JPS58221226A - Manufacture of machine structural steel - Google Patents

Manufacture of machine structural steel

Info

Publication number
JPS58221226A
JPS58221226A JP10482282A JP10482282A JPS58221226A JP S58221226 A JPS58221226 A JP S58221226A JP 10482282 A JP10482282 A JP 10482282A JP 10482282 A JP10482282 A JP 10482282A JP S58221226 A JPS58221226 A JP S58221226A
Authority
JP
Japan
Prior art keywords
steel
semi
temperature
hot
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10482282A
Other languages
Japanese (ja)
Other versions
JPS6364488B2 (en
Inventor
Yukihiro Isogawa
幸宏 五十川
Katsunori Takada
高田 勝典
Kenji Isogawa
礒川 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10482282A priority Critical patent/JPS58221226A/en
Publication of JPS58221226A publication Critical patent/JPS58221226A/en
Publication of JPS6364488B2 publication Critical patent/JPS6364488B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture machine structural parts having superior formability in cold working while reducing the consumption of energy by forming parts by semi-hot forging and utilizing the residual heat to carry out low temp. annealing. CONSTITUTION:A steel contg. 0.15-1.20% C or further contg. 0.005-0.05% N and <=0.2% Al, Nb, Ti or Zr or 0.4% in total of two or more among Al, Nb, Ti and Zr is semi-hot forged at 400-900 deg.C, and by utilizing the residual heat, the forged steel is held at 600-750 deg.C for <=5hr to carry out direct low temp. annealing. Thus, the formability in cold rolling can be improved with a little consumption of heat energy.

Description

【発明の詳細な説明】 関する。[Detailed description of the invention] related.

従来、機械構造部品を製作するには、熱間鍛造ののち切
削加工するか、熱間鍛造品に熱処理を施してから冷間鍛
造するか、あるいは必要に応じてさらに機械加工を行な
うといった方法がとられてきた。
Traditionally, mechanical structural parts have been produced by hot forging followed by cutting, by heat-treating a hot forged product and then cold forging, or by further machining as necessary. It has been taken.

一方、近年では鍛造機械の進歩と鍛造用鋼材の改良とが
あいまって、半熱間で鍛造することが可能となり、盛ん
に行なわれるようになってきた。
On the other hand, in recent years, advances in forging machines and improvements in forging steel materials have made it possible to perform semi-hot forging, and this has become popular.

半熱間または温間の加工とは、熱間加工に至らない程度
の加熱下の加工であって、熱間加工における低い変形抵
抗と、冷間加工による高い仕上り精度とを、あわせ得る
ことを狙った技術である。 半熱間加工が可能であれば
、工数の減少と熱エネルギーの節約とが実現し、コスト
の低減に寄与できる。
Semi-hot or warm processing is processing under heating to a degree that does not reach hot processing, and it is possible to combine the low deformation resistance of hot processing with the high finishing accuracy of cold processing. This is the targeted technology. If semi-hot processing is possible, the number of man-hours can be reduced and thermal energy can be saved, contributing to cost reduction.

一般に、半熱間鍛造したものは、さらに冷間で仕」一げ
鍛造または成形を行なうことが多いので、ワレやカケな
どの不具合が生じない、良好な冷間成形性をもつことが
要求される。 上述した熱間鍛造後の冷間鍛造に先立つ
熱処理は、いったん常温まで冷却した材料を再度高温に
加熱するのでエネルギーの消費が多く、この点の改善も
望まれている。
Generally, semi-hot forged products are often further cold finished forged or formed, so they are required to have good cold formability without problems such as cracks or chips. Ru. The above-described heat treatment after hot forging and prior to cold forging involves heating the material once cooled to room temperature to a high temperature again, which consumes a lot of energy, and improvements in this point are also desired.

本発明の目的は、半熱間鍛造に続いて行なう冷間加工に
際しての成形性がよい機械構造用鋼を、低減されたエネ
ルギー消費の下に製造する方法を提供することにある。
An object of the present invention is to provide a method for producing a mechanical structural steel with good formability during cold working subsequent to semi-hot forging, with reduced energy consumption.

