JPS6223930A - Production of high-strength spur gear - Google Patents

Production of high-strength spur gear

Info

Publication number
JPS6223930A
JPS6223930A JP16338385A JP16338385A JPS6223930A JP S6223930 A JPS6223930 A JP S6223930A JP 16338385 A JP16338385 A JP 16338385A JP 16338385 A JP16338385 A JP 16338385A JP S6223930 A JPS6223930 A JP S6223930A
Authority
JP
Japan
Prior art keywords
spur gear
forging
strength
upsetting
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16338385A
Other languages
Japanese (ja)
Other versions
JPH0535203B2 (en
Inventor
Wataru Takahashi
渉 高橋
Takashi Fukuda
隆 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16338385A priority Critical patent/JPS6223930A/en
Publication of JPS6223930A publication Critical patent/JPS6223930A/en
Publication of JPH0535203B2 publication Critical patent/JPH0535203B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high-accuracy high-strength spur gear having excellent dedendum bending strength by subjecting a round bar consisting of a grain coarsening-resistant low N-Nb steel having a specific compsn. and having a required length to preliminary upsetting then to warm precision die forging and further to a grain refinement carburization treatment. CONSTITUTION:The round bar consisting of the case hardening steel for warm forging contg. 0.07-0.25% C, <=0.35% Si, 0.3-1.5% Mn, 0.02-0.1% Nb, 0.01-0.05% SolAl and 0.001-0.0080% N, further contg. >=1 kinds among 0.4-3% Ni, 0.4-1.5% Cr, 0.15-0.5% Mo, consisting of the balance Fe and unavoidable impurities, having the excellent resistance to grain coarsening and having a prescribed length is subjected to preliminary upsetting at >=20% total upsetting ratio after descaling. The bar is then heated to 100-200 deg.C and is immersed in a water soluble lubricating agent soln. to form the lubricating film thereon. Such bar is subjected to high-frequency heating to 650-900 deg.C then to precision die forging to the spur gear. The spur gear is subjected to sizing, etc. then to the carburization treatment, followed by cooling down to the Ar1 transformation temp., and hardening and tempering by reheating, by which the dedendum crystal grain size is fined to ASTM No.10 or above.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、高精度な平歯車の製造方法に係り、特に低
N−Nb岨粗粒化用鋼を用い、温間鍛造により精密型鍛
造を行ない、細粒化処理により歯元曲げ強度を向上させ
た高精度・高強度平歯車の製造方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for manufacturing high-precision spur gears, in particular, using low N-Nb coarse grain steel and performing precision die forging by warm forging. , relates to a method for manufacturing a high-precision, high-strength spur gear whose root bending strength is improved by grain refining treatment.

従来技術とその問題点 自動車用篩として使用される歯車精度がJI84級!U
ヒの高精度な平歯車は、一般に、圧延材→熱間鍛造→焼
ならしく焼なまし)→機械加工→歯切り加工→シェービ
ング→浸炭焼入れ・焼戻しの製造工程にて製造されてい
る。従来の製造方法は上記のごとく熱間鍛造後に損拭加
丁、歯切り加工の工程が不可欠であった。この機械加工
、歯切り加工の工程では、熱間鍛造後に素材にスケール
が発生し、熱間鍛造で精密な寸法に仕上げることができ
ないため、熱間鍛造で平歯車粗材である円板まで作製し
ておき、熱間鍛造後に機械加工と歯切り加工によって精
密寸法に仕上げていた。
Conventional technology and its problems The precision of gears used as automotive sieves is JI84 grade! U
High-precision spur gears are generally manufactured using the following manufacturing process: rolled material → hot forging → annealing → machining → gear cutting → shaving → carburizing and quenching/tempering. As mentioned above, conventional manufacturing methods require the steps of cutting and cutting after hot forging. In this machining and gear cutting process, scale is generated in the material after hot forging, and it is not possible to finish it to precise dimensions by hot forging, so even the disc, which is the rough material for spur gears, is manufactured by hot forging. Then, after hot forging, it was finished to precise dimensions by machining and gear cutting.

しかるに、上記の機械加工および歯切り加工の工程は、
平歯車の製造コストを引き上げる要因であり、歩留りが
悪く量産には不利であり、また歯切り時にメタルフロー
が切断されることになり、歯元曲げ強度が低下する等、
種々の問題があった。
However, the machining and gear cutting processes described above are
This is a factor that increases the manufacturing cost of spur gears, has a low yield, and is disadvantageous for mass production.Also, the metal flow is cut during gear cutting, which reduces the bending strength of the tooth base.
There were various problems.

