JP2575034B2 - Composite - Google Patents

Composite

Info

Publication number
JP2575034B2
JP2575034B2 JP62293100A JP29310087A JP2575034B2 JP 2575034 B2 JP2575034 B2 JP 2575034B2 JP 62293100 A JP62293100 A JP 62293100A JP 29310087 A JP29310087 A JP 29310087A JP 2575034 B2 JP2575034 B2 JP 2575034B2
Authority
JP
Japan
Prior art keywords
composite material
glass
melting point
silica
mat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62293100A
Other languages
Japanese (ja)
Other versions
JPH01135629A (en
Inventor
忠雄 稲畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62293100A priority Critical patent/JP2575034B2/en
Priority to CA 583144 priority patent/CA1332129C/en
Priority to US07/272,999 priority patent/US4906518A/en
Priority to EP19880310996 priority patent/EP0318228B1/en
Priority to DE19883872493 priority patent/DE3872493T2/en
Priority to AT88310996T priority patent/ATE77843T1/en
Publication of JPH01135629A publication Critical patent/JPH01135629A/en
Application granted granted Critical
Publication of JP2575034B2 publication Critical patent/JP2575034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、軽量かつ高強度でかつ制振性,断熱性等の
各種特性に優れた複合材に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite material that is lightweight, has high strength, and is excellent in various characteristics such as vibration damping properties and heat insulation properties.

従来の技術 近年、諸特性に優れる各種軽金属材料および複合軽金
属材料が開発されている。しかし、この種の材料におい
て軽量化と強度増大とは相反する関係にあり、比較的比
重の大きい金属同士を組合せる従来の合金開発手法もし
くはカーボンファイバー等を含有させた従来の複合材料
によって軽量化と強度増大とを同時に実現することは困
難である。
2. Description of the Related Art In recent years, various light metal materials and composite light metal materials having excellent properties have been developed. However, in this type of material, the reduction in weight and the increase in strength are in a contradictory relationship, and the reduction in weight is achieved by a conventional alloy development method that combines metals having a relatively high specific gravity or by a conventional composite material that contains carbon fiber, etc. It is difficult to realize the increase of the strength at the same time.

このため、本発明者は、基材中にマイクロスフィアー
を混入させた複合軽金属材料を開発した(特願昭61−98
30号)。しかし、このように、相互に比重が異なる基材
中に微小粒状体を分散させて軽量化を図るようにした複
合材においては、微小粒状体を所定の状態に分散させる
ことに困難がある。
For this reason, the present inventors have developed a composite light metal material in which microspheres are mixed in a base material (Japanese Patent Application No. 61-98).
No. 30). However, it is difficult to disperse the fine particles in a predetermined state in the composite material in which the fine particles are dispersed in the base materials having different specific gravities to reduce the weight.

また、鉱物性発泡粒体と無機質繊維が難燃型発泡合成
樹脂内に分散された断熱層を一対の金属板間にサンドイ
ッチしてなる建築用板が特開昭60−129346号に開示され
ている。
Further, Japanese Patent Laid-Open No. 60-129346 discloses an architectural plate formed by sandwiching a heat insulating layer in which mineral expanded granules and inorganic fibers are dispersed in a flame-retardant foam synthetic resin between a pair of metal plates. I have.

しかし、このものも、鉱物性発泡粒体がこれと比重の
異なる難燃型発泡合成樹脂内に分散されているため、鉱
物性発泡粒体が遍在して均質な複合材を得ることが困難
である。
However, also in this case, since the mineral expanded granules are dispersed in the flame-retardant foam synthetic resin having a different specific gravity, it is difficult to obtain a homogeneous composite material because the mineral expanded granules are ubiquitous. It is.

発明が解決しようとする問題点 本発明は、斯かる困難性を解消し、軽量かつ高強度で
かつ制振性,断熱性等の各種特性に優れ、しかも、場所
によって上記各種特性にむらが生じない複合材を提供す
ることを目的とする。
Problems to be Solved by the Invention The present invention solves such difficulties, is lightweight, has high strength, and is excellent in various properties such as vibration damping properties and heat insulation properties. The aim is to provide no composites.