この目的を達成する本発明の機械構造用鋼の製造方法は
、基本的には、C : 0.15 − 1.20%の鋼
を,  400−900°Cの温度域において半熱間鍛
造し、その残熱を利用して直接低温焼なましを行ない、
それにより冷開成形性を向上させることを特徴とする。
The method for manufacturing steel for machine structural use of the present invention that achieves this objective basically involves semi-hot forging of steel with C: 0.15-1.20% in a temperature range of 400-900°C. , directly perform low-temperature annealing using the residual heat,
It is characterized by improving cold-opening formability.

C : 0.15 − 1.20%の範囲は、機械構造
用鋼において通常採用されているものであって、とくに
下限は、強度を確保する上で必須である。
C: The range of 0.15 to 1.20% is normally adopted in steel for mechanical structures, and the lower limit is especially essential to ensure strength.

また、これ以下のC含有量の鋼は、冷間鍛造が容易で、
特別な対策を必要としない。
In addition, steel with a C content of less than this is easy to cold forge,
No special measures required.

半熱間鍛造の温度の下限400°Cは、材料の変形抵抗
を小さくして有利に鍛造するという目的にとって、必要
最低限のものであり、一方、上限900°Cは、これを
超えると鍛造製品の精度を高めることが困難なこと、お
よび酸化スケールの生成が著しくなって歩留りが低下す
るため設けたものである。 また、高温に加熱すること
は、エネルギー消費の低減という趣旨にも反する。 適
切な温度条件は、材料の組成,素材および鍛造品の寸法
形状、さらには鍛造装置からくる制約などの諸因子を総
合的に考慮して、必要ならば多少の実験を行なうことに
より決定できる。
The lower temperature limit of 400°C for semi-hot forging is the minimum necessary for the purpose of reducing the deformation resistance of the material and forging it advantageously, while the upper limit of 900°C means that if it exceeds this temperature, forging will not be possible. This was provided because it is difficult to improve the precision of the product and the production of oxide scale becomes significant, resulting in a decrease in yield. Further, heating to a high temperature goes against the purpose of reducing energy consumption. Appropriate temperature conditions can be determined by comprehensively considering various factors such as the composition of the material, the dimensions and shape of the raw material and the forged product, and constraints imposed by the forging equipment, and by conducting some experiments if necessary.

半熱間鍛造の残熱を利用して行なう直接低温焼なましは
、通常,  600−750℃の温度に5時間以内保持
することによって実施する。 従って、加熱は、場合に
よってはごくわずかで足り、そうでないときでも、従来
のようにいったん冷却してから680 − 740°C
程度の高温に5−10時間保持するといった焼なましに
くらべれば、格段の軽減が可能である。 本発明の方法
に従うことにより,従来技術より迅速に球状化組織が形
成されるということは、本発明者らがはじめて得だ知見
である。
Direct low-temperature annealing, which is performed using residual heat from semi-hot forging, is usually carried out by holding the material at a temperature of 600-750°C for no more than 5 hours. Therefore, in some cases, only a small amount of heating is required, and even in other cases, as in the conventional method, once the temperature is cooled, the temperature is increased to 680-740°C.
Compared to annealing, which requires holding at a relatively high temperature for 5 to 10 hours, the reduction can be significantly reduced. The present inventors have discovered for the first time that by following the method of the present invention, a spheroidized structure is formed more quickly than in the prior art.

400−900°Cの温度域における半熱間鍛造に適す
る機械構造用鋼としては、本発明者らが見出し、別途提
案したものを使用することが好ましい。 すなわち、C
 : 0.15 − 1.20%の鋼であって、仕上げ
温度950°C以下の温度域において少なくとも30%
の累積減面率の仕上げ圧延または鍛造を受けることによ
り、オーステナイト結晶粒度が8以上の微細粒である組
織を有する機械構造用鋼である。
As a mechanical structural steel suitable for semi-hot forging in the temperature range of 400-900°C, it is preferable to use a steel discovered and separately proposed by the present inventors. That is, C
: 0.15 - 1.20% steel, at least 30% at finishing temperature below 950°C
It is a mechanical structural steel having a microstructure with an austenite crystal grain size of 8 or more by being subjected to finish rolling or forging with a cumulative area reduction rate of .