発  明  の  目  的 この発明は従来の前記問題を解決するためになされた本
ので、従来法で不可欠の歯切り加工を省略し、歯元曲げ
強度のすぐれた高精度・高強度の平歯車を歩留りよく高
効率で製造可能な平歯車製造方法を提案することを目的
とするものである。
Purpose of the Invention This invention was made in order to solve the above-mentioned conventional problems.It omit the gear cutting process which is essential in the conventional method, and produces a high-precision, high-strength spur gear with excellent tooth root bending strength. The purpose of this paper is to propose a method for manufacturing spur gears that can be manufactured with high yield and high efficiency.

発  明  の  構  成 この発明に係る高強度平歯車の製造方法は、低N−Nb
1tttt粗粒化鋼を用い、スケール発生がなく高精度
である冷間鍛造と低荷重で高変形能が得られる熱間鍛造
の利点を具備した温間鍛造を利用することにより歯切り
加工工程を省略し、また、鋼材の浸度温度まで加熱保持
したのち、使用耐粗粒化鋼のAr、変態点以下に冷却し
、再び焼入れ温度まで加熱して焼入れを行なう細粒死没
次処理により歯元γ粒度をASTM A 10以上とす
ることにより歯元曲げ強度を向上させる方法である。
Structure of the invention A method for manufacturing a high-strength spur gear according to the present invention provides a method for manufacturing a high-strength spur gear with low N-Nb
By using 1tttt coarse-grained steel and using warm forging, which has the advantages of cold forging with no scale generation and high precision, and hot forging with high deformability under low load, the gear cutting process can be carried out. In addition, after heating and holding the steel material to the immersion temperature, cooling it to below the Ar transformation point of the coarse graining resistant steel used, and heating it again to the quenching temperature to perform quenching, the tooth root is removed. This is a method of improving the root bending strength by setting the γ grain size to ASTM A 10 or higher.

すなわち、この発明はC0,07〜0.25%、 sl
o、35%以下、  Mn 0.3〜1.5%、Nb 
0.02〜0.1%、11oe A# 0.01〜0.
05%、N  0.001〜0.0080%を含有I−
1さらにNi0.4〜3%、Cr 0.4〜1.5%、
M20.15〜0.5%のうちの1種以上を含み、残部
Feおよび不可避的不純物よりなる耐粗粒化性にすぐれ
た温間鍛造用肌焼鋼からなる丸棒鋼材を所要長さに切断
後スケールを除去し、全据込み率で20%以上の予備据
込み加工を施した鍛造用素材を100〜200℃の温度
範囲に加熱して水溶性潤滑剤溶液に浸し、該素材表面に
潤滑被膜を形成し、高周波加熱により650〜900℃
に加熱し、精密型鍛造により平歯車となし、得られた平
歯車にサイジングあるいはシェービングを施し、前記平
歯車を浸炭処理したのち、Ar、変態点以下まで冷却し
、再び加熱して焼入れ焼戻しを行ない歯元r結晶粒度を
ASTM & 10以上とすることを特徴とするもので
ある。
That is, this invention has C0.07~0.25%, sl
o, 35% or less, Mn 0.3-1.5%, Nb
0.02-0.1%, 11oe A# 0.01-0.
05%, N 0.001-0.0080% I-
1 Furthermore, Ni0.4-3%, Cr 0.4-1.5%,
A round steel bar made of case-hardening steel for warm forging with excellent coarse graining resistance, containing one or more of M20.15 to 0.5%, the balance being Fe and unavoidable impurities, to the required length. After cutting, scale is removed and a forging material that has been pre-upset with a total upsetting rate of 20% or more is heated to a temperature range of 100 to 200°C and immersed in a water-soluble lubricant solution to coat the surface of the material. Forms a lubricating film and heats to 650-900°C by high-frequency heating
The resulting spur gear is sized or shaved, the spur gear is carburized, cooled to below the transformation point using Ar, and heated again to undergo quenching and tempering. It is characterized by making the tooth root r crystal grain size at least ASTM & 10.

この発明の対象鋼である温間鍛造用肌焼鋼は従来の肌焼
鋼に比べ、鋼中のN含有量を抑制することによりNbN
の生成を少なくして、NbCを生成させ、同時にAIN
によりさらにNbNの生成を抑えて、NbCの粗粒化防
止効果を最大限に発揮する特徴を有するものであり、そ
の成分を限定したのは次に示す理由による。
The case-hardened steel for warm forging, which is the target steel of this invention, is NbN by suppressing the N content in the steel compared to conventional case-hardening steel.
to reduce the generation of NbC, and at the same time generate AIN
This feature further suppresses the formation of NbN and maximizes the effect of preventing coarsening of NbC, and the reason for limiting its components is as follows.