問題点を解決するための手段 本発明の複合材は、基材よりも比重が小さくかつ融点
が高い微小粒状体を、基材よりも融点が高い繊維材より
なるマット上に均一に分散固定させてなる軽量積層シー
トを、基材中に混入して構成される。
Means for Solving the Problems The composite material of the present invention has a small specific gravity smaller than the base material and a fine granular material having a high melting point, and is uniformly dispersed and fixed on a mat made of a fiber material having a melting point higher than the base material. The lightweight laminated sheet is mixed with a base material.

作 用 基材よりも融点がそれぞれ高いマットと微小粒状体と
よりなる軽量積層シートは、基材との複合化がなされる
温度まで加熱でき、斯く得た複合材は分離しにくく強度
が大きい。また、比重の小さい微小粒状体を含む複合材
は軽量である。さらに、マット上に分散固定された微小
粒状体は複合材中に均一に分布し、複合材の諸特性が均
一になる。
The lightweight laminated sheet composed of the mat and the fine granular material, each having a higher melting point than the base material, can be heated to a temperature at which the composite material is formed with the base material, and the obtained composite material is difficult to separate and has high strength. Further, the composite material including the fine granular material having a small specific gravity is lightweight. Further, the fine particles dispersed and fixed on the mat are uniformly distributed in the composite material, and various properties of the composite material become uniform.

実施例 第1図は、本発明の一実施例に係る軽量積層シートを
示す。該軽量積層シートは、各種基材中に混入されて複
合化され、該基材と共に複合材を構成するために用いら
れるもので、それぞれ基材よりも融点が高いマット1と
マイクロスフィアー層2とを交互に積層してなる。層2
をなす多数の微小粒状体すなわちマイクロスフィアー3
は、マット1上に均一に分散固定されている。
Embodiment FIG. 1 shows a lightweight laminated sheet according to an embodiment of the present invention. The lightweight laminated sheet is mixed and mixed into various base materials, and is used to form a composite material together with the base material. The mat 1 and the microsphere layer 2 each having a higher melting point than the base material are used. Are alternately laminated. Layer 2
A large number of microparticles or microspheres 3
Are uniformly dispersed and fixed on the mat 1.

軽量積層シートの製造にあたり、先ずマイクロスフィ
アー3を用意する。このマイクロスフィアー3は、近
年、プラスチックス,高分子化合物に対する充填材とし
て開発市販され、専ら低強度,低融点材料の補強材とし
て利用されている従来公知のマイクロスフィアーあるい
はマイクロセルラーフィラーと略同様に製造したものを
用いる。
In manufacturing the lightweight laminated sheet, first, the microsphere 3 is prepared. This microsphere 3 has been developed and marketed as a filler for plastics and polymer compounds in recent years, and is substantially the same as a conventionally known microsphere or microcellular filler that is used exclusively as a reinforcing material for low-strength and low-melting-point materials. The one manufactured similarly is used.

例えば、マイクロスフィアーは、溶融原料に高圧空気
を吹付けて気泡を内蔵させる溶融法、または、焼成によ
りガス化した素材の揮発性成分を溶融もしくは軟化した
当該素材中に内蔵させる焼成法により製造される。しか
し、従来のものと相違して比較的融点の高い軽金属材料
を基材とすることから、このマイクロスフィアー3は、
従来のものより融点および軟化点が高めになるように、
また、基材の構成成分たとえばAl,Mg,Siに対して化学的
に安定であるように、ホウケイ酸ガラス,シリカガラ
ス,シリカ−アルミナ−ガラス,シリカ−アルミナ−カ
ルシウムガラスを含む高融点ガラス、金属、シリカ,ア
ルミナ,ジルコニアを含むセラミックス材料よりなる群
より選択された少なくとも1つ構成材料よりなる。
For example, microspheres are manufactured by a blowing method in which high-pressure air is blown into a molten raw material to incorporate air bubbles, or a firing method in which volatile components of a material gasified by firing are incorporated in the molten or softened material. Is done. However, since the base material is a light metal material having a relatively high melting point unlike the conventional one, this microsphere 3
As the melting point and softening point are higher than the conventional one,
A high-melting glass containing borosilicate glass, silica glass, silica-alumina-glass, silica-alumina-calcium glass so as to be chemically stable to the constituents of the base material, for example, Al, Mg, and Si; It is made of at least one constituent material selected from the group consisting of ceramic materials containing metals, silica, alumina, and zirconia.

