JPS62243732A - Composite light metallic material - Google Patents

Composite light metallic material

Info

Publication number
JPS62243732A
JPS62243732A JP8489386A JP8489386A JPS62243732A JP S62243732 A JPS62243732 A JP S62243732A JP 8489386 A JP8489386 A JP 8489386A JP 8489386 A JP8489386 A JP 8489386A JP S62243732 A JPS62243732 A JP S62243732A
Authority
JP
Japan
Prior art keywords
base material
microspheres
composite light
mixture
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8489386A
Other languages
Japanese (ja)
Inventor
Tadao Inahata
稲畑 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INAHATA KENKYUSHO KK
Original Assignee
INAHATA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INAHATA KENKYUSHO KK filed Critical INAHATA KENKYUSHO KK
Priority to JP8489386A priority Critical patent/JPS62243732A/en
Priority to CA000527624A priority patent/CA1322876C/en
Priority to EP87300575A priority patent/EP0235903A1/en
Publication of JPS62243732A publication Critical patent/JPS62243732A/en
Priority to US07/127,536 priority patent/US4939038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To manufacture a lightweight composite light metallic material having high strength and superior vibration damping capacity by forming films on the surface of hollow microspheres having a lower specific gravity and a higher softening point than a light metallic material as a base material and by dispersing the microspheres in the base material. CONSTITUTION:Al films are vapor-deposited on the surfaces of hollow microspheres of borosilicate glass or the like having <=100mum diameter. The microspheres are mixed with powder of a base material such as an Al alloy having a prescribed particle size by about 10-70vol% and they are uniformly dispersed. The resulting mixture is heated to a prescribed temp. of about 620-630 deg.C so that part of the mixture is softened and the remainder is kept solid. The heated mixture is cast and solidified to form a billet of a composite body. This billet is heated again to a prescribed temp. as required and it is passed through various forming and working stages such as rolling, extrusion, forging and casting stages and heat treatment stages such as hardening and annealing stages to obtain a finished product.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複合軽金属材料に関し、とくに表面に被膜が
形成されたマイクロスフェア−を混入した軽量かつ高強
度で制振性等に優れた複合軽金属材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a composite light metal material, and in particular to a composite light metal material that is lightweight, has high strength, and has excellent vibration damping properties, which contains microspheres with a coating formed on the surface. Regarding.

従来の技術 近年、諸特性に優れる各梯軽金属材料および複合軽金属
材料が開発されている。しかし、この種の材料において
軽量化と強度増大等とは相反する関係にあり、比較的比
重の重い金属同士を組合わせる従来の合金開発手法もし
くはカーボンファイバー等を含有させた従来の複合材料
によっては軽石化と強度増大等とを同時に実現すること
は困難である。
BACKGROUND OF THE INVENTION In recent years, various graded light metal materials and composite light metal materials with excellent properties have been developed. However, in this type of material, there is a contradictory relationship between weight reduction and strength increase, and conventional alloy development methods that combine relatively heavy metals or conventional composite materials containing carbon fiber etc. It is difficult to simultaneously achieve pumice formation and increased strength.

発明が解決しようとする問題点 本発明は、軽量かつ高強度で、制振性等に優れた複合軽
金属材料を提供・することを目的とする。
Problems to be Solved by the Invention An object of the present invention is to provide a composite light metal material that is lightweight, has high strength, and has excellent vibration damping properties.

問題点を解決するための手段 本発明の複合軽金属材料は、軽金属材料よりなる基材と
、該基材中に分散混入され、前記基材よりも比重が小さ
くかつ軟化点が高く、表面に被膜が形成された中空球状
のマイクロスフェア−とより構成される。
Means for Solving the Problems The composite light metal material of the present invention includes a base material made of a light metal material, is dispersed in the base material, has a lower specific gravity and a higher softening point than the base material, and has a coating on the surface. It is composed of hollow spherical microspheres.