Cは、この発明の対象鋼が肌焼鋼であり、成形加工後浸
炭あるいは浸炭窒化等の表面処理が施されるものであり
、その芯部の強度および耐衝撃性を確保するためには0
.07%以上必要である。しかし、あまり多くすると耐
衝撃性が悪化するため上限は0.25%とした。
C indicates that the target steel of this invention is case-hardening steel, which is subjected to surface treatment such as carburizing or carbonitriding after forming, and in order to ensure the strength and impact resistance of the core, 0.
.. 0.7% or more is required. However, if the content is too large, the impact resistance deteriorates, so the upper limit was set at 0.25%.

Siは、脱酸剤として必要であるが、0゜35%を超え
ると加工性が悪化するため0.35%以下とした。
Si is necessary as a deoxidizing agent, but if it exceeds 0.35%, processability deteriorates, so it was set to 0.35% or less.

Mnは、焼入れ性向上のために含有させるが、このため
には0.3%以上必要である。しか(7多過ぎると加工
性が劣化するため上限は1.5%とした。
Mn is contained in order to improve hardenability, and for this purpose, 0.3% or more is required. However, the upper limit was set at 1.5% because too much (7%) deteriorates workability.

Ni)は、結晶粒の粗大化防止のために含有させるが、
この効果を得るためには0.02%以上必要である。ま
た、多いほどこの効果は大きいが、ある程度以上になる
と飽和するため、経済性をも考慮して上限は0.1%と
した。
Ni) is included to prevent coarsening of crystal grains, but
To obtain this effect, 0.02% or more is required. The effect is greater as the amount increases, but it becomes saturated when the amount exceeds a certain level, so the upper limit was set at 0.1% in consideration of economic efficiency.

5olAlは、後述のNと共に結晶粒の粗大化防止効果
を有するが、0.01%未満であるとその効果は得られ
ず、0.05%を超えると逆に結晶粒が粗大化し易くな
るため0.01〜0.05%とした。
5olAl has the effect of preventing crystal grain coarsening together with N, which will be described later, but if it is less than 0.01%, this effect cannot be obtained, and if it exceeds 0.05%, the crystal grains tend to become coarser. The content was set at 0.01 to 0.05%.

Nは、従来の通常肌焼鋼にo、 o o s〜0,01
5%含有されており、鋼中でA/Nになって粒界に析出
し結晶粒の粗大化を防止するが、温間鍛造により成形加
工する場合はo、o o s〜0.015%の含有量で
はNbNとなり易く、粗粒化防止能が劣化する。また、
A7?で十分AeNとして固定化するためにもN量はo
、oos%以下にする必要がある。なお下限は製鋼上の
理由によりo、ooi%とした。
N is o, o o s ~ 0,01 in conventional normal case hardening steel.
It contains 5%, becomes A/N in steel and precipitates at grain boundaries to prevent grain coarsening, but when forming by warm forging, it is o, o o s ~ 0.015%. At a content of Also,
A7? The amount of N is o in order to sufficiently immobilize it as AeN.
, oos% or less. Note that the lower limit was set to o, ooi% for steel manufacturing reasons.

Nl + cr、 Moは、焼入れ性の付与に有効で、
これらのうちの1種以上を含有させるものであり、N1
は強靭性をも考慮して0.4〜3%、Crは0.4〜1
.5%、 MQは高温焼戻し脆性をも考慮して0.15
〜0.5%とした。
Nl + cr, Mo are effective in imparting hardenability,
It contains one or more of these, and N1
is 0.4 to 3% considering toughness, and Cr is 0.4 to 1.
.. 5%, MQ is 0.15 considering high temperature tempering brittleness.
~0.5%.

この発明では、上記温間鍛造用肌焼鋼からなる丸棒鋼材
を所要長さに切断後スケールを除去するが、丸棒鋼材の
切断は鍛造用素材の変形や端面のだれを防止するため、
鋸または拘束シャー切断が望ましく、またスケール除去
にはショツトブラストあるいは酸洗を適用し、必要に応
じて鍛造用素材のかど部が型鍛造時に折込み疵となるの
を防止する面取を施すのもよい。
In this invention, the scale is removed after cutting the round steel bar made of case-hardened steel for warm forging into the required length, but the cutting of the round steel bar is done in order to prevent deformation of the forging material and drooping of the end face.
Saw or restraint shear cutting is preferable, and shot blasting or pickling is applied to remove scale, and if necessary, the corners of the forging material may be chamfered to prevent folding defects during die forging. good.