そして、マイクロスフィアー3は、複合材の重量,強
度,制振性等の諸特性の調和のため、好ましくは直径30
0ミクロン以下に調製され、内部に空気等の気体を含む
中空の略真球状に形成されている。
The microspheres 3 preferably have a diameter of 30 in order to harmonize various properties such as weight, strength, and vibration damping properties of the composite material.
It is adjusted to 0 micron or less and is formed in a hollow substantially spherical shape containing a gas such as air inside.

本実施例では、58〜65重量%のシリカ,28〜38重量%
のアルミナおよび4重量%以下の酸化鉄を成分とする中
空シリカ・アルミナ・マイクロスフィアーを用いてい
る。例えば、その壁厚は粒径の10%,融点が1200℃,カ
サ密度が408Kg/m3,耐圧強度が5000psi,硬度が5(Moh)
である。
In this example, 58-65% by weight of silica, 28-38% by weight
And a hollow silica-alumina microsphere containing 4% by weight or less of iron oxide as a component. For example, the wall thickness is 10% of the particle size, the melting point is 1200 ° C, the bulk density is 408 kg / m3, the pressure resistance is 5000 psi, and the hardness is 5 (Moh).
It is.

次に、マット1を形成する。先ず、マット1の素材と
しての、高融点ガラス,セラミックスまたは金属よりな
る短繊維を、好ましくは、カーボン・ファイバー,アル
ミナ・ファイバーまたはホイスカー等の短繊維を用意す
る。本実地例では、強度強化用としては72〜95%のアル
ミナと5〜28%のシリカとを組成成分とし、また、断熱
用としては72%アルミナおよび28%シリカを成分とする
アルミナ・ファイバーを用いる。このファイバーは、例
えば、その融点が1600℃,真比重が3.0〜3.5g/cm3,繊維
径が3μmである。
Next, the mat 1 is formed. First, short fibers made of high-melting glass, ceramics or metal, preferably short fibers such as carbon fiber, alumina fiber or whiskers, are prepared as the material of the mat 1. In this practical example, an alumina fiber containing 72 to 95% of alumina and 5 to 28% of silica as a composition component for strengthening, and an alumina fiber containing 72% alumina and 28% silica for heat insulation is used. Used. This fiber has, for example, a melting point of 1600 ° C., a true specific gravity of 3.0 to 3.5 g / cm 3 , and a fiber diameter of 3 μm.

そして、この短繊維を第2図に示すホッパー9からベ
ルトコンベア10上に均一に配し、ロール11を用いて互い
に圧着してシート状にし、さらに斯く得たシート12を焼
結炉13に通して焼結してマット1を得る。これに代え
て、上記素材の長繊維をネット状に成形してマット1を
得ても良く、この場合、長繊維ネットを必要に応じて焼
結する。
Then, the short fibers are uniformly arranged on a belt conveyor 10 from a hopper 9 shown in FIG. 2 and pressed together with a roll 11 to form a sheet. The sheet 12 thus obtained is passed through a sintering furnace 13. To obtain a mat 1. Alternatively, the mat 1 may be obtained by molding long fibers of the above material into a net shape. In this case, the long fiber net is sintered as necessary.

次いで、夫々上述のようにして得た所要数のマット1
のそれぞれの一側面上にマイクロスフィアー3を均一に
分散して配した後、これらマット1を積層した状態でロ
ール14に通して互いに圧着させてマイクロスフィアーと
マットとの積層体すなわち複合マット15を得る。
Next, the required number of mats 1 obtained as described above was obtained.
After the microspheres 3 are evenly dispersed and arranged on one side of each of the mats, the mats 1 are laminated and passed through a roll 14 and pressed together to form a laminate of microspheres and mats, ie, a composite mat. Get 15

さらに、この複合マット15を焼結炉16に通して焼結し
て、マイクロスフィアー3をマット1に溶着させる。本
実施例での焼結温度は900〜1100℃である。最後に、斯
く焼結した複合マット15を図示しないカッタを用いて所
要の長さに切断し、軽量積層シートを得る。
Further, the composite mat 15 is passed through a sintering furnace 16 and sintered, so that the microspheres 3 are welded to the mat 1. The sintering temperature in this embodiment is 900 to 1100 ° C. Finally, the composite mat 15 thus sintered is cut to a required length using a cutter (not shown) to obtain a lightweight laminated sheet.

次に、上述のようにして得た軽量積層シートを用いた
複合材の製造方法について説明する。
Next, a method of manufacturing a composite material using the lightweight laminated sheet obtained as described above will be described.

