中間層の形成が可能であり、工業的規模における電極の作成に適しているからである。また、上記した、好ましい膜厚の中間層を形成する場合にも、めっきによる場合が好適である。   The intermediate layer may be formed by plating, a CVD method, a PVD method such as sputtering, or the like, but is preferably formed by plating. This is because it is not necessary to prepare a condition such as a vacuum, so that an intermediate layer can be easily formed and is suitable for production of an electrode on an industrial scale. Moreover, also when forming an intermediate | middle layer with a preferable film thickness mentioned above, the case by plating is suitable.

そして、上記した中間層の上に、酸化イリジウム又は酸化ルテニウム、もしくは、これらの混合物からなる触媒層を備えることが好ましい。この触媒層は、従来の電極と同様に塩酸の電気分解効率を良好なものとするためのものである。また、触媒層は、CVD法や、スパッタリング等のPVD法により形成されたものであっても良いが、焼成法により形成されたものであることが好ましい。簡易的な方法であり、工業的規模での電極作成にも好適だからである。尚、本発明における触媒層の膜厚は、0.1μm〜10μmであることが望ましい。0.1μm未満では、電気分解効率が良好なものとなりにくい傾向があり、10μmを超えても電気分解効率に問題はないが、高コストになってしまう傾向がある。   And it is preferable to provide the catalyst layer which consists of iridium oxide or ruthenium oxide, or these mixtures on the above-mentioned intermediate | middle layer. This catalyst layer is for improving the electrolysis efficiency of hydrochloric acid as in the conventional electrode. The catalyst layer may be formed by a CVD method or a PVD method such as sputtering, but is preferably formed by a firing method. This is because it is a simple method and suitable for producing electrodes on an industrial scale. In addition, as for the film thickness of the catalyst layer in this invention, it is desirable that they are 0.1 micrometer-10 micrometers. If the thickness is less than 0.1 μm, the electrolysis efficiency tends to be difficult, and if it exceeds 10 μm, there is no problem in the electrolysis efficiency, but the cost tends to increase.

また、触媒層は酸化タンタルを含むことが好ましい。触媒層中の酸化物同士の密着性が向上し、さらに中間層との密着性も良好となるからである。尚、触媒層中の酸化タンタルの含有量は、重量比で10%〜60%であることが好ましい。10%未満では充分な密着性を示すことができない場合があり、60%を超えると、塩酸を電気分解する際に、電圧が上昇する場合や、塩素発生量が減少する場合等、充分な電解効率が得られにくい傾向があるからである。   The catalyst layer preferably contains tantalum oxide. This is because the adhesion between the oxides in the catalyst layer is improved and the adhesion with the intermediate layer is also improved. The content of tantalum oxide in the catalyst layer is preferably 10% to 60% by weight. If it is less than 10%, sufficient adhesion may not be exhibited. If it exceeds 60%, sufficient electrolysis may occur, such as when the voltage increases or the amount of generated chlorine decreases when electrolyzing hydrochloric acid. This is because efficiency tends to be difficult to obtain.

尚、本発明における基材上とは、基材と電解液とが接する方向を意味するものであり、上記した触媒層及び中間層は、基材の片面のみに形成するだけでなく、両面に形成することも可能である。   In addition, on the base material in the present invention means a direction in which the base material and the electrolytic solution are in contact, and the catalyst layer and the intermediate layer described above are not only formed on one side of the base material, but also on both sides. It is also possible to form.

上記した本発明の塩酸電解用の陽極電極は、塩酸を電気分解する方法に用いるために好適であり、この方法によれば、基材の侵食が防止され、電極として長期間の寿命を維持することが可能となる。尚、この電気分解に用いる陰極としては、Zr、Ta、Ti等や、これらを基材としてPtやIrをコーティングしたものを用いることが出来る。   The above-described anode electrode for hydrochloric acid electrolysis according to the present invention is suitable for use in a method for electrolyzing hydrochloric acid, and according to this method, erosion of the base material is prevented and long-term life as an electrode is maintained. It becomes possible. As the cathode used for this electrolysis, Zr, Ta, Ti or the like, or those coated with Pt or Ir using these as a base material can be used.

以上で説明したように、本発明の塩酸電解用の陽極電極は、基材の侵食が抑制されることから、長期間の使用においても耐久性を維持することができる。また、この電極を用いた場合には、高い塩素発生効率を実現することも可能となる。   As described above, the anode electrode for hydrochloric acid electrolysis according to the present invention can maintain durability even during long-term use since the erosion of the substrate is suppressed. In addition, when this electrode is used, high chlorine generation efficiency can be realized.