また、この発明の鍛造用素材として、全据込み率で20
%以上の予備据込み加工を施したものを用いるのは、鍛
造後の製品歯部において十分に折れ曲ったメタルフロー
を有する鍛造歯車とするためであり、歯元曲げ強度の向
上に有効である。この全据込み率は歯車に鍛造した際の
製品高さと丸棒切断材との比率であり、20%未満では
上記強度向上効果が小さいため、20%以上の予備据込
み加工が必要である。この予備据込み加工は、温間精密
型鍛造工程の歯面鍛造前に行なっても同様の効果が得ら
れる。
In addition, as the forging material of this invention, the total upsetting rate is 20
% or more of preliminary upsetting is used to create a forged gear with a sufficiently bent metal flow in the product teeth after forging, which is effective in improving tooth base bending strength. . This total upsetting rate is the ratio of the product height when forged into a gear and the cut round bar material, and if it is less than 20%, the strength improvement effect described above is small, so a preliminary upsetting process of 20% or more is required. The same effect can be obtained even if this preliminary upsetting is performed before tooth surface forging in the warm precision die forging process.

上記鍛造用素材を水溶性潤滑剤溶液に浸漬し、素材表面
に潤滑剤被膜を形成させる際の素材温度は、100℃未
満では表面の潤滑剤被膜の乾燥速度が悪く好ましくなく
、また200℃を超えると潤滑剤が泡状に素材表面に付
着して均一かつ十分な被膜が形成されないため、100
〜200℃の加熱温度とした。また、この潤滑剤被膜は
高周波加熱時のスケール発生防止並びに、精密型鍛造時
の潤滑剤として機能するもので、一般にコロイダルグラ
ファイトが使用されるが、この発明においても水溶性カ
ーボン潤滑剤が好ましい。
When the above-mentioned forging material is immersed in a water-soluble lubricant solution to form a lubricant film on the material surface, the temperature of the material is less than 100°C, which is undesirable because the drying rate of the lubricant film on the surface is poor; If it exceeds 100, the lubricant will adhere to the material surface in the form of bubbles and a uniform and sufficient film will not be formed.
The heating temperature was ~200°C. Further, this lubricant film functions to prevent scale generation during high-frequency heating and as a lubricant during precision die forging, and colloidal graphite is generally used, but a water-soluble carbon lubricant is also preferred in this invention.

精密型鍛造時の加熱は、スケールの生成を抑止しかつ経
済的に加熱処理するために例えば、200℃/ m l
 n以上の加熱速度で急速加熱する必要があり、高周波
加熱が好ましい、また、高周波加熱時の加熱温度は、6
50℃未満では変形能が低く、鋳造荷重が高くなり、ま
た製品に加工硬化め影響が残るため好ましくなく、逆に
900℃を超えるとスケールが生成し製品の歯形精度が
低下するため、650〜900℃の加熱温度とした。
Heating during precision die forging is, for example, 200°C/ml in order to suppress scale formation and perform economical heat treatment.
Rapid heating is required at a heating rate of n or more, and high frequency heating is preferable, and the heating temperature during high frequency heating is 6
If it is less than 50°C, the deformability will be low, the casting load will be high, and the effect of work hardening will remain on the product, which is undesirable. On the other hand, if it exceeds 900°C, scale will form and the tooth profile accuracy of the product will decrease. The heating temperature was 900°C.

精密型鍛造は、上記温度に加熱し、た鍛造用素材を例え
ばクランクプレス等の鍛造機械に装着された金型に装入
して温間で行なう。成形後の製品は金型より取出して空
冷するが、素材が焼入れ性の高い材料の場合は、後工程
での切削を容易にするため徐冷する。また、浸炭時の粗
粒化防止にも徐冷が有効である。
Precision die forging is performed warmly by heating the forging material to the above-mentioned temperature and charging it into a mold attached to a forging machine such as a crank press. The molded product is taken out of the mold and air cooled, but if the material is a highly hardenable material, it is slowly cooled to facilitate cutting in the subsequent process. Slow cooling is also effective in preventing grain coarsening during carburizing.

精密型鍛造により得られた平歯車に苅しサイジングある
いはシェービングを施すのは、平歯車の歯形精度をより
向上させるためであり、要求される歯車精度やコスト等
の諸条件に応じて適宜選定すればよい。
Sizing or shaving is applied to spur gears obtained by precision die forging in order to further improve the tooth profile accuracy of the spur gear, and the selection should be made as appropriate depending on various conditions such as required gear accuracy and cost. Bye.