先ず、軽量積層シートを図示しない成形金型内に配す
る。次に、図示しない基材の溶湯をこの金型内に注入す
る。この基材は、好ましくは、アルミニウム,マグネシ
ウム,亜鉛,銅,黄銅,青銅を含む軽金属およびアルミ
ニウム合金を含む軽金属ならびに合成樹脂よりなる群よ
り選択される。このとき複合材の諸特性向上の観点から
溶湯とマイクロスフィアー3との体積比が好ましくは1
0:1乃至10:7になるように溶湯注入量を設定する。溶湯
注入時に、マイクロスフィアー3は加熱されるが、この
加熱温度に耐えて破壊されることなく基材と複合化され
る。
First, the lightweight laminated sheet is placed in a molding die (not shown). Next, a molten metal of a base material (not shown) is injected into the mold. The substrate is preferably selected from the group consisting of light metals, including aluminum, magnesium, zinc, copper, brass, bronze, and light metals, including aluminum alloys, and synthetic resins. At this time, the volume ratio of the molten metal to the microsphere 3 is preferably 1 from the viewpoint of improving various properties of the composite material.
The molten metal injection amount is set so as to be 0: 1 to 10: 7. When the molten metal is injected, the microspheres 3 are heated, but withstand the heating temperature and are composited with the substrate without being broken.

また、マイクロスフィアー3はマット1に予め均一な
分布状態で結合されており、また、マット1が溶湯温度
に耐えてマイクロスフィアー3を確実に保持するので、
マイクロスフィアー3は溶湯注入によって離散すること
がなく、マイクロスフィアー3とは比重が異なる基材中
に均一に分布する。なお、複合化を促進するために溶湯
及び/又は金型に圧力を加えても良い。そして、冷却工
程を経て複合体ビレットを得る。その後、必要に応じて
このビレットを加熱し、圧延,押出し等の各種成形加工
工程、並びに焼き入れ,焼鈍等の熱処理を経て最終製品
すなわち複合材を得る。
Further, the microspheres 3 are previously bonded to the mat 1 in a uniform distribution state, and since the mat 1 withstands the temperature of the molten metal and securely holds the microspheres 3,
The microspheres 3 are not dispersed by the injection of the molten metal, and are uniformly distributed in a substrate having a specific gravity different from that of the microspheres 3. In addition, pressure may be applied to the molten metal and / or the mold in order to promote the compounding. Then, a composite billet is obtained through a cooling step. Thereafter, if necessary, the billet is heated and subjected to various forming steps such as rolling and extrusion, and heat treatment such as quenching and annealing to obtain a final product, that is, a composite material.

マイクロスフィアー3は、それ自体では一方向性外力
に弱く破壊し易いが、上述のようにして基材中に一旦混
入されると、その外形が真球状であることからこれに加
わる外力が互いに均衡し、マイクロスフィアー3は外力
に対して極めて安定になる。
The microsphere 3 itself is weak to unidirectional external force and easily breaks, but once mixed into the base material as described above, the external force applied to the microsphere 3 is mutually spherical due to its spherical shape. As a result, the microspheres 3 become extremely stable against external forces.

更に、基材の熱膨張および熱収縮に応じて内部気体が
膨張および収縮するので、熱的安定性も高い。この結
果、マイクロスフィアー3は、上記複合体ビレットの製
造時およびその後の各種成形工程においても安定で、基
材内で破壊され、消滅することが殆どない。そして、マ
イクロスフィアー3を混入,複合化した複合材は、軽量
でかつ強度が大きく、しかも制御性,断熱性に優れる。
Further, since the internal gas expands and contracts in accordance with the thermal expansion and thermal contraction of the base material, the thermal stability is high. As a result, the microspheres 3 are stable during the production of the composite billet and in various subsequent molding steps, and are hardly broken and disappear in the base material. The composite material in which the microspheres 3 are mixed and compounded is lightweight, has high strength, and is excellent in controllability and heat insulation.

本発明は上記実施例に限定されず、種々の変形が可能
である。
The present invention is not limited to the above embodiments, and various modifications are possible.