本発明の方法によシ製造される鋼の、冷間加工における
成形性の一層の改善、そして仕上シ精度の一層の向上を
望むのであれば、材料として、C : 0.15 − 
1.20%、N : 0.005 − 0. 05%で
あって, Ai + Nb + TiまたはZrのいず
れか1種0.2%以下または2種以」−を合計量で0.
4%以下含有する鋼を使用することが推奨される。 そ
れによって結晶粒の微細化を期待することができ、上記
の望みがかなえられる。
If it is desired to further improve the formability in cold working and the finishing accuracy of the steel produced by the method of the present invention, as a material, C: 0.15 -
1.20%, N: 0.005-0. 0.05%, and 0.2% or less of any one of Ai + Nb + Ti or Zr, or 0.2% or more of two or more of them, in a total amount of 0.05%.
It is recommended to use steel containing 4% or less. As a result, it can be expected that crystal grains will become finer, and the above-mentioned desire will be fulfilled.

N : 0.005%の下限は、この効果を得るために
必要な量であり、一方、005%の上限は、ブロー発生
を避ける観点から定めた。 A1.Nb。
The lower limit of N: 0.005% is the amount necessary to obtain this effect, while the upper limit of 0.005% was determined from the viewpoint of avoiding blowing. A1. Nb.

TI + Zrの上限値は、それを超える含有はかえっ
て、冷開成形性およびそれに先立つ半熱間鍛造の鍛造性
をそこなうので設けた。
The upper limit value of TI + Zr was set because a content exceeding this value would actually impair the cold-opening formability and the forgeability of the semi-hot forging that precedes it.

この好ましい態様においても、前述の加工履歴および微
細組織を有する材料、すなわち仕上げ温度9508C以
下の温度域において少なくとも30%の累積減面率の仕
上げ圧延または鍛造を受けることにより、オーステナイ
ト結晶粒度が8以上の微細粒である組織を有する機械構
造用鋼を使用することが有利である。
In this preferred embodiment as well, the austenite grain size is 8 or more by finishing rolling or forging with a cumulative area reduction rate of at least 30% in a temperature range of 9508C or lower. It is advantageous to use a mechanical structural steel with a fine-grained structure.

このほか、焼入性コントロール元素としてS+  + 
MuのほかCu +Ni +Cr +Mo +W+Co
+Bの適量添加、被削性改善元素としてS+5etTe
 + Pbの適量添加、さらには冷間鍛造性の一層の向
上のために酸素含有量を規制することも、本発明の範囲
に含捷れる。
In addition, S++ is used as a hardenability control element.
In addition to Mu, Cu +Ni +Cr +Mo +W+Co
Addition of appropriate amount of +B, S+5etTe as an element to improve machinability
+ The scope of the present invention also includes adding an appropriate amount of Pb and regulating the oxygen content in order to further improve cold forgeability.

本発明の機械構造用鋼の製造方法は、半熱間鍛造を行な
い、しかもその残熱を利用して低温焼なましを行なうか
ら、熱エネルヤーの節約と所要工数の減少が実現し、コ
ストの低減に大いに役立つ。 製品は冷開成形性にすぐ
れ、高精度のものが容易に得られるから、たとえば自動
車用の等速ジヨイントのような部品の素材をつくる技術
として、すこぶる有用である。
The method for manufacturing steel for machine structural use of the present invention performs semi-hot forging and low-temperature annealing using the residual heat, which saves thermal energy and reduces the required man-hours, reducing costs. greatly helps in reducing Because the product has excellent cold-opening moldability and can be easily produced with high precision, it is extremely useful as a technology for making materials for parts such as constant velocity joints for automobiles.

実施例1 第1表に示すC含有量の鋼を溶製し、熱間圧延により、
径59mmの丸棒にしだ。
Example 1 Steel with the C content shown in Table 1 was melted and hot rolled to produce
It is made into a round bar with a diameter of 59mm.

この素材から、第1図に示すような長さ25mmの試片
を切り取り、750°Cにおける半熱間加工により、第
2図に示すような浅いカップ状体に成形した。
A specimen with a length of 25 mm as shown in FIG. 1 was cut from this material, and was formed into a shallow cup-shaped body as shown in FIG. 2 by semi-hot working at 750°C.