この発明における平歯車のglk細化浸炭処理は、通常
の浸炭温度まで加熱し、所要時間これを保持したのち、
Ar1変態点以下まで冷却し、再度所要焼入れ温度まで
加熱して焼入れ焼戻しを行なう方法を用いるが、その際
の加熱温度、保持時間、冷却速度等は材質に応じて適宜
選定すればよい。
In the glk thinning carburizing treatment of spur gears in this invention, after heating to the normal carburizing temperature and holding it for the required time,
A method is used in which the material is cooled to below the Ar1 transformation point and then heated again to the required quenching temperature to perform quenching and tempering, and the heating temperature, holding time, cooling rate, etc. at that time may be appropriately selected depending on the material.

なお、この発明において、歯元r結晶粒度をASTMA
IO以上としたのは、最終製品の歯元γ粒径は小さいほ
ど歯元曲げ強度が大きく、ASTM410以上では特に
大きな強度を示すが、通常の肌焼鋼では微細化浸炭処理
を施してもASTM A10以上は得られず、低N−N
1)耐粗粒化用鋼を用いた場合のみASTMAIO以上
となることが判明したことKよる。
In addition, in this invention, the root r crystal grain size is determined by ASTMA
The reason for setting the IO or higher is that the smaller the root γ grain size of the final product, the higher the root bending strength, and it shows particularly high strength at ASTM410 or higher, but ordinary case hardening steel does not meet ASTM even if refined carburization is applied. Cannot obtain A10 or higher, low N-N
1) This is based on the fact that it was found that only when coarse graining resistant steel was used, it was found to be better than ASTM AIO.

第1図はこの発明に係る高強度平歯車の製造工程を示す
ブロック図である。
FIG. 1 is a block diagram showing the manufacturing process of a high-strength spur gear according to the present invention.

すなわち、低N−Nb耐粗粒化鋼からQる丸棒鋼材を鋸
またはシャー切断にて所要長さに切断後、ショツトブラ
ストあるいは酸洗にてスケールを除去し、必要に応じて
面取を施した後、全据込み率で20%以上の予備据込み
加工を施して鍛造用素材とする。次に、この鍛造用素材
を100〜200℃の温度に加熱して水溶性カーボン潤
滑剤等の潤滑溶液に浸漬し、素材表面に潤滑剤被膜を形
成する。
That is, after cutting a round steel bar made of low N-Nb coarse graining resistant steel to the required length using a saw or shear cutting, scale is removed by shot blasting or pickling, and chamfering is performed as necessary. After this, a preliminary upsetting process with a total upsetting rate of 20% or more is performed to obtain a material for forging. Next, this forging material is heated to a temperature of 100 to 200° C. and immersed in a lubricating solution such as a water-soluble carbon lubricant to form a lubricant film on the surface of the material.

続いて、高周波加熱により前記素材を650〜900℃
に急速加熱した後、クランクプレス等の鍛造機械にて温
間精密型鍛造を行ない、得られた平歯車を空冷または徐
冷した後、押出鍛造等のサイジングあるいは切削仕上げ
を行なうシェービングを施して平歯車の歯形精度を向上
させる。なお、前記予備据込み加工は温間精密型鍛造工
程の歯面鍛造前に行なってもよい。
Subsequently, the material is heated to 650-900°C by high-frequency heating.
After rapid heating, warm precision die forging is performed using a forging machine such as a crank press, and the resulting spur gear is air-cooled or slowly cooled, and then shaving is performed for sizing such as extrusion forging or finishing by cutting. Improve gear tooth profile accuracy. Note that the preliminary upsetting process may be performed before tooth surface forging in the warm precision die forging process.

最終工程の細粒化浸炭処理では、第2図にその浸炭処理
方法を示すごとく、まず通常の浸炭温度T1まで加熱し
、当該温度に所要時間保持したのち、Ar、変態点以下
まで冷却し、再度所要焼入れ温度T2まで加熱し、所要
時間保持したのち冷却して浸炭焼入れを行なう。続いて
、再び所要の焼戻し温度T3まで加熱し焼戻しを行ない
、歯元γ結晶粒度をASTM A 10以上とする。第
3図は歯元γ結晶粒度の測定位置を示す図で、図中の点
用部分で測定する。
In the final process, carburizing treatment, as shown in Fig. 2, the carburizing treatment method is first heated to the normal carburizing temperature T1, held at that temperature for the required time, and then cooled to below the transformation point using Ar. It is heated again to the required hardening temperature T2, held for a required time, and then cooled to perform carburizing and hardening. Subsequently, the steel is heated and tempered again to the required tempering temperature T3, and the root gamma crystal grain size is made to be ASTM A 10 or higher. FIG. 3 is a diagram showing the measurement position of the tooth root γ crystal grain size, and the measurement is performed at the dotted portion in the diagram.