作  用 複合軽金属材料の基材中に分散混入されたマイクロスフ
ェア−は、該基材よりも軟化点が高く、形状が球状でか
つ表面被膜により強度増大が図られているので、複合軽
金属材料の製造中および製造後の熱処理および成形加工
等の各種処理に耐え、破壊することがない。このため、
複合軽金属材料は全体として強度が大きく、またマイク
ロスフェア−は中空で比重が基材よりも小さく、振動及
び騒音を吸収し、断熱性を有するので、軽量であると共
に制振性および断熱性に優れる。
Function The microspheres dispersed in the base material of the composite light metal material have a higher softening point than the base material, are spherical in shape, and have increased strength due to the surface coating. It can withstand various treatments such as heat treatment and molding during and after manufacturing, and will not break. For this reason,
The composite light metal material has high strength as a whole, and the microspheres are hollow and have a lower specific gravity than the base material, absorb vibration and noise, and have heat insulation properties, so they are lightweight and have excellent vibration damping and heat insulation properties. .

実施例 添付図面は本発明の一実施例による複合軽金属材料を示
し、該複合材料は、予め表面処理を施した微小のマイク
ロスフェア−2を基材1中に多数分散混入してなる。こ
のマイクロスフェア−2は、近年、プラスチックス、高
分子化合物に対する充填材として開発市販され、専ら低
強度、低融点材料の補強材として利用されている従来公
知のマイクロスフェア−と略同種のもので、しかし、従
来のちのより軟化点が高めでかつ基材1の構成成分に対
し化学的に安定となるJ:うに、ホウケイ酸ガラス、シ
リカガラス等の高融点ガラス、焼結金属。
Embodiment The attached drawing shows a composite light metal material according to an embodiment of the present invention, and the composite material is made by dispersing and mixing in a base material 1 a large number of minute microspheres 2 that have been previously surface-treated. This Microsphere-2 is almost the same type as the conventionally known Microsphere, which has recently been developed and commercially available as a filler for plastics and polymer compounds, and is used exclusively as a reinforcing material for low-strength, low-melting-point materials. However, J: sea urchin, high melting point glasses such as borosilicate glass and silica glass, and sintered metals have a higher softening point than conventional ones and are chemically stable with respect to the constituent components of the base material 1.

セラミックス等のいずれかより構成され、例えば融点が
摂氏i、ooo度ないし1,200度のホウケイ酸ガラ
スより構成されている。そして、マイクロスフェア−2
は、複合軽金属材料の強度。
It is made of ceramics or the like, for example, borosilicate glass having a melting point of 1,000 degrees Celsius to 1,200 degrees Celsius. And microsphere-2
is the strength of composite light metal materials.

比重等の諸特性の調和のため、好ましくは直径100ミ
クロン以下かつ内部に空気等の気体を含む中空の略真球
状に形成され、基材1に対して体積比で10乃至70%
たとえば20%混入されている。さらに、マイクロスフ
ェア−2自体ひいては複合軽金属材料の強度増大のため
、マイクロスフェア−2の外面には表面処理としてアル
ミニウム。
In order to harmonize various properties such as specific gravity, it is preferably formed into a hollow, almost true spherical shape with a diameter of 100 microns or less and containing gas such as air inside, and has a volume ratio of 10 to 70% with respect to the base material 1.
For example, it is mixed with 20%. Furthermore, in order to increase the strength of the microsphere 2 itself and the composite light metal material, aluminum is applied to the outer surface of the microsphere 2 as a surface treatment.

亜鉛、銅、銀、鉄等のいずれかよりなる被膜例えばアル
ミニウム被m3が形成されている。
A coating made of zinc, copper, silver, iron, etc., such as an aluminum coating m3, is formed.

一方、基材1は、マイクロスフェア−2よりも軟化点が
低い、アルミニウム、亜鉛、銅、黄銅。
On the other hand, the base material 1 is made of aluminum, zinc, copper, or brass, which has a lower softening point than the microsphere-2.

青銅等の金属若しくはアルミニウム合金等の軽金属合金
により構成でき、本実施例の基材1はアルミニ“シム−
5%マグネシウム合金で構成されている。
The base material 1 of this embodiment is made of a metal such as bronze or a light metal alloy such as an aluminum alloy.
Composed of 5% magnesium alloy.

上述の構成の複合軽金属材料の製造にあたり、先ず、マ
イクロスフェア−2に被膜3を形成する。
In manufacturing the composite light metal material having the above-described structure, first, a coating 3 is formed on the microspheres 2.