以下、本発明における最良の実施形態について説明する。   Hereinafter, the best embodiment of the present invention will be described.

実施例1:基材であるチタン基板上に、中間層として金属イリジウムをめっきした後、焼成により酸化イリジウムからなる触媒層を形成した。 Example 1 : After iridium metal was plated as an intermediate layer on a titanium substrate as a base material, a catalyst layer made of iridium oxide was formed by firing.

[中間層の形成]
100mm×100mm×0.5mmのチタン板を基材として、酸性、アルカリ性脱脂液に浸漬して脱脂後、酸洗して酸化皮膜を除去した後、中間層となる金属イリジウムの電解めっきを行った。Ir濃度10g/Lのめっき液(商品名:イリデックス100 日本エレクトロプレイテイング・エンジニヤース株式会社製)を用いて、pH1、液温85℃、電流密度0.2A/dmの条件下で、撹拌しながら1時間めっきし、金属イリジウムからなる中間層を形成した。形成後の中間層の膜厚を蛍光X線分析により測定したところ、1μmであることが確認された。
[Formation of intermediate layer]
Using a titanium plate of 100 mm × 100 mm × 0.5 mm as a base material, it was immersed in an acidic or alkaline degreasing solution, degreased, pickled and the oxide film was removed, and then electroplating of metallic iridium serving as an intermediate layer was performed. . Stirring under conditions of pH 1, liquid temperature 85 ° C., current density 0.2 A / dm 2 using an Ir concentration 10 g / L plating solution (trade name: IRIDEX 100, manufactured by Nippon Electroplating Engineering Co., Ltd.) Then, plating was performed for 1 hour to form an intermediate layer made of metallic iridium. When the film thickness of the intermediate layer after formation was measured by fluorescent X-ray analysis, it was confirmed to be 1 μm.

[触媒層の形成]
以上の方法によって、チタン基板上に中間層を形成した後、焼成法により酸化イリジウムからなる触媒層を形成した。濃度10%の塩化イリジウム酸と有機タンタル化合物をブタノールに溶解して中間層上に塗布し、室温で10分間乾燥させた後、450℃、30分間焼成した。この塗布、焼成作業を5回繰り返し、塩酸電解用の陽極電極を得た。形成後の触媒層の膜厚は、0.2μmであった。
[Formation of catalyst layer]
After the intermediate layer was formed on the titanium substrate by the above method, a catalyst layer made of iridium oxide was formed by a firing method. 10% concentration of iridium chloride and an organic tantalum compound were dissolved in butanol, applied on the intermediate layer, dried at room temperature for 10 minutes, and then baked at 450 ° C. for 30 minutes. This coating and baking operation was repeated 5 times to obtain an anode electrode for hydrochloric acid electrolysis. The film thickness of the catalyst layer after formation was 0.2 μm.

実施例2:中間層を、金属ロジウムで形成した。Rh濃度5g/Lのめっき液(商品名:ローデックス 日本エレクトロプレイテイング・エンジニヤース株式会社製)のめっき浴を用いて、pH1、液温60℃、電流密度0.5A/dmの条件下で、撹拌しながら30分間めっきし、実施例1で用いたものと同様のチタン基板上に、金属ロジウムからなる中間層を形成した。この中間層の膜厚は、1μmであった。尚、上記以外の方法については、実施例1と同様の方法により行った。 Example 2 : The intermediate layer was formed of metal rhodium. Using a plating bath of an Rh concentration 5 g / L plating solution (trade name: Rhodex made by Nippon Electroplating Engineering Co., Ltd.), pH 1, solution temperature 60 ° C., current density 0.5 A / dm 2 Then, plating was performed for 30 minutes with stirring, and an intermediate layer made of rhodium metal was formed on the same titanium substrate as used in Example 1. The thickness of this intermediate layer was 1 μm. The methods other than those described above were performed in the same manner as in Example 1.

実施例3:中間層を、金属ルテニウムで形成した。Ru濃度10g/Lのめっき液(商品名:ルテネックス 日本エレクトロプレイテイング・エンジニヤース株式会社製)のめっき浴を用いて、pH1、液温60℃、電流密度0.5A/dmの条件下で、撹拌しながら30分間めっきし、チタン基板上に金属ルテニウムからなる中間層を形成した。この中間層の膜厚は、1μmであった。尚、上記以外の方法については、実施例1と同様の方法により行った。 Example 3 : The intermediate layer was formed of metal ruthenium. Using a plating bath of a plating solution having a Ru concentration of 10 g / L (trade name: Rutenex, manufactured by Nippon Electroplating Engineering Co., Ltd.) under the conditions of pH 1, liquid temperature 60 ° C., and current density 0.5 A / dm 2 . Then, plating was performed for 30 minutes with stirring to form an intermediate layer made of metal ruthenium on the titanium substrate. The thickness of this intermediate layer was 1 μm. The methods other than those described above were performed in the same manner as in Example 1.

