JP2006190709A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006190709A
JP2006190709A JP2004381864A JP2004381864A JP2006190709A JP 2006190709 A JP2006190709 A JP 2006190709A JP 2004381864 A JP2004381864 A JP 2004381864A JP 2004381864 A JP2004381864 A JP 2004381864A JP 2006190709 A JP2006190709 A JP 2006190709A
Authority
JP
Japan
Prior art keywords
resistance element
element portion
polysilicon
semiconductor device
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004381864A
Other languages
Japanese (ja)
Inventor
Naoki Miyasaka
直樹 宮坂
Shigeo Tamura
成郎 田村
Yasuhisa Ishikawa
泰久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2004381864A priority Critical patent/JP2006190709A/en
Publication of JP2006190709A publication Critical patent/JP2006190709A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the space efficiency of the part of a resistance element in a CMOS semiconductor device. <P>SOLUTION: A diffusion resistance element RA having a positive temperature characteristic and a polysilicon resistance element RB having a negative temperature characteristic are lapped planely with a silicon oxide film 50 set between so that the diffusion resistance element RA is a lower side and the polysilicon resistance element RB is an upper side. The diffusion resistance element RA and the polysilicon resistance element RB are electrically connected in series. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体装置に関する。   The present invention relates to a semiconductor device.

図6は従来のCMOS半導体装置1を示す。CMOS半導体装置1は、シリコン基板2上に、CMOS半導体素子及び抵抗素子等が密に作り込んである構成である。このうち、抵抗素子の部分についてみると、所望の温度特性となるように、例えば零の温度特性となるように、或いは、所望の温度特性となるように、正の温度特性を有する拡散抵抗素子部RAと負の温度特性を有するポリシリコン抵抗素子部RBとが、平面図上並んだ配置で、且つ、直列に接続されている構成である。ここで、正の温度特性とは温度が上昇すると抵抗値が上がる特性であり、負の温度特性とは温度が上昇すると抵抗値が下がる特性であり、零の温度特性とは温度が上昇しても抵抗値が変化しない特性である。
特開平5−90502号公報
FIG. 6 shows a conventional CMOS semiconductor device 1. The CMOS semiconductor device 1 has a configuration in which CMOS semiconductor elements, resistance elements, and the like are densely formed on a silicon substrate 2. Among these, the resistance element portion has a positive temperature characteristic so as to achieve a desired temperature characteristic, for example, a zero temperature characteristic or a desired temperature characteristic. The portion RA and the polysilicon resistance element portion RB having negative temperature characteristics are arranged side by side on the plan view and connected in series. Here, the positive temperature characteristic is a characteristic in which the resistance value increases as the temperature rises, the negative temperature characteristic is a characteristic in which the resistance value decreases as the temperature rises, and the zero temperature characteristic is a temperature rise. The resistance value does not change.
JP-A-5-90502

しかし、拡散抵抗素子部RAとポリシリコン抵抗素子部RBとが平面図上並んだ配置であるため、スペース効率が良くなかった。このため、抵抗素子の数が増えてくると、その影響も徐々に大きくなって、CMOS半導体装置1の縦横のサイズの小型化を図る上で無視できないものとなってきている。   However, since the diffused resistor element RA and the polysilicon resistor element RB are arranged side by side on the plan view, the space efficiency is not good. For this reason, as the number of resistance elements increases, the influence gradually increases, and cannot be ignored in reducing the vertical and horizontal sizes of the CMOS semiconductor device 1.

また、拡散抵抗素子部RAとポリシリコン抵抗素子部RBとが平面図上並んだ配置である場合には、発熱源からの距離が相違し、拡散抵抗素子部RAの温度とポリシリコン抵抗素子部RBの温度とに差が出て、温度特性を設計通りにすることが出来ない場合も起こる。また、温度特性の変動を抑えるために、アルミ変更、トリミング等による合わせ込みを行っているため、レイアウト面積が大きくなっていた。   Further, when the diffusion resistance element portion RA and the polysilicon resistance element portion RB are arranged side by side in a plan view, the distance from the heat generation source is different, and the temperature of the diffusion resistance element portion RA and the polysilicon resistance element portion are different. There may be a case where there is a difference between the RB temperature and the temperature characteristics cannot be made as designed. Further, in order to suppress fluctuations in temperature characteristics, alignment is performed by changing aluminum, trimming, etc., so that the layout area is large.

