JPS62234363A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS62234363A
JPS62234363A JP7781686A JP7781686A JPS62234363A JP S62234363 A JPS62234363 A JP S62234363A JP 7781686 A JP7781686 A JP 7781686A JP 7781686 A JP7781686 A JP 7781686A JP S62234363 A JPS62234363 A JP S62234363A
Authority
JP
Japan
Prior art keywords
resistor
polycrystalline silicon
layer
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7781686A
Other languages
Japanese (ja)
Inventor
Yutaka Yoshida
豊 吉田
Yoshihiko Nagayasu
芳彦 長安
Yoshihiro Shigeta
善弘 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7781686A priority Critical patent/JPS62234363A/en
Publication of JPS62234363A publication Critical patent/JPS62234363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize the increase in integration providing resistor which is the combination of a diffusion resistor composed of a different conductivity type layer formed in a semiconductor substrate and a film resistor composed of a polycrystalline silicon layer formed on the substrate with an insulating film. CONSTITUTION:A diffused layer 2 whose conductivity type is different from that of a silicon substrate 1 is formed in the substrate 1 and, after the surface of the substrate is covered with an oxide film 3, a polycrystalline silicon layer containing impurity is deposited and, successively, the surface is covered with an insulating film 5 and then terminal electrodes 61 and 62 and a contact electrode 63 which are contacted with the diffusion resistor layer 2 or the polycrystalline silicon resistance layer 4 are formed in apertures provided in the insulating film 5. In this three-dimensional structure, wherein the polycrystalline silicon resistor layer 4 is formed on the oxide film 3 immediately above the diffusion resistor layer 2 and the two resistor layers are connected by the electrode 63, as the film resistor made of polycrystalline silicon which has a negative temperature coefficient and the diffusion resistor which has a positive temperature coefficient are connected in series, the temperature compensation can be achieved. With this constitution, the area occupied by the resistance can be reduced owing to the three-dimensional structure so that the increase in integration can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、半導体基板内および基板上に能動素子のほか
に抵抗、コンデンサなどの受動素子が集積される半導体
集積回路に関する。
The present invention relates to a semiconductor integrated circuit in which passive elements such as resistors and capacitors are integrated in and on a semiconductor substrate in addition to active elements.

【従来技術とその問題点】[Prior art and its problems]

半導体集積回路において、抵抗としては基板内に形成し
た異なる導電型の層による拡散抵抗が従来用いられてい
た。ところが、拡散抵抗は基板内に集積される他の素子
と電気的に絶縁するための分離領域を必要とすること、
また同一分離領域内に二つ以上の拡散抵抗が存在する場
合、抵抗間の絶縁のために所定の間隔をあける必要があ
ることから高集積化に対する障害となる。これに対し、
多結晶シリコン層によって抵抗を形成する場合は、この
多結晶シリコン層は基板上に酸化膜を介して形成するこ
とができるため、他の回路素子との間の分M SKI域
を必要とせずに電気的に絶縁でき、集積回路の高集積化
に適している。しかしながら、多結晶シリコンは抵抗温
度係数が負であるため、例えばバイポーラICにおいて
多く使用されるベースドライブ抵抗に多結晶シリコン抵
抗を適用した場合、高温になるとトランジスタのh F
!、の増大とベースドライブ抵抗の減少によるベース電
流の増大とから、相乗してコレクタ電流が増大するため
好ましくなかった。
BACKGROUND ART In semiconductor integrated circuits, a diffused resistor formed by layers of different conductivity types formed in a substrate has conventionally been used as a resistor. However, diffused resistors require an isolation region to electrically insulate them from other elements integrated within the substrate.
Further, when two or more diffused resistors are present in the same isolation region, it is necessary to leave a predetermined distance between the resistors to insulate them, which becomes an obstacle to high integration. In contrast,
When forming a resistor using a polycrystalline silicon layer, this polycrystalline silicon layer can be formed on the substrate via an oxide film, so there is no need for a M SKI area between it and other circuit elements. It can be electrically insulated and is suitable for highly integrated circuits. However, polycrystalline silicon has a negative temperature coefficient of resistance, so if a polycrystalline silicon resistor is used as a base drive resistor, which is often used in bipolar ICs, the transistor's h F
! , and an increase in base current due to a decrease in base drive resistance, which is undesirable because the collector current increases synergistically.

【発明の目的】[Purpose of the invention]

本発明は、上述の問題を解決し、温度係数を任意の値に
することができ、また拡散抵抗に比して高集積化の可能
な抵抗を有する半導体集積回路を提供することを目的と
する。 (発明の要点] 本発明、半導体集積回路が半導体基板内に形成された異
なる導電型の層からなる拡散抵抗と、基板上に絶縁膜を
介して被着された多結晶シリコン層からなる膜抵抗とを
組合わせてなる抵抗を存するもので、拡散抵抗の温度係
数が正で、膜抵抗の温度係数が負であることから任意の
温度係数をもたせることができ、また基板内と基板上の
双方を利用するため高集積化が可能で上述の目的が達成
される。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to provide a semiconductor integrated circuit having a resistance that can have a temperature coefficient of any value and can be highly integrated compared to a diffused resistance. . (Summary of the Invention) The present invention provides a semiconductor integrated circuit comprising a diffused resistor consisting of layers of different conductivity types formed within a semiconductor substrate, and a film resistor consisting of a polycrystalline silicon layer deposited on the substrate via an insulating film. Since the temperature coefficient of diffused resistance is positive and the temperature coefficient of film resistance is negative, it is possible to have any temperature coefficient, and it is possible to have any temperature coefficient both in the substrate and on the substrate. Since it uses , high integration is possible and the above purpose is achieved.