実   施   例 第1表に示す供試鋼を用い、第2表および第4図に示す
仕様の平歯車を第2表に示す諸条件で温間鍛造した。
EXAMPLE Using the test steel shown in Table 1, spur gears having the specifications shown in Table 2 and FIG. 4 were warm forged under the conditions shown in Table 2.

すなわち、圧延【7たままの供試丸棒鋼材を第2表に示
す寸法に鋸切断【7、その後ショツトブラストにてスケ
ールを除去し、全据込み率53%の予備据込みを施し、
140℃に加熱して、水溶性潤滑剤(商品名:デルタフ
オージ1441日本アチソン社製)の2倍希釈液中に浸
漬し潤滑剤被膜を形成した後、高周波加熱し第2表に示
す条件でクランクプレスによる温間鍛造を行なった。
That is, the test round steel bar as rolled [7] was saw cut [7] into the dimensions shown in Table 2, scale was removed by shot blasting, and preliminary upsetting was performed at a total upsetting rate of 53%.
After heating to 140°C and immersing it in a twice-diluted water-soluble lubricant (product name: Deltaforge 1441 manufactured by Nippon Acheson Co., Ltd.) to form a lubricant film, it was heated with high frequency and cranked under the conditions shown in Table 2. Warm forging was performed using a press.

温間鍛造後、型より取出して空冷し7、シェービングを
施した後細粒化浸炭処理を施【7た。焼入れ焼戻し後の
歯元硬度は、曲げ強度に大きな影響を与えるため、全供
試鋼において歯元硬度がHV 350±20になるよう
に焼入れ焼戻し条件を調節した。
After warm forging, it was taken out from the mold, cooled in air7, shaved, and then subjected to carburizing treatment to refine the grain. Since the root hardness after quenching and tempering has a large effect on bending strength, the quenching and tempering conditions were adjusted so that the root hardness was HV 350±20 in all sample steels.

得られた各歯車の歯元曲げ強度と材料の結晶粒度を測定
した結果を第3表に示す。なお、歯元曲げ強度試験はプ
レス機で歯を曲げる試験を行ない、結晶粒度はASTM
のダレインサイズ番号(GS & )で示している。
Table 3 shows the results of measuring the tooth base bending strength and crystal grain size of each of the obtained gears. In addition, the tooth base bending strength test is performed by bending the tooth with a press machine, and the crystal grain size is determined according to ASTM.
It is indicated by the Dalene size number (GS & ).

また、比較のため、第1表に示す比較鋼を用い、上記と
同様の工程により同仕様の平歯車を製造し、得られた平
歯車の結晶粒度と歯元曲げ強度を第3表に併せて示した
For comparison, spur gears with the same specifications were manufactured using the comparative steel shown in Table 1 through the same process as above, and the crystal grain size and root bending strength of the obtained spur gears are shown in Table 3. It was shown.

第3表の結果より明らかなごとく、低N−N1)耐粗粒
化鋼を用い、20%以上の予備据込みを施し、温間鍛造
し、細粒化浸炭処理を行なって得られたものは、通常鋼
を用いて同様の工程で製造した平歯車より高強度を示し
、従来の熱間鍛造、歯切り加工した平歯車(歯元曲げ強
度は5000kf程度)より強度の大幅向上が確認され
た。
As is clear from the results in Table 3, the product was obtained by using low N-N1) roughening resistant steel, pre-upsetting by 20% or more, warm forging, and carburizing to refine the grain. shows higher strength than spur gears manufactured in the same process using regular steel, and it has been confirmed that the strength is significantly improved compared to conventional hot-forged and gear-cut spur gears (density bending strength is approximately 5000 kf). Ta.

また、歯形精度を調べるため、第1表に示すB鋼を用い
、7000個の平歯車を製造し、歯形精度を測定したと
ころ、第4表に示す結果を得た。
In addition, in order to examine the tooth profile accuracy, 7000 spur gears were manufactured using B steel shown in Table 1, and the tooth profile accuracy was measured, and the results shown in Table 4 were obtained.