そこで、本発明は、上記課題を解決した半導体装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a semiconductor device that solves the above-described problems.

本発明は、抵抗素子が、
正又は負の温度特性を有する第1の抵抗素子部と、
該第1の抵抗素子部とは逆の温度特性を有する第2の抵抗素子部とを、
上下の配置で形成してあり、第1の抵抗素子部と第2の抵抗素子部とが重なっていることを特徴とする。
In the present invention, the resistance element is
A first resistance element portion having a positive or negative temperature characteristic;
A second resistance element portion having a temperature characteristic opposite to that of the first resistance element portion,
The first resistive element portion and the second resistive element portion are overlapped with each other.

本発明によれば、第1の抵抗素子部と第2の抵抗素子部とが並んで配置してある構成に比べてスペース効率の向上を図ることが出来る。   According to the present invention, space efficiency can be improved as compared with the configuration in which the first resistance element portion and the second resistance element portion are arranged side by side.

次に本発明の実施の形態について説明する。   Next, an embodiment of the present invention will be described.

[抵抗素子12の概略構成]
図1は発明の実施例1になるCMOS半導体装置10を示す。X1−X2が長さ方向、Y1−Y2が幅方向、Z1−Z2が厚さ方向である。CMOS半導体装置10は、シリコンチップ基板11上に、CMOS半導体素子及び抵抗素子等が密に作り込んである構成である。このうち、抵抗素子12の部分についてみると、温度による特性の変動が抑えられるように、第1の抵抗素子部であるところの正の温度特性を有する拡散抵抗素子部RAと第2の抵抗素子部であるところの負の温度特性を有するポリシリコン抵抗素子部RBとが、拡散抵抗素子部RAが下側、ポリシリコン抵抗素子部RBが上側とされて平面的に重なった配置で、且つ、電気的に直列に接続されている構成である。よって抵抗素子12は従来に比較してスペース効率良く形成され、CMOS半導体装置10のサイズA×Bは小さい。
[Schematic Configuration of Resistance Element 12]
FIG. 1 shows a CMOS semiconductor device 10 according to a first embodiment of the invention. X1-X2 is the length direction, Y1-Y2 is the width direction, and Z1-Z2 is the thickness direction. The CMOS semiconductor device 10 has a configuration in which CMOS semiconductor elements, resistance elements, and the like are densely formed on a silicon chip substrate 11. Among these, when the resistance element 12 is viewed, the diffused resistance element portion RA having the positive temperature characteristics and the second resistance element, which are the first resistance element portions, are suppressed so that the fluctuation of the characteristics due to temperature can be suppressed. The polysilicon resistance element portion RB having negative temperature characteristics, which is a portion, is arranged so that the diffusion resistance element portion RA is on the lower side and the polysilicon resistance element portion RB is on the upper side, and overlaps in a plane. It is the structure electrically connected in series. Therefore, the resistance element 12 is formed more efficiently than the conventional one, and the size A × B of the CMOS semiconductor device 10 is small.

[抵抗素子12の構成]
図2及び図3は抵抗素子12の部分を拡大して示す。図3は平面図であり、図2は図3中、II-II線に沿う断面図である。
[Configuration of Resistance Element 12]
2 and 3 show an enlarged portion of the resistance element 12. 3 is a plan view, and FIG. 2 is a cross-sectional view taken along line II-II in FIG.

拡散抵抗素子部RAは、半導体装置基板11の上面に形成してあり、Y1−Y2に長さL1の4本のP型拡散抵抗パターン20がX1−X2方向に等ピッチP1で平行に並んでおり、隣同士のP型拡散抵抗パターン20の両側の端が互い違いにコンタクト21Y1,21Y2でもって電気的に接続してある構成であり、ジグザク状となっている。25は拡散抵抗素子部RAの一端の端子であり、26は拡散抵抗素子部RAの他端の端子である。   The diffused resistor element RA is formed on the upper surface of the semiconductor device substrate 11, and four P-type diffused resistor patterns 20 having a length L1 are arranged in parallel at an equal pitch P1 in the X1-X2 direction in Y1-Y2. Further, both ends of the adjacent P-type diffused resistor pattern 20 are electrically connected by the contacts 21Y1 and 21Y2 alternately, and have a zigzag shape. Reference numeral 25 denotes a terminal at one end of the diffused resistor element RA, and reference numeral 26 denotes a terminal at the other end of the diffused resistor element RA.