【発明の実施例】[Embodiments of the invention]

第1図は、本発明の一実施例を示し、シリコン基板lに
基板と異なる導電型の拡散層2を形成し、基板1の表面
を酸化膜で覆ったのち不純物を含む多結晶シリコン層4
を堆積し、つづいて表面を絶縁膜5で覆い、その開口部
で絶縁抵抗層2あるいは多結晶シリコン抵抗層4に接触
する端子型[61゜62、接続電極63を設ける。この
実施例は、拡散抵抗層2の真上の酸化膜3の上に多結晶
シリコン抵抗層4を形成する立体構造で、膜抵抗を電極
63により接続したものである。この構造により、負の
温度係数を有する多結晶シリコンからなる膜抵抗と正の
温度係数を有する拡散抵抗が直列抵抗されるため温度補
償ができる。しかも、立体構造により抵抗の占める面積
が小さくてすむため、高密度化が容易となり、今後の超
々LSIに有効な手段となる。 第2図は別の実施例を示し、第1図と共通の部分には同
一の符号が付されている。第2図+a+においては、基
板1を覆う薄い酸化膜3上に不純物をドープしていない
多結晶シリコンを全面に堆積したのち、フォトリソグラ
フィにより多結晶シリコン層40を形成する0次いで基
板上からイオン注入すれば、第2l−)に示すように、
自己整合により多結晶シリコン層40の存在しない場所
に拡散抵抗層2が形成でき、同時に多結晶シリコン層4
0にイオン注入され、不純物が添加された多結晶シリコ
ン抵抗層4が得られる0図示しない電極により拡散抵抗
層2と多結晶シリコン抵抗層4を直列あるいは並列に接
続して任意の抵抗値をもつ抵抗を構成することができる
。膜抵抗層4の下の拡散抵抗層2が存在しない領域が、
抵抗層2の間の絶縁のために必要な領域として役立ち、
基板面積が有効に利用できるため高集積化に有効である
。 第3図には、&1111により多結晶シリコン抵抗、m
12により拡散抵抗、また線13により両者の直列接続
抵抗、線14により並列接tIi抵抗の温度特性を示す
、 m13.14の傾きは、両者の比率を適当に選ぶこ
とにより変化するので、任意の温度係数を得ることがで
きる。
FIG. 1 shows an embodiment of the present invention, in which a diffusion layer 2 of a conductivity type different from that of the substrate is formed on a silicon substrate 1, the surface of the substrate 1 is covered with an oxide film, and then a polycrystalline silicon layer 4 containing impurities is formed.
Then, the surface is covered with an insulating film 5, and a terminal-type connecting electrode 63 is provided to contact the insulating resistance layer 2 or polycrystalline silicon resistance layer 4 at the opening. This embodiment has a three-dimensional structure in which a polycrystalline silicon resistance layer 4 is formed on an oxide film 3 directly above a diffused resistance layer 2, and a film resistance is connected by an electrode 63. With this structure, temperature compensation can be achieved because a film resistor made of polycrystalline silicon having a negative temperature coefficient and a diffused resistor having a positive temperature coefficient are resisted in series. Furthermore, because the area occupied by the resistor can be reduced due to the three-dimensional structure, it is easy to increase the density, and this will be an effective means for future ultra-super LSIs. FIG. 2 shows another embodiment, in which parts common to those in FIG. 1 are given the same reference numerals. In FIG. 2+a+, polycrystalline silicon that is not doped with impurities is deposited on the entire surface of the thin oxide film 3 that covers the substrate 1, and then a polycrystalline silicon layer 40 is formed by photolithography. If injected, as shown in 2nd l-),
Due to self-alignment, the diffused resistance layer 2 can be formed in a place where the polycrystalline silicon layer 40 does not exist, and at the same time the polycrystalline silicon layer 4 can be formed.
A polycrystalline silicon resistance layer 4 with impurities added by ion implantation is obtained by connecting the diffused resistance layer 2 and the polycrystalline silicon resistance layer 4 in series or parallel with an electrode (not shown) to have an arbitrary resistance value. A resistor can be configured. The region under the membrane resistance layer 4 where the diffused resistance layer 2 does not exist is
serves as the necessary area for insulation between the resistive layers 2;
Since the board area can be used effectively, it is effective for high integration. In Figure 3, polycrystalline silicon resistance, m
12 shows the temperature characteristics of the diffused resistance, line 13 shows the series connection resistance of both, and line 14 shows the temperature characteristics of the parallel connection tIi resistance.The slope of m13.14 can be changed by appropriately selecting the ratio of the two, so it can be set to any desired value. Temperature coefficient can be obtained.