たとえば、上記各実施例では中空状のマイクロスフィ
アー3を用いたが、これに代えて中実の微小球状のマイ
クロスフィアーを用いても良く、この場合、中空状のも
のと略同様の効果が得られる。すなわち、基材とマイク
ロスフィアーとの比重の差に応じた軽量化を図ることが
でき、マイクロスフィアーによる強度増大が図られ、基
材とマイクロスフィアーとの剛性の差による制振作用が
生じる。また、マイクロスフィアーは球状形状のものに
限らない。
For example, although the hollow microspheres 3 are used in each of the above embodiments, solid microspherical microspheres may be used instead. In this case, substantially the same effect as the hollow microspheres is obtained. Is obtained. That is, the weight can be reduced in accordance with the difference in specific gravity between the base material and the microsphere, the strength is increased by the microsphere, and the vibration damping action due to the difference in rigidity between the base material and the microsphere is reduced. Occurs. Further, the microsphere is not limited to a spherical shape.

また、マイクロスフィアー3に表面処理を施すことも
できる。より具体的には、マイクロスフィアー3の外表
面にアルミニウム,亜鉛,銅,銀,鉄,フェライト等の
群から選択されるいずれかの構成材料によりなる被膜を
形成して、マイクロスフィアー3自体ひいては複合材の
強度増大を図るとともに、好ましくは複合材に多機能材
料としての性状を付与するようにしても良い。
Further, the microspheres 3 can be subjected to a surface treatment. More specifically, a coating made of any constituent material selected from the group of aluminum, zinc, copper, silver, iron, ferrite, etc. is formed on the outer surface of the microsphere 3 and the microsphere 3 itself is formed. As a result, the strength of the composite material may be increased, and preferably, the composite material may be given properties as a multifunctional material.

この場合、複合材の製造にあたり、マイクロスフィア
ー3を清浄にした後、蒸着室内に浮遊,分散させ、該マ
イクロスフィアー表面に被膜を蒸着により形成する。こ
のとき、被膜構成材料に物性的に基材1と同種もしくは
類似のものを用いると、とくに両者の濡れ性ひいては混
合物の成形性および複合材の強度を向上できる。
In this case, in producing the composite material, the microspheres 3 are cleaned, then floated and dispersed in a vapor deposition chamber, and a coating is formed on the surface of the microspheres by vapor deposition. At this time, when the same material or similar material as the base material 1 is used as the film constituting material, the wettability of both materials, and furthermore, the moldability of the mixture and the strength of the composite material can be improved.

さらに、被膜構成材料に基材とは電磁特性たとえば導
電性等を異にするものを用い、複合材に全体として多機
能材料としての性状を寄与することができる。たとえ
ば、非磁性の基材の使用時にマイクロスフィアーに磁性
被膜を形成したり、低導電性の基材とともに良導電性被
膜を形成したマイクロスフィアーを用いる。
Further, a material having a different electromagnetic property, such as conductivity, from the base material can be used as the film constituting material, and the properties as a multifunctional material can be contributed to the composite material as a whole. For example, when a non-magnetic substrate is used, a magnetic film is formed on the microsphere, or a microsphere on which a good conductive film is formed together with a low conductive substrate is used.

また、複合材の製造にあたり、基材溶湯に代えて基材
粉末を用いても良い。この場合、軽量積層シートを配し
た成形金型内に基材粉末を投入する。基材投入量は、好
ましくは、基材とマイクロスフィアーとの体積比が複合
材の軽量化のための好適な下限値である10:1乃至強度面
からの好適な上限値である10:7になるように設定する。
次いで、少なくとも基材の一部が流動化して基材と軽量
積層シートとが複合化するに至る温度まで加熱する。そ
の後、これを固化して上述と同様のビレットを得る。
In producing the composite material, a base material powder may be used instead of the base material melt. In this case, the base powder is put into a molding die provided with the lightweight laminated sheet. The amount of the base material charged is preferably 10: 1 which is a preferable lower limit value for the weight ratio of the composite material to the volume ratio of the base material and the microsphere to a preferable upper limit value from the strength aspect 10: Set to 7
Next, heating is performed to a temperature at which at least a part of the base material is fluidized and the base material and the lightweight laminated sheet are composited. Thereafter, this is solidified to obtain the same billet as described above.

また、上記実施例ではマットとマイクロスフィアー層
とを積層して軽量積層シートを構成したが、単に、一枚
のマットに一層のマイクロスフィアー層を形成しても良
い。この軽量積層シートは、薄い複合材に混入するのに
適する。
Further, in the above-described embodiment, the mat and the microsphere layer are laminated to form the lightweight laminated sheet. However, a single microsphere layer may be simply formed on one mat. This lightweight laminated sheet is suitable for incorporation into thin composites.