比較例1:中間層を形成することなく、基板上に直接触媒層を形成した。チタン基板を、酸性、アルカリ性脱脂液に浸漬して脱脂後、濃度10%の塩化イリジウム酸と有機タンタル化合物をブタノールに溶解して基板上に塗布し、室温で10分間乾燥させた後、450℃、30分間焼成した。この塗布、焼成作業を20回繰り返し、基材上に直接触媒層を形成した。この触媒層の膜厚は、1μmであった。 Comparative Example 1 : A catalyst layer was formed directly on a substrate without forming an intermediate layer. The titanium substrate is immersed in an acidic / alkaline degreasing solution and degreased, and then chlorinated iridium acid and an organic tantalum compound having a concentration of 10% are dissolved in butanol, applied on the substrate, dried at room temperature for 10 minutes, and then 450 ° C. Baked for 30 minutes. This coating and firing operation was repeated 20 times to form a catalyst layer directly on the substrate. The thickness of this catalyst layer was 1 μm.

比較例2:中間層を、金属パラジウムで形成した。Pd濃度10g/Lのめっき液(商品名:パラデックスLF2 日本エレクトロプレイテイング・エンジニヤース株式会社製)を用いて、pH1、液温10℃、電流密度0.5A/dmの条件下で、撹拌しながら30分めっきし、チタン基板上に金属パラジウムを形成した。この金属パラジウム層の膜厚は、1μmであった。尚、上記以外の方法については、実施例1と同様の方法により行った。 Comparative Example 2 : The intermediate layer was formed of metallic palladium. Using a plating solution having a Pd concentration of 10 g / L (trade name: Paradex LF2 manufactured by Nippon Electroplating Engineers Co., Ltd.) under the conditions of pH 1, solution temperature 10 ° C., current density 0.5 A / dm 2 , Plating was performed for 30 minutes with stirring to form metallic palladium on the titanium substrate. The film thickness of this metal palladium layer was 1 μm. The methods other than those described above were performed in the same manner as in Example 1.

比較例3:中間層を、金属白金で形成した。Pt濃度20g/Lのめっき液(商品名:プラチナート100 日本エレクトロプレイテイング・エンジニヤース株式会社製)のめっき浴を用いて、pH14、液温85℃、電流密度3.0A/dmの条件下で、撹拌しながら3分間めっきし、チタン基板上に金属白金からなる中間層を形成した。この中間層の膜厚は、1μmであった。尚、上記以外の方法については、実施例1と同様の方法により行った。 Comparative Example 3 : The intermediate layer was formed of metallic platinum. Using a plating bath of a plating solution having a Pt concentration of 20 g / L (trade name: Platinumate 100 manufactured by Nippon Electroplating Engineers Co., Ltd.), pH 14, liquid temperature 85 ° C., current density 3.0 A / dm 2 Then, plating was performed for 3 minutes with stirring to form an intermediate layer made of platinum metal on the titanium substrate. The thickness of this intermediate layer was 1 μm. The methods other than those described above were performed in the same manner as in Example 1.

[EPMA観察写真]
EPMA装置によって、実施例1及び比較例1で形成した電極の表面観察を行った。結果を、図1に示す。図中、黒色である部分は、表面にTiが存在しないことを表し、それ以外の部分は、明度が高いほど表面のTi濃度が高いことを示す。
[EPMA observation photograph]
The surface of the electrode formed in Example 1 and Comparative Example 1 was observed with an EPMA apparatus. The results are shown in FIG. In the figure, a black portion indicates that Ti does not exist on the surface, and the other portions indicate that the surface Ti concentration is higher as the brightness is higher.

図1右に示す実施例1では、表面にほとんどTiが存在していないのに対し、図1左に示す比較例1ではTi濃度の高い部分が多くみられ、基材であるTiが露出していることが分かった。   In Example 1 shown on the right side of FIG. 1, there is almost no Ti on the surface, whereas in Comparative Example 1 shown on the left side of FIG. 1, many parts with high Ti concentration are seen, and Ti as a base material is exposed. I found out.