【発明の効果】【Effect of the invention】

本発明によれば、半導体集積回路の抵抗を多結晶シリコ
ン膜抵抗と拡散抵抗により形成するので、任意の抵抗温
度係数が得られ、温度特性の改善が容易に行える。また
基板内と基板上の双方を利用して抵抗を形成するので、
高集積化に対して有効で、チップ面積の減少が可能にな
る。
According to the present invention, since the resistor of the semiconductor integrated circuit is formed by a polycrystalline silicon film resistor and a diffused resistor, an arbitrary resistance temperature coefficient can be obtained, and the temperature characteristics can be easily improved. Also, since the resistance is formed using both inside and on the substrate,
This is effective for high integration and allows for a reduction in chip area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す部分断面図、第2図は
異なる実施例の抵抗形成工程を順次示す断面図、第3図
は各種抵抗の温度特性線図である。
FIG. 1 is a partial cross-sectional view showing one embodiment of the present invention, FIG. 2 is a cross-sectional view sequentially showing the resistor forming process of different embodiments, and FIG. 3 is a temperature characteristic diagram of various resistors.

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板内に形成された異なる導電型の層からな
る拡散抵抗と、基板上に絶縁膜を介して被着された多結
晶シリコン層からなる膜抵抗とを組合わせてなる抵抗を
有することを特徴とする半導体集積回路。
1) Having a resistance made by combining a diffused resistance made of layers of different conductivity types formed in a semiconductor substrate and a film resistance made of a polycrystalline silicon layer deposited on the substrate via an insulating film. A semiconductor integrated circuit characterized by:
JP7781686A 1986-04-04 1986-04-04 Semiconductor integrated circuit Pending JPS62234363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7781686A JPS62234363A (en) 1986-04-04 1986-04-04 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7781686A JPS62234363A (en) 1986-04-04 1986-04-04 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62234363A true JPS62234363A (en) 1987-10-14

Family

ID=13644550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7781686A Pending JPS62234363A (en) 1986-04-04 1986-04-04 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62234363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309365A (en) * 1988-06-07 1989-12-13 Nec Ic Microcomput Syst Ltd Integrated circuit
JPH03101262A (en) * 1989-09-14 1991-04-26 Fuji Electric Co Ltd Built-in resistance for integrated circuit device
US5622901A (en) * 1990-02-08 1997-04-22 Nippondenso Co., Ltd. Method of forming a semiconductor strain sensor
JP2006190709A (en) * 2004-12-28 2006-07-20 Mitsumi Electric Co Ltd Semiconductor device
US7659176B2 (en) 2005-01-06 2010-02-09 International Business Machines Corporation Tunable temperature coefficient of resistance resistors and method of fabricating same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309365A (en) * 1988-06-07 1989-12-13 Nec Ic Microcomput Syst Ltd Integrated circuit
JPH03101262A (en) * 1989-09-14 1991-04-26 Fuji Electric Co Ltd Built-in resistance for integrated circuit device
US5622901A (en) * 1990-02-08 1997-04-22 Nippondenso Co., Ltd. Method of forming a semiconductor strain sensor
JP2006190709A (en) * 2004-12-28 2006-07-20 Mitsumi Electric Co Ltd Semiconductor device
US7659176B2 (en) 2005-01-06 2010-02-09 International Business Machines Corporation Tunable temperature coefficient of resistance resistors and method of fabricating same

Similar Documents

Publication Publication Date Title
US4161742A (en) Semiconductor devices with matched resistor portions
US4890191A (en) Integrated circuits
JPS62234363A (en) Semiconductor integrated circuit
JPS61220371A (en) Mos type integrated circuit device on insulating substrate
US4109273A (en) Contact electrode for semiconductor component
US4223335A (en) Semiconductor device body having identical isolated composite resistor regions
JP2824329B2 (en) Variable capacitance diode device
JPS59143358A (en) Semiconductor thin film resistance element
JPS6074665A (en) Semiconductor device
JPH0834286B2 (en) Integrated circuit device
JPH09260588A (en) Semiconductor device
JP3417482B2 (en) Method for manufacturing semiconductor device
JPS59108328A (en) Semi-custom integrated circuit
JPS59208750A (en) Wiring structure of semiconductor device
JPS5814072B2 (en) Semiconductor integrated circuit device and its manufacturing method
JP2774220B2 (en) Semiconductor device
JPS59139664A (en) Semiconductor integrated circuit device
JPH05343397A (en) Semiconductor integrated circuit device
JPS58155754A (en) Integrated circuit memory
JPH0132666B2 (en)
JP2000216254A (en) Manufacture of semiconductor device
JPS6322068B2 (en)
JPS58171856A (en) Semiconductor integrated circuit device
JPS62291056A (en) Semiconductor device
JPH0566026B2 (en)