各P型拡散抵抗パターン20の両端にはP+拡散されたP+型拡散層22,23が形成してある。コンタクト21Y1,21Y2はP+型拡散層22,23上に形成してあり、コンタクト21Y1,21Y2とP型拡散抵抗パターン20との接続部分の電気抵抗が低くされている。   P + diffusion layers 22 and 23 diffused P + are formed at both ends of each P diffusion resistance pattern 20. The contacts 21Y1 and 21Y2 are formed on the P + type diffusion layers 22 and 23, and the electrical resistance of the connection portion between the contacts 21Y1 and 21Y2 and the P type diffusion resistance pattern 20 is lowered.

拡散抵抗素子部RAのP型拡散抵抗パターン20は、通常よりも厚いシリコン酸化膜50で覆われている。シリコン酸化膜50が通常よりも厚いことによって、拡散抵抗パターン20とポリシリコンパターン40とは確実に絶縁されて分離されている。   The P-type diffused resistor pattern 20 of the diffused resistor element RA is covered with a silicon oxide film 50 that is thicker than usual. Since the silicon oxide film 50 is thicker than usual, the diffused resistor pattern 20 and the polysilicon pattern 40 are reliably insulated and separated.

ポリシリコン抵抗素子部RBは、シリコン酸化膜50の上面に形成してあり、Y1−Y2に長さL2の4本のポリシリコンパターン40がX1−X2方向に等ピッチP2で平行に並んでおり、隣同士のポリシリコンパターン40の両側の端が互い違いにコンタクト41Y1,41Y2でもって電気的に接続してある構成であり、ジグザク状となっている。35はポリシリコン抵抗素子部RBの一端の端子であり、36はポリシリコン抵抗素子部RBの他端の端子である。   The polysilicon resistance element portion RB is formed on the upper surface of the silicon oxide film 50, and four polysilicon patterns 40 having a length L2 are arranged in parallel at an equal pitch P2 in the X1-X2 direction in Y1-Y2. The ends of both sides of the adjacent polysilicon pattern 40 are alternately connected with the contacts 41Y1 and 41Y2 in a zigzag shape. Reference numeral 35 denotes a terminal at one end of the polysilicon resistance element portion RB, and reference numeral 36 denotes a terminal at the other end of the polysilicon resistance element portion RB.

ポリシリコン抵抗素子部RBは、シリコン酸化膜51でもって覆われている。   The polysilicon resistance element portion RB is covered with a silicon oxide film 51.

拡散抵抗素子部RAの端子26とポリシリコン抵抗素子部RBの端子36とが配線37でもって接続してあり、拡散抵抗素子部RAとポリシリコン抵抗素子部RBとは電気的に直列に接続されており、抵抗素子12を形成している。抵抗素子12は端子25と端子35とを有する。拡散抵抗素子部RAとポリシリコン抵抗素子部RBとはシリコン酸化膜50でもって分離されている。   A terminal 26 of the diffused resistor element RA and a terminal 36 of the polysilicon resistor element RB are connected by a wiring 37, and the diffused resistor element RA and the polysilicon resistor element RB are electrically connected in series. The resistor element 12 is formed. The resistance element 12 has a terminal 25 and a terminal 35. The diffused resistor element RA and the polysilicon resistor element RB are separated by the silicon oxide film 50.

ここで、長さL1,L2は、RA、RBを同一方向で形成した場合、L2<L1の関係にある。ピッチP1,P2は、P2<P1の関係にある。   Here, the lengths L1 and L2 have a relationship of L2 <L1 when RA and RB are formed in the same direction. The pitches P1 and P2 have a relationship of P2 <P1.

P型拡散抵抗パターン20及びポリシリコンパターン40は、Y1−Y2方向上の中心を一致して配置してあり、ポリシリコンパターン40は拡散抵抗パターン20の長さ内に含まれ、ポリシリコン抵抗素子部RBは、拡散抵抗素子部RAが形成されている領域の範囲内に配置してある。   The P-type diffused resistor pattern 20 and the polysilicon pattern 40 are arranged so that their centers in the Y1-Y2 direction coincide with each other. The polysilicon pattern 40 is included within the length of the diffused resistor pattern 20, and the polysilicon resistor element The part RB is disposed within the region where the diffused resistor element RA is formed.