続いて、660°C×2時間→空冷の条件で直接焼なま
し、すなわち半熱間加工の残熱利用による焼なましを行
ない、さらに冷間加工により、第3図に示すような深い
カップ状体に絞った。
Next, direct annealing is performed under the conditions of 660°C x 2 hours → air cooling, that is, annealing is performed using the residual heat of semi-hot working, and further cold working is performed to form a deep cup as shown in Figure 3. I narrowed it down to a shape.

比較のため、一部は直接焼なましを行なわずに、冷間加
工した。 それらは、煮にに印を付したものである。
For comparison, some of the samples were cold worked without being directly annealed. They are marked with boiled rice.

上記の冷間加工において、冷間加工率(%)は、半熱間
加工によるカップ状体の筒状部分の断面積をS。、続く
冷間加工によるそれの筒状部分の断面積をS+とすると
き、つぎのように定義される。
In the above cold working, the cold working rate (%) is the cross-sectional area of the cylindrical part of the cup-shaped body by semi-hot working. , when the cross-sectional area of the cylindrical portion of the subsequent cold working is S+, it is defined as follows.

O 試片にワレが発生するまでの最大の加工率を、「冷間限
界加工率」とよぶ。 その値を、第1表にあわせ掲げる
O The maximum working rate until cracking occurs in the specimen is called the "cold limit working rate." The values are listed in Table 1.

第  1  表 実施例2 第2表に示す組成(このほかにSi+Mnなどを通常存
在する量含有する)の鋼を溶製し、実施例1と同様に、
半熱間加工、直接焼な丑しおよび冷間加工を行なって、
限界冷間加工率を測定した。
Table 1 Example 2 A steel having the composition shown in Table 2 (containing Si + Mn, etc. in a normally present amount) was melted and prepared in the same manner as in Example 1.
Through semi-hot processing, direct annealing and cold processing,
The limit cold working rate was measured.

1その値を、第2表にあわせて記す。1 The values are also listed in Table 2.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例における冷開成形性の試験法を説
明するだめのものであって、第1図は、熱間圧延によっ
て得た素材から切り取っだ試片の形状を、 第2図は、半熱間加工により浅いカップ状体に成形した
ものの形状を、そして 第3図は、それをさらに冷間加工によシ深いカップ状体
に絞ったものの形状をそれぞれ示し、各図において、A
は平面図、Bは断面図である。 特許出願人 大同特殊鋼株式会社 代理人  弁理士 須 賀 総 天 才 1 図
The drawings are for explaining the test method for cold-open formability in the examples of the present invention, and FIG. 1 shows the shape of a specimen cut from a material obtained by hot rolling, and FIG. 2 shows the shape of a specimen cut from a material obtained by hot rolling. , the shape of a shallow cup-shaped body formed by semi-hot working, and Figure 3 shows the shape of a deep cup-shaped body formed by cold working.
is a plan view, and B is a cross-sectional view. Patent Applicant Daido Steel Co., Ltd. Agent Patent Attorney Suga So Tensai 1 Figure

Claims (1)