このため例えば、ホウケイ酸ガラスよりなるマイクロス
フェア−2を清浄にした後、蒸着室内に浮遊させ、該マ
イクロスフェア−2の表面にアルミニウム被m3を蒸着
により形成する。次いで、このアルミニウム被膜3を形
成したマイクロスフェア−2を、所定の粒度のアルミニ
ウムー5%マグネシウム基材粉末に体積比で20%混入
し、均一に分散するように攬はんする。次に、この基材
1とマイクロスフェア−2との混合物をその一部が軟化
し残部が同化状態を保つような所定の温度(本実施例で
は摂氏62011ないし630度)まで加熱して流動状
態とする。ずなわら、混合物を構成する二要索の融点の
差異を利用して液状またはそれに近い部分と固体の部分
とが適切な比率で混合し流動可能な状態にする。そして
、この流動性を具備した混合物を鋳造固化してアルミニ
ウムーマイクロスフェア−複合体ビレットを得る。その
後、必要に応じてこのビレットを再度上記所定の温度ま
で加熱し、圧延、押し出し、lR造、鋳造等の各種成形
加工工程、ならびに、焼き入れ、焼鈍等の熱処理を経て
、最終製品を得る。
For this purpose, for example, after cleaning the microspheres 2 made of borosilicate glass, they are suspended in a vapor deposition chamber, and an aluminum coating m3 is formed on the surface of the microspheres 2 by vapor deposition. Next, the microspheres 2 having the aluminum coating 3 formed thereon are mixed in a volume ratio of 20% into an aluminum-5% magnesium base powder having a predetermined particle size, and are stirred so as to be uniformly dispersed. Next, the mixture of the base material 1 and the microspheres 2 is heated to a predetermined temperature (in this example, 62011 to 630 degrees Celsius) at which a part of the mixture softens and the rest remains in an assimilated state, so that it becomes fluid. shall be. By utilizing the difference in melting point of the two constituents of the mixture, the liquid or near-liquid part and the solid part are mixed in an appropriate ratio to form a fluidized state. Then, this fluid mixture is cast and solidified to obtain an aluminum-microsphere composite billet. Thereafter, the billet is heated again to the predetermined temperature as required, and subjected to various forming processes such as rolling, extrusion, IR molding, and casting, as well as heat treatments such as quenching and annealing, to obtain a final product.

なお、上記所定の温度に加熱されて流動状態になった混
合物をプレス型に直接充填して直ちに成形するようにし
ても良い。
Note that the mixture heated to the predetermined temperature and brought into a fluid state may be directly filled into a press mold and immediately molded.

上述のように、基材1とマイクロスフェア−2との混合
物を加熱流動化させる際、加熱温度を好適な固相比率と
なるようなiIfに制限する理由は、流動部分の比率が
大きければ混合物の複合11斜化を促進ぐきる一方、基
材粉末とマイクロスフェア−とは比重が著しく相違する
ので、もし混合物全体が液状になれば両者は比重差で分
離し所要のマイクロスフェア−分布状態を19られない
からであり、又、流動部分の比率が過少になれば混合物
の複合化が不充分になるからである。そして、同相比率
が所定のちのに、好ましくはマイクロスフエアー2の固
相率が100%でかつ基材1の流動化率が30〜70%
となるように加熱すると、基材粉末とマイクロスフェア
−との複合化を促進しつつ両名の分離を防止できるとと
もに混合物に流動性が付与され、良好の成形性を得るこ
とができる。
As mentioned above, when heating and fluidizing the mixture of base material 1 and microspheres-2, the reason why the heating temperature is limited to iIf that provides a suitable solid phase ratio is that if the ratio of the fluidized portion is large, the mixture On the other hand, since the specific gravity of the base powder and the microspheres is significantly different, if the entire mixture becomes liquid, the two will be separated by the difference in specific gravity and the desired microsphere distribution state will be achieved. In addition, if the proportion of the fluidized portion becomes too small, the mixture will not be sufficiently complexed. After the in-phase ratio is predetermined, preferably the solid phase ratio of the microspheres 2 is 100% and the fluidization ratio of the base material 1 is 30 to 70%.
When heated to such a temperature, it is possible to promote the formation of a composite between the base powder and the microspheres while preventing their separation, and also to impart fluidity to the mixture, resulting in good moldability.