発明の効果 上述のように、本発明によれば、基材よりも融点が高
い微小粒状体を、基材よりも融点が高い繊維材よりなる
マット上に分散固定させて軽量積層シートを構成したの
で、軽量積層シートを基材との複合化がなされる温度ま
で加熱しても、微小粒状体が破壊されたりマットが破損
して微小粒状体がばらばらに分散することがなく、得ら
れた複合材は軽量積層シートと基材とが分離しにくく強
度が大きい。
Effects of the Invention As described above, according to the present invention, a light-weight laminated sheet is formed by dispersing and fixing microparticles having a melting point higher than the base material on a mat made of a fiber material having a melting point higher than the base material. Therefore, even if the lightweight laminated sheet is heated to a temperature at which the composite with the base material is formed, the fine granular material is not broken or the mat is broken and the fine granular material is not dispersed, and the obtained composite is obtained. The material has high strength because the lightweight laminated sheet and the base material are not easily separated from each other.

また、比重の小さい微小粒状体を含むので、複合材の
軽量化が図られる。
In addition, since the fine particles having a small specific gravity are included, the weight of the composite material can be reduced.

さらに、微小粒状体を繊維材よりなるマット上に均一
に分散固定したので、微小粒状体は繊維材よりなるマッ
ト上に保持された状態で複合材中に均一に分布し、複合
材の諸特性が均一になる。
Furthermore, since the fine particles are uniformly dispersed and fixed on the mat made of fiber material, the fine particles are uniformly distributed in the composite material while being held on the mat made of fiber material, and various characteristics of the composite material are obtained. Becomes uniform.

この結果、軽量、高強度でかつ制振性,断熱性等の各
種特性に優れた複合材が提供される。
As a result, a composite material that is lightweight, has high strength, and is excellent in various properties such as vibration damping properties and heat insulating properties is provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例による軽量積層シートを示す
部分概略断面図、第2図はこの軽量積層シートの製造工
程を示す概略図である。 1……マット、2……マイクロスフィアー層、3……マ
イクロスフィアー。
FIG. 1 is a partial schematic sectional view showing a lightweight laminated sheet according to one embodiment of the present invention, and FIG. 2 is a schematic view showing a manufacturing process of the lightweight laminated sheet. 1 ... mat, 2 ... microsphere layer, 3 ... microsphere.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基材よりも比重が小さくかつ融点が高い微
小粒状体を、基材よりも融点が高い繊維材よりなるマッ
ト上に均一に分散しかつ固定してなる軽量積層シート
を、前記基材中に混入したことを特徴とする複合材。
1. A lightweight laminated sheet comprising a fine granular material having a lower specific gravity and a higher melting point than a substrate and uniformly dispersed and fixed on a mat made of a fiber material having a higher melting point than the substrate. A composite material characterized by being mixed into a base material.
【請求項2】前記軽量積層シートは、前記微小粒状体と
前記マットとを交互に積層してなる特許請求の範囲第1
項記載の複合材。
2. The lightweight laminated sheet according to claim 1, wherein said fine granular material and said mat are alternately laminated.
The composite material according to the item.
【請求項3】前記微小粒状体は中空球状または中実球状
である特許請求の範囲第1項または第2項記載の複合
材。
3. The composite material according to claim 1, wherein said fine granular material has a hollow spherical shape or a solid spherical shape.
【請求項4】前記微小粒状体の直径は300ミクロン以下
である特許請求の範囲第1項、第2項または第3項記載
の複合材。
4. The composite material according to claim 1, wherein said fine granular material has a diameter of not more than 300 microns.
【請求項5】前記微小粒状体は、ホウケイ酸ガラス,シ
リカガラス,シリカ−アルミナ−ガラスおよびシリカ−
アルミナ−カルシウムガラスを含む高融点ガラス、金
属、シリカ,アルミナおよびジルコニアを含むセラミッ
ク材料よりなる群から選択される少なくとも1つの要素
からなる特許請求の範囲第1項ないし第4項のいずれか
に記載の複合材。
5. The method according to claim 1, wherein the fine particles are made of borosilicate glass, silica glass, silica-alumina glass and silica-glass.
5. The method according to claim 1, comprising at least one element selected from the group consisting of a high melting point glass containing alumina-calcium glass, and a ceramic material containing metal, silica, alumina and zirconia. Composites.
【請求項6】前記基材は、アルミニウム,マグネシウ
ム,亜鉛,銅,黄銅および青銅を含む軽金属ならびにア
ルミニウム合金を含む軽金属合金ならびに合成樹脂より
なる群から選択される要素からなる特許請求の範囲第1
項ないし第5項のいずれかに記載の複合材。
6. The method according to claim 1, wherein said substrate is made of an element selected from the group consisting of light metals including aluminum, magnesium, zinc, copper, brass and bronze, light metal alloys including aluminum alloys, and synthetic resins.
Item 6. The composite material according to any one of Items 5 to 5.
【請求項7】前記繊維材は、高融点ガラス,セラミック
スおよび金属よりなる群から選択される要素からなる特
許請求の範囲第1項ないし第6項のいずれかに記載の複
合材。
7. The composite material according to claim 1, wherein said fiber material comprises an element selected from the group consisting of high melting point glass, ceramics and metal.
JP62293100A 1987-11-11 1987-11-21 Composite Expired - Lifetime JP2575034B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62293100A JP2575034B2 (en) 1987-11-21 1987-11-21 Composite
CA 583144 CA1332129C (en) 1987-11-21 1988-11-15 Light filler material having damping function and composite material thereof
US07/272,999 US4906518A (en) 1987-11-11 1988-11-17 Light filler material having damping function and composite material thereof
EP19880310996 EP0318228B1 (en) 1987-11-21 1988-11-21 Composite material and filler therefor
DE19883872493 DE3872493T2 (en) 1987-11-21 1988-11-21 COMPOSITE MATERIAL AND FILLING MATERIAL USED FOR THIS.
AT88310996T ATE77843T1 (en) 1987-11-21 1988-11-21 COMPOSITE MATERIAL AND FILLING MATERIAL USED THERETO.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62293100A JP2575034B2 (en) 1987-11-21 1987-11-21 Composite