[電解耐久性]
次に、上記方法により得られた電極について、塩酸溶液中で電解を行い、電極の寿命を試験した。濃度30%の塩酸溶液40リットル中に、本実施形態に係る電極を陽極とし、陰極としてZr金属を用い、両者を溶液中に浸漬して、電流密度50A/dm、液温60℃において電解を行った。50、100、200、500、750、1000時間ごとに、触媒層と保護層を合わせた全膜厚(以下、膜厚という。)の変化を測定することにより陽極の寿命を評価した。結果を表1及び図2に示す。
[Electrolytic durability]
Next, about the electrode obtained by the said method, it electrolyzed in hydrochloric acid solution and tested the lifetime of the electrode. In 40 liters of 30% hydrochloric acid solution, the electrode according to this embodiment is used as an anode, Zr metal is used as a cathode, both are immersed in the solution, and electrolysis is performed at a current density of 50 A / dm 2 and a liquid temperature of 60 ° C. Went. The life of the anode was evaluated by measuring the change in the total film thickness (hereinafter referred to as the film thickness) of the catalyst layer and the protective layer every 50, 100, 200, 500, 750, and 1000 hours. The results are shown in Table 1 and FIG.

表1及び図2より、基材と触媒層との間に金属イリジウム、金属ロジウム、金属ルテニウムからなる中間層を備えた実施例1〜3の電極は、1000時間電解後においても、膜厚がほとんど減少しないことが示された。   From Table 1 and FIG. 2, the electrodes of Examples 1 to 3 having an intermediate layer made of metal iridium, metal rhodium, and metal ruthenium between the base material and the catalyst layer have a film thickness even after 1000 hours of electrolysis. It was shown that there was almost no decrease.

これに対して、基材上に中間層を形成することなく、触媒層を形成した比較例1は電解により膜厚が大幅に減少し、500時間電解後においては、ほとんど消失してしまった。   On the other hand, in Comparative Example 1 in which the catalyst layer was formed without forming an intermediate layer on the substrate, the film thickness was greatly reduced by electrolysis, and almost disappeared after 500 hours of electrolysis.

また、中間層を金属パラジウム、金属白金で形成した比較例2や比較例3は、膜厚の減少が早く、100時間電解後にはほとんどの膜厚が消失してしまった。   In Comparative Example 2 and Comparative Example 3 in which the intermediate layer was formed of metallic palladium or metallic platinum, the film thickness decreased rapidly, and most of the film thickness disappeared after 100 hours of electrolysis.

以上より、比較例1の電極は、図1のように基材のTiが表面に露出しており、その部分から侵食が進行し、電解による膜厚の減少が促進されたものと考えられる。これに対し、実施例1は、図1より表面のTiがほとんど露出しておらず、侵食が抑制されて、長期間の電解後においてもほぼ同じ膜厚が維持されたものと考えられる。   From the above, it is considered that the electrode of Comparative Example 1 has Ti exposed on the surface thereof as shown in FIG. 1, and erosion progressed from that portion, and the reduction of the film thickness due to electrolysis was promoted. On the other hand, in Example 1, it is considered that Ti on the surface is hardly exposed from FIG. 1 and that erosion is suppressed and that the same film thickness is maintained even after long-term electrolysis.

比較例1(左)及び実施例1(右)の製造直後EPMA観察写真(5000倍)。EPMA observation photograph (5000 times) immediately after manufacture of Comparative Example 1 (left) and Example 1 (right). 実施例及び比較例における、電解時間に対する中間層の膜厚変化図。The film thickness change figure of the intermediate | middle layer with respect to electrolysis time in an Example and a comparative example.

Claims (5)

チタンからなる基材上に、酸化イリジウム又は酸化ルテニウム、もしくは、これらの混合物からなる触媒層を備える塩酸電解用の陽極電極において、
該基材と該触媒層との間に、金属イリジウム、金属ロジウム、金属ルテニウムのいずれかからなる中間層を備えることを特徴とする塩酸電解用の陽極電極。
In the anode electrode for hydrochloric acid electrolysis provided with a catalyst layer made of iridium oxide or ruthenium oxide or a mixture thereof on a substrate made of titanium,
An anode for hydrochloric acid electrolysis, comprising an intermediate layer made of metal iridium, metal rhodium, or metal ruthenium between the base material and the catalyst layer.
中間層の膜厚は、0.5〜10μmである請求項1に記載の塩酸電解用の陽極電極。 The anode electrode for hydrochloric acid electrolysis according to claim 1, wherein the thickness of the intermediate layer is 0.5 to 10 µm. 中間層は、めっきにより形成されたものである請求項1又は請求項2に記載の塩酸電解用の陽極電極。 The anode for hydrochloric acid electrolysis according to claim 1 or 2, wherein the intermediate layer is formed by plating. 触媒層は、酸化タンタルを含む請求項1〜請求項3のいずれか1項に記載の塩酸電解用の陽極電極。 The anode electrode for hydrochloric acid electrolysis according to any one of claims 1 to 3, wherein the catalyst layer contains tantalum oxide. 請求項1〜請求項4のいずれか1項に記載の塩酸電解用の陽極電極を用いて塩酸を電気分解する方法。 The method to electrolyze hydrochloric acid using the anode electrode for hydrochloric acid electrolysis of any one of Claims 1-4.
JP2006345236A 2006-12-22 2006-12-22 Anode electrode for hydrochloric acid electrolysis Pending JP2008156684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345236A JP2008156684A (en) 2006-12-22 2006-12-22 Anode electrode for hydrochloric acid electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345236A JP2008156684A (en) 2006-12-22 2006-12-22 Anode electrode for hydrochloric acid electrolysis