さて、このように基材1中に分散されたマイクロスフェ
ア−2は、それ自体では一方向性外力に弱く破壊し易い
が、一旦基材1中に混入されると、その外形が球状であ
ることからこれに加わる外力が互いに均衡し、マイクロ
スフェア−2は外力に対して極めて安定になる。更に、
基材1の熱膨張および熱収縮に応じて内部気体が膨張収
縮するので、熱安定性も高い。しかも、マイクロスフェ
ア−2の表面には被膜が形成され、強度補強されており
、上述の性状とあいまって、マイクロスフェア−2は、
上記複合体ビレットの製造等の各種成形工程においても
安定でたとえば100 ko/ cm2以上の面圧に耐
え、基材1内で破壊されることがない。そして、本実施
例のように、被膜構成材料に物性的に基材1と同種もし
くは類似のものを用いると、とくに両者の濡れ性ひいて
は混合物の成形性を向上できる。
Now, the microspheres 2 dispersed in the base material 1 are weak and easily destroyed by unidirectional external force by themselves, but once they are mixed into the base material 1, their outer shape becomes spherical. Therefore, the external forces applied thereto are balanced with each other, and the microspheres 2 become extremely stable against external forces. Furthermore,
Since the internal gas expands and contracts in accordance with the thermal expansion and contraction of the base material 1, thermal stability is also high. Moreover, a coating is formed on the surface of the microsphere-2 to strengthen it, and in combination with the above-mentioned properties, the microsphere-2 has the following properties:
It is stable even in various molding processes such as manufacturing the above-mentioned composite billet, and can withstand a surface pressure of, for example, 100 ko/cm2 or more, and will not be broken within the base material 1. As in this embodiment, when the same or similar physical properties to the base material 1 are used as the coating material, the wettability of both materials and the moldability of the mixture can be particularly improved.

本発明の複合軽金属材料は−F記実施例に限定されず、
種々の変形が可能である。たとえば、マイクロスフェア
−2との化学反応を伴うカップリング処理をマイクロス
フェア−表面に施して該表面にアミノシラン被膜を形成
しても良く、また、マイクロスフェア−2の表面に形成
される被膜3の構成材料に基材1とは電磁特性たとえば
導電性。
The composite light metal material of the present invention is not limited to the embodiment described in -F,
Various modifications are possible. For example, an aminosilane coating may be formed on the surface of the microsphere by subjecting the surface of the microsphere to a coupling treatment that involves a chemical reaction with the microsphere-2. The base material 1 has electromagnetic properties such as conductivity.

磁性等を異にするものを用い、複合軽金属材料に全体と
して多機能材料としての性状を付与することができる。
By using materials with different magnetism, etc., it is possible to impart properties as a multifunctional material to the composite light metal material as a whole.

すなわち、非磁性の基材の使用時にマイクロスフェア−
に磁性′m膜を形成したり、低導電性の基材とともに良
導電性被膜を形成したマイクロスフェア−を用い17る
That is, when using a non-magnetic base material, microspheres
Microspheres on which a magnetic film is formed or a highly conductive film is formed on a low conductive base material are used.

また、旦材粉末にセラミックス粉末または焼結金屈用粉
末を用いる場合、マイクロスフェア−が破壊されないよ
うな圧力、温度条件において加圧焼結を行い、必要に応
じて圧力、温度を多段設定して基材の安定を図るように
する。そして、焼結をホット・アイソスタティック・プ
レス(IIIP>またはコールド・アイソスタティック
・プレス(CI P)により行うのが有効である。
In addition, when using ceramic powder or sintered metal powder as the raw material powder, pressure sintering is performed under pressure and temperature conditions that do not destroy the microspheres, and the pressure and temperature are set in multiple stages as necessary. to stabilize the base material. It is effective to perform sintering by hot isostatic pressing (IIIP) or cold isostatic pressing (CIP).

発明の効果 上述のように、本発明によれば、軽金属材料よりなる基
材に該基材よりも比重が小さくかつ軟化点が高く、表面
に被膜が形成された中空球状のマイクロスフェア−を分
散混入したので、基材とマイクロスフェア−とよりなる
複合軽金属材料の製造中および製造後の熱処理および成
形加工等の各種工程中にマイクロスフェア−が破壊する
ことがなく、このため、複合軽金ぶ材料は全体として強
度が大きく、軽量であると共に制振性および断熱性に優
れる。
Effects of the Invention As described above, according to the present invention, hollow spherical microspheres having a lower specific gravity and a higher softening point than the base material and having a coating formed on the surface are dispersed in a base material made of a light metal material. As a result, the microspheres do not break during the manufacture of the composite light metal material consisting of the base material and the microspheres, and during various processes such as heat treatment and molding after manufacture. The material as a whole has high strength, is lightweight, and has excellent vibration damping and heat insulation properties.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、本発明の一実施例による複合軽金属材料を
示す概略断面図である。 1・・・基材、2・・・マイクロスフェア−1−3・・
・被膜。
The accompanying drawing is a schematic cross-sectional view showing a composite light metal material according to an embodiment of the present invention. 1... Base material, 2... Microsphere-1-3...
・Coating.