Publications (2)

Publication Number Publication Date
JPH01135629A JPH01135629A (en) 1989-05-29
JP2575034B2 true JP2575034B2 (en) 1997-01-22

Family

ID=17790423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293100A Expired - Lifetime JP2575034B2 (en) 1987-11-11 1987-11-21 Composite

Country Status (1)

Country Link
JP (1) JP2575034B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2643103A1 (en) 2005-02-23 2006-08-31 Kikuo Sugita Turnover preventive sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129346A (en) * 1983-12-14 1985-07-10 大同鋼板株式会社 Building panel and its production

Also Published As

Publication number Publication date
JPH01135629A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
US4939038A (en) Light metallic composite material and method for producing thereof
US4906518A (en) Light filler material having damping function and composite material thereof
US2693668A (en) Polyphase systems of glassy materials
US3726755A (en) High-strength foam material
US4321154A (en) High temperature thermal insulation material and method for making same
US3904377A (en) Lightweight composite containing hollow glass microspheres
JPS63149306A (en) Production of hollow sphere enhanced in its wall strength and composite thereof
KR20220125814A (en) Additive manufacturing of articles comprising beryllium
CA2218159A1 (en) Syntactic foam core material for composite structures
JPS61501211A (en) Fiber-reinforced syntactic foam composite and its foaming method
JP2002068853A (en) Lightweight heat insulation and its production method
US3562370A (en) Method of producing cellular bodies having high compressive strength
US4859524A (en) Reinforced composite and method of manufacture
US20040166243A1 (en) Heat resistant material for molds and other articles
Klocke et al. Direct laser sintering of borosilicate glass
JP2575034B2 (en) Composite
Zhang et al. Scalable Manufacturing of Mechanical Robust Bioinspired Ceramic–Resin Composites with Locally Tunable Heterogeneous Structures
JPH11510468A (en) Glassy silica refractory material
CA1119847A (en) Infiltrated molded articles of spherical non-refractory metal powders
JPS62170440A (en) Composite light-metal material
JPH0699160B2 (en) Multi-layer foam glass body and its manufacturing method
JPH02127960A (en) Structural material having damping facility
JPH04305030A (en) Production of foamed-glass formed body
JPS62243724A (en) Manufacture of composite light-metal material
JP4204014B2 (en) Brake rotor manufacturing method