第4表の結果より、この発明に係る製造方法は、I!s
総合総合4濱精平歯車を歯切り加工なしで高能率で量産
できることが確認された。
From the results in Table 4, it is clear that the manufacturing method according to the present invention has I! s
It was confirmed that a comprehensive four-way precision spur gear can be mass-produced with high efficiency without gear cutting.

(以下余白) 第   2   表 (以下余白) 第    3   表 結晶粒度: JIS−G 0551による粒度ム第  
 4   表 発  明  の  効  果 以上説明したごとく、この発明方法によれば、従来不可
欠であった歯切り工程を省略できるので、製造コストの
引き下げが可能となり、また予備据込みによるメタルフ
ローの強化および成品横断面でのメタル70−が切断さ
れないこと、さらに歯元結晶粒径の微細化により歯元曲
げ強度の大幅向上がはかられ、高精度・高強度の平歯車
を高能率で安価に製造することができる。
(Hereinafter in the margin) Table 2 (Hereinafter in the margin) Table 3 Grain size: Grain size according to JIS-G 0551
4 Effects of the Invention As explained above, according to the method of this invention, the gear cutting process, which was previously indispensable, can be omitted, making it possible to reduce manufacturing costs, as well as strengthening metal flow and improving metal flow through preliminary upsetting. The metal 70- in the cross section of the product is not cut, and the tooth root bending strength is significantly improved by making the root crystal grain size finer, making it possible to manufacture high-precision, high-strength spur gears at high efficiency and at low cost. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る高強度平歯車の製造工程を示す
ブロック図、第2図は同上における細粒化浸炭処理方法
を示す図、第3図は平歯車の歯元結晶粒度測定位置を示
す概略図、第4図はこの発明の実施例における平歯車を
示す縦断側面図である。
Fig. 1 is a block diagram showing the manufacturing process of a high-strength spur gear according to the present invention, Fig. 2 is a diagram showing a carburizing treatment method for refining the same as above, and Fig. 3 shows the measurement position of tooth root crystal grain size of the spur gear. FIG. 4 is a longitudinal sectional side view showing a spur gear in an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 C 0.07〜0.25%、Si 0.35%以下
、Mn 0.3〜1.5%、Nb 0.02〜0.1%
、solAl 0.01〜0.05%、N 0.001
〜0.0080%を含有し、さらにNi 0.4〜3%
、Cr 0.4〜1.5%、Mo 0.15〜0.5%
のうちの1種以上を含み、残部Feおよび不可避的不純
物よりなる耐粗粒化性にすぐれた温間鍛造用肌焼鋼から
なる丸棒鋼材を所要長さに切断後スケールを除去し、全
据込み率で20%以上の予備据込み加工を施した鍛造用
素材を100〜200℃の温度範囲に加熱して水溶性潤
滑剤溶液に浸し、該素材表面に潤滑被膜を形成し、高周
波加熱により650〜900℃に加熱し、精密型鍛造に
より平歯車となし、得られた平歯車にサイジングあるい
はシェービングを施し、前記平歯車を浸炭処理したのち
、Ar_1変態点以下まで冷却し、再び加熱して焼入れ
焼戻しを行ない歯元γ結晶粒度をASTM No.10
以上とすることを特徴とする高強度平歯車の製造方法。 2 予備据込み加工は、温間精密型鍛造工程の歯面鍛造
前に行なうことを特徴とする特許請求の範囲第1項記載
の高強度平歯車の製造方法。
[Claims] 1 C 0.07-0.25%, Si 0.35% or less, Mn 0.3-1.5%, Nb 0.02-0.1%
, solAl 0.01-0.05%, N 0.001
~0.0080% and additionally 0.4-3% Ni
, Cr 0.4-1.5%, Mo 0.15-0.5%
After cutting a round bar made of case hardening steel for warm forging with excellent coarse graining resistance and containing one or more of A forging material that has undergone preliminary upsetting with an upsetting rate of 20% or more is heated to a temperature range of 100 to 200°C and immersed in a water-soluble lubricant solution to form a lubricant film on the surface of the material, followed by high-frequency heating. The spur gear is heated to 650 to 900°C, precision die forged to form a spur gear, the resulting spur gear is sized or shaved, the spur gear is carburized, cooled to below the Ar_1 transformation point, and heated again. The tooth root γ crystal grain size was quenched and tempered to ASTM No. 10
A method for manufacturing a high-strength spur gear characterized by the above. 2. The method for manufacturing a high-strength spur gear according to claim 1, wherein the preliminary upsetting is performed before tooth flank forging in the warm precision die forging process.
JP16338385A 1985-07-23 1985-07-23 Production of high-strength spur gear Granted JPS6223930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16338385A JPS6223930A (en) 1985-07-23 1985-07-23 Production of high-strength spur gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16338385A JPS6223930A (en) 1985-07-23 1985-07-23 Production of high-strength spur gear