Claims (4)

【特許請求の範囲】[Claims] (1)軽金属材料によりなる基材と、該基材中に分散混
入され、前記基材よりも比重が小さくかつ軟化点が高く
、表面に被膜が形成された中空球状のマイクロスフェア
ーとよりなる複合軽金属材料。
(1) Consisting of a base material made of a light metal material, and hollow spherical microspheres that are dispersed in the base material, have a lower specific gravity and a higher softening point than the base material, and have a coating formed on the surface. Composite light metal material.
(2)前記被膜が金属被膜である特許請求の範囲第1項
記載の複合軽金属材料。
(2) The composite light metal material according to claim 1, wherein the coating is a metal coating.
(3)前記金属被膜が前記基材との濡れの良い金属より
なる特許請求の範囲第2項記載の複合軽金属材料。
(3) The composite light metal material according to claim 2, wherein the metal coating is made of a metal that has good wettability with the base material.
(4)前記金属被膜が前記基材と電磁特性を異にする金
属よりなる特許請求の範囲第2項記載の複合軽金属材料
(4) The composite light metal material according to claim 2, wherein the metal coating is made of a metal having electromagnetic properties different from those of the base material.
JP8489386A 1986-01-22 1986-04-15 Composite light metallic material Pending JPS62243732A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8489386A JPS62243732A (en) 1986-04-15 1986-04-15 Composite light metallic material
CA000527624A CA1322876C (en) 1986-01-22 1987-01-19 Light metallic composite material and method of producing thereof
EP87300575A EP0235903A1 (en) 1986-01-22 1987-01-22 Light metallic composite material and method for the production thereof
US07/127,536 US4939038A (en) 1986-01-22 1987-11-30 Light metallic composite material and method for producing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8489386A JPS62243732A (en) 1986-04-15 1986-04-15 Composite light metallic material

Publications (1)

Publication Number Publication Date
JPS62243732A true JPS62243732A (en) 1987-10-24

Family

ID=13843424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8489386A Pending JPS62243732A (en) 1986-01-22 1986-04-15 Composite light metallic material

Country Status (1)

Country Link
JP (1) JPS62243732A (en)

Similar Documents

Publication Publication Date Title
CA1322876C (en) Light metallic composite material and method of producing thereof
JPS63149306A (en) Production of hollow sphere enhanced in its wall strength and composite thereof
CN103602869A (en) Process for preparing high-volume-fraction aluminum silicon carbide-based composite material by powder metallurgic method
JP2002129204A (en) Method for manufacturing porous metal
JP4063874B2 (en) Refractory material of glassy silica
JPS6127453B2 (en)
JPS62243732A (en) Composite light metallic material
US6096111A (en) Exothermically sintered homogeneous composite and fabrication method
JPS61166902A (en) Electromagnetic parts made of amorphous alloy powder and its production
KR850004121A (en) Composite bearing material and its manufacturing method
JPS62243724A (en) Manufacture of composite light-metal material
JP2660383B2 (en) Fine ceramics sintered body having fine voids and method for producing the same
US6869566B1 (en) Method of fabricating metallic glasses in bulk forms
JPS62170440A (en) Composite light-metal material
JPS5836447A (en) Heat-resisting coating structure
JPS5895675A (en) Silicon carbide/metal composite pipe and manufacture
JPH01283330A (en) Manufacture of aluminum-based composite member
JPS58136735A (en) Manufacture of carbon fiber reinforced composite aluminum material
JP2575034B2 (en) Composite
JP3060498B2 (en) Combined body of metal and ceramic and method for producing the same
JPS6027462A (en) Production of pipe having composite construction
JPH0860272A (en) Production of aluminum-base composite material
JPS6212895A (en) Aluminum alloy having excellent neutron absorptivity
US4985200A (en) Method of making sintered aluminium nickel alloys
JP2876506B2 (en) Material modification method by casting with sintering, and casting material