Publications (1)

Publication Number Publication Date
JP2008156684A true JP2008156684A (en) 2008-07-10

Family

ID=39657928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345236A Pending JP2008156684A (en) 2006-12-22 2006-12-22 Anode electrode for hydrochloric acid electrolysis

Country Status (1)

Country Link
JP (1) JP2008156684A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038927A1 (en) 2011-09-13 2013-03-21 学校法人同志社 Chlorine-generating positive electrode
JP2014505166A (en) * 2010-12-22 2014-02-27 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode for electrolytic cell
CN110387558A (en) * 2019-07-26 2019-10-29 浙江工业大学 A kind of ruthenium tantalum analysis chloride electrode and preparation method thereof and test method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247392A (en) * 1989-02-18 1990-10-03 Bayer Ag Anode with dimensional stability and its use for producing bichromate and chromic acid of alkalic metal
JP2004323955A (en) * 2003-04-28 2004-11-18 Wako Sangyo:Kk Electrode for electrolysis, and manufacturing method therefor
JP2005513276A (en) * 2002-01-03 2005-05-12 バイエル マテリアルサイエンス アーゲー Electrode for electrolysis in acidic media

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02247392A (en) * 1989-02-18 1990-10-03 Bayer Ag Anode with dimensional stability and its use for producing bichromate and chromic acid of alkalic metal
JP2005513276A (en) * 2002-01-03 2005-05-12 バイエル マテリアルサイエンス アーゲー Electrode for electrolysis in acidic media
JP2004323955A (en) * 2003-04-28 2004-11-18 Wako Sangyo:Kk Electrode for electrolysis, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505166A (en) * 2010-12-22 2014-02-27 インドゥストリエ・デ・ノラ・ソチエタ・ペル・アツィオーニ Electrode for electrolytic cell
WO2013038927A1 (en) 2011-09-13 2013-03-21 学校法人同志社 Chlorine-generating positive electrode
CN110387558A (en) * 2019-07-26 2019-10-29 浙江工业大学 A kind of ruthenium tantalum analysis chloride electrode and preparation method thereof and test method

Similar Documents

Publication Publication Date Title
JP2713788B2 (en) Oxygen generating electrode and method for producing the same
KR101073351B1 (en) Electrocatalytic coating with platinium group metals and electrode made therefrom
JP4884333B2 (en) Electrode for electrolysis
JP5616633B2 (en) Anode for electrolysis
JP7094110B2 (en) Electrodes for the electrolysis process
TWI251036B (en) Electrode for gas evolution and method for its production
KR100790767B1 (en) Electrolytic electrode and process of producing the same
JP2007538152A5 (en)
AU2012210549B2 (en) Electrode for oxygen evolution in industrial electrochemical processes
JP4734664B1 (en) Electrode for electrolysis, anode for electrolysis of ozone, anode for electrolysis of persulfate, and anode for chromium electrooxidation
EA024916B1 (en) Anode for oxygen evolution
US8702877B2 (en) Cathode member and bipolar plate for hypochlorite cells
JP2008156684A (en) Anode electrode for hydrochloric acid electrolysis
EP0955395A1 (en) Electrolyzing electrode and process for the production thereof
JP3430479B2 (en) Anode for oxygen generation
JPS62243790A (en) Anode for electrolysis
JP4209801B2 (en) Electrode for electrolysis and method for producing the same
JP4942551B2 (en) Electrode for electrolysis
JP2001073197A (en) Anode for oxygen generation
JPH06122988A (en) Electrolytic electrode and its production
JPH0860390A (en) Electrolytic electrode and its production
JP2008127649A (en) Electrode for producing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090820

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206