Publications (2)

Publication Number Publication Date
JPS6223930A true JPS6223930A (en) 1987-01-31
JPH0535203B2 JPH0535203B2 (en) 1993-05-26

Family

ID=15772841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16338385A Granted JPS6223930A (en) 1985-07-23 1985-07-23 Production of high-strength spur gear

Country Status (1)

Country Link
JP (1) JPS6223930A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418545A (en) * 1987-07-14 1989-01-23 Honda Motor Co Ltd Method for forging gear
JPH01201423A (en) * 1988-02-05 1989-08-14 Toyota Central Res & Dev Lab Inc Manufacture of tough case-hardening steel parts
WO2008126939A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Forging steel
CN104668433A (en) * 2015-02-03 2015-06-03 江苏金源锻造股份有限公司 Big gear forging process
CN104972036A (en) * 2015-06-24 2015-10-14 陈文建 Workpiece forging process
CN104972037A (en) * 2015-06-24 2015-10-14 陈文建 Forging technology used for improving surface quality of forge piece
CN107470528A (en) * 2017-08-04 2017-12-15 钢铁研究总院 The forging method that a kind of nuclear power is refined with SA508Gr.4N steel heavy forging centers position
CN107699671A (en) * 2017-08-05 2018-02-16 周君 A kind of sled alloy slide plate shaped steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418545A (en) * 1987-07-14 1989-01-23 Honda Motor Co Ltd Method for forging gear
JPH01201423A (en) * 1988-02-05 1989-08-14 Toyota Central Res & Dev Lab Inc Manufacture of tough case-hardening steel parts
WO2008126939A1 (en) 2007-04-11 2008-10-23 Nippon Steel Corporation Forging steel
EP2762593A1 (en) 2007-04-11 2014-08-06 Nippon Steel & Sumitomo Metal Corporation Forging steel
US9657379B2 (en) 2007-04-11 2017-05-23 Nippon Steel & Sumitomo Metal Corporation Forging steel
CN104668433A (en) * 2015-02-03 2015-06-03 江苏金源锻造股份有限公司 Big gear forging process
CN104972036A (en) * 2015-06-24 2015-10-14 陈文建 Workpiece forging process
CN104972037A (en) * 2015-06-24 2015-10-14 陈文建 Forging technology used for improving surface quality of forge piece
CN107470528A (en) * 2017-08-04 2017-12-15 钢铁研究总院 The forging method that a kind of nuclear power is refined with SA508Gr.4N steel heavy forging centers position
CN107699671A (en) * 2017-08-05 2018-02-16 周君 A kind of sled alloy slide plate shaped steel

Also Published As

Publication number Publication date
JPH0535203B2 (en) 1993-05-26

Similar Documents

Publication Publication Date Title
US6059898A (en) Induction hardening of heat treated gear teeth
JP5729213B2 (en) Manufacturing method of hot press member
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JPS6223930A (en) Production of high-strength spur gear
JP4266341B2 (en) Steel for omitting spheroidizing annealing with excellent cold forgeability and anti-roughening properties during case hardening, and method for producing the same
JPH0325253B2 (en)
CN105369259A (en) Machining method for nut plate
JP3550886B2 (en) Manufacturing method of gear steel for induction hardening excellent in machinability and fatigue strength
JPS5967365A (en) Production of machine parts
JP3623313B2 (en) Carburized gear parts
JP2614653B2 (en) Manufacturing method of carburized parts with little heat treatment distortion
JPH07138613A (en) Production of heat-treated ferrous sintered alloy parts
JPH0570924A (en) Method for carburizing heat treatment of high strength gear small in strain and the gear
JPH0754041A (en) Manufacture of steel for cold forging
JP3109146B2 (en) Manufacturing method of low strain high strength member
JP3077433B2 (en) Machining of carburized gears-heat treatment method
JPH02294450A (en) Die steel for molding plastics and its manufacture
JPH03111551A (en) Production of gear
KR100501680B1 (en) Heat treatment method of boron alloys for gear
JPH0463261A (en) Production of durable metal mold
JPH01177338A (en) Non-heat treated steel for nitriding
JPS58221226A (en) Manufacture of machine structural steel
JPS60262941A (en) Steel for warm forging
JPH10219353A (en) Production of exhaust valve
JPH0663080B2 (en) Manufacturing method of carburized parts having fine grain structure