【特許請求の範囲】 (+l  C: 0.15−1.20%の鋼を、400
−900℃の温度域において半熱間鍛造し、その残熱を
利用して直接低温焼なましを行なうことにより、冷開成
形性を向上させることを特徴とする機械構造用鋼の製造
方法。 (2)  直接低温焼なましを、600−750°Cの
温度に5時間以内保持することにより行なう特許請求の
範囲第1項の機械構造用鋼の製造方法。 (31C: 0.15−1.20%、N : 0.00
5−0.05%であって、 AM+ Nb + Tjま
たはZrのいずれか1種0,2%以下または2種以上を
合計量で0.4%以下含有する鋼を、400−900°
Cの温度域において半熱間鍛造し、その残熱を利用して
直接低温焼なましを行なうことにより、冷開成形性を向
上させることを特徴とする機械構造用鋼の製造方法。 (4)  直接低温焼なましを、  600−750℃
の温度に5時間以内保持することにより行なう特許請求
の範囲第3項の機械構造用鋼の製造方法。
[Claims] (+l C: 0.15-1.20% steel, 400%
A method for producing steel for machine structural use, characterized by improving cold formability by semi-hot forging in a temperature range of -900°C and directly performing low-temperature annealing using the residual heat. (2) The method for manufacturing steel for machine structural use according to claim 1, wherein direct low-temperature annealing is carried out by holding the steel at a temperature of 600-750°C for 5 hours or less. (31C: 0.15-1.20%, N: 0.00
5-0.05%, and contains 0.2% or less of any one of AM + Nb + Tj or Zr, or 0.4% or less of two or more in total, at 400-900°
A method for producing steel for machine structural use, which improves cold-opening formability by semi-hot forging in a temperature range of C and direct low-temperature annealing using the residual heat. (4) Direct low temperature annealing at 600-750℃
3. The method for manufacturing steel for machine structural use according to claim 3, which is carried out by holding the steel at a temperature of 5 hours or less.
JP10482282A 1982-06-18 1982-06-18 Manufacture of machine structural steel Granted JPS58221226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10482282A JPS58221226A (en) 1982-06-18 1982-06-18 Manufacture of machine structural steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10482282A JPS58221226A (en) 1982-06-18 1982-06-18 Manufacture of machine structural steel

Publications (2)

Publication Number Publication Date
JPS58221226A true JPS58221226A (en) 1983-12-22
JPS6364488B2 JPS6364488B2 (en) 1988-12-12

Family

ID=14391088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10482282A Granted JPS58221226A (en) 1982-06-18 1982-06-18 Manufacture of machine structural steel

Country Status (1)

Country Link
JP (1) JPS58221226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216920A (en) * 1987-03-04 1988-09-09 Daido Steel Co Ltd Manufacture of machine structural parts
WO2005085480A1 (en) * 2004-03-04 2005-09-15 Salzgitter Mannesmann Gmbh Method for producing a structural part from hypereutectoid steel
JP2007270343A (en) * 2006-03-08 2007-10-18 Honda Motor Co Ltd Method for producing outer ring member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138687U (en) * 1988-03-18 1989-09-21

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216920A (en) * 1987-03-04 1988-09-09 Daido Steel Co Ltd Manufacture of machine structural parts
WO2005085480A1 (en) * 2004-03-04 2005-09-15 Salzgitter Mannesmann Gmbh Method for producing a structural part from hypereutectoid steel
JP2007270343A (en) * 2006-03-08 2007-10-18 Honda Motor Co Ltd Method for producing outer ring member

Also Published As

Publication number Publication date
JPS6364488B2 (en) 1988-12-12

Similar Documents

Publication Publication Date Title
KR0148414B1 (en) Titanium alloy bar suitable for producing engine valve
JP2000317738A (en) Manufacture of stainless steel bolt
WO2007000888A1 (en) Hot-forged products excellent in fatigue strength, process for production thereof, and machine structural parts
JP2990615B2 (en) High strength steel weber and method of manufacturing the same
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JPS58221226A (en) Manufacture of machine structural steel
JP4884803B2 (en) Heat treatment method for steel
JPS59126718A (en) Manufacture of stel material with superior cold workability
JPS5967365A (en) Production of machine parts
JP2000063935A (en) Production of nitrided part
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JPH0535203B2 (en)
CN113832389B (en) Cold extrusion round steel and manufacturing method thereof
JPH07305139A (en) Non-heat treated machine parts and production thereof
JP3716454B2 (en) Manufacturing method of high strength and toughness mold by warm hobbing
KR100328039B1 (en) A Method Manufacturing Wire Rods for cold Heading
JPH0754041A (en) Manufacture of steel for cold forging
JP2674644B2 (en) Manufacturing method for machine structural parts
JPH05209220A (en) Production of parts made of steel
JPS6410567B2 (en)
JPH03111551A (en) Production of gear
JPH02294450A (en) Die steel for molding plastics and its manufacture
JPS6314816A (en) Production of work roll for cold rolling mill
JPH0512421B2 (en)
SU1407636A1 (en) Method of producing forgings of variable cross-section ,particularly, from carbon structural steels