ここで、P型拡散抵抗パターン20及びポリシリコンパターン40は長さL1,L2がL2<L1の関係にあり、且つ、Y1−Y2方向上の中心が一致して配置してあることにより、Y1−Y2方向上、Y1側のコンタクト41Y1及びY2側のコンタクト41Y2は夫々Y1側のコンタクト21Y1及びY2側のコンタクト21Y2より内側に位置することになり、コンタクト41Y1とコンタクト21Y1とは干渉し合わず、且つ、コンタクト41Y2とコンタクト21Y2とは干渉し合わない配置となっている。   Here, the P-type diffused resistor pattern 20 and the polysilicon pattern 40 are such that the lengths L1 and L2 are in a relationship of L2 <L1 and the centers in the Y1-Y2 direction coincide with each other. In the −Y2 direction, the Y1 side contact 41Y1 and the Y2 side contact 41Y2 are positioned inside the Y1 side contact 21Y1 and the Y2 side contact 21Y2, respectively, and the contact 41Y1 and the contact 21Y1 do not interfere with each other, In addition, the contact 41Y2 and the contact 21Y2 are arranged so as not to interfere with each other.

CMOS半導体装置10は使用中に加熱されて温度が変化するけれども、抵抗素子12の部分についてみると、ポリシリコン抵抗素子部RBの負の温度特性と拡散抵抗素子部RAの正の温度特性とが打ち消しあって、温度特性が零になるようにしてある。ここで、ポリシリコン抵抗素子部RBと拡散抵抗素子部RAとが平面図上同じ位置に位置しているため、発熱源からポリシリコン抵抗素子部RB及び拡散抵抗素子部RAまでの距離が同じとなり、ポリシリコン抵抗素子部RBの温度と拡散抵抗素子部RAの温度は同じとなり、温度特性を設計通りにすることが可能となる。なお、この抵抗素子12は例えばブリーダ抵抗である。   Although the CMOS semiconductor device 10 is heated during use and changes its temperature, the resistance element 12 has a negative temperature characteristic of the polysilicon resistance element part RB and a positive temperature characteristic of the diffusion resistance element part RA. The temperature characteristics are set to zero by canceling each other. Here, since the polysilicon resistance element portion RB and the diffusion resistance element portion RA are located at the same position on the plan view, the distance from the heat generation source to the polysilicon resistance element portion RB and the diffusion resistance element portion RA becomes the same. The temperature of the polysilicon resistance element portion RB and the temperature of the diffusion resistance element portion RA are the same, and the temperature characteristics can be made as designed. The resistance element 12 is a bleeder resistance, for example.

[抵抗素子12の製造工程]
次に、図4及び図5を参照して、上記抵抗素子12を形成する工程について説明する。
[Manufacturing Process of Resistance Element 12]
Next, with reference to FIGS. 4 and 5, a process of forming the resistance element 12 will be described.

先ず、図4(A),(B)に示すように、P型のシリコン基板60の上面側のうち前記の拡散抵抗素子部RAを形成する予定の領域にNウエル61を形成する。   First, as shown in FIGS. 4A and 4B, an N well 61 is formed in a region where the diffusion resistance element RA is to be formed on the upper surface side of a P-type silicon substrate 60.

次いで、Nウエル61の上面側に例えばボロンを拡散して、図4(C)に示すように、P型拡散抵抗パターン20を設計ルールに準拠した幅寸法及び間隔で形成する。   Next, for example, boron is diffused on the upper surface side of the N-well 61, and as shown in FIG. 4C, the P-type diffused resistor pattern 20 is formed with a width dimension and an interval conforming to the design rule.

次いで、シリコン基板60の上面に、シリコン酸化膜50を通常よりも厚く形成し、図4(D)に示すように、P型拡散抵抗パターン20がシリコン酸化膜50でもって覆われた状態とする。   Next, a silicon oxide film 50 is formed on the upper surface of the silicon substrate 60 to be thicker than usual, and the P-type diffusion resistance pattern 20 is covered with the silicon oxide film 50 as shown in FIG. .

次いで、CVDを行って、図4(E)に示すように、ポリシリコンパターン40を設計ルールに準拠した幅寸法及び間隔でシリコン酸化膜50上に形成する。   Next, CVD is performed to form a polysilicon pattern 40 on the silicon oxide film 50 with a width dimension and an interval conforming to the design rule, as shown in FIG.

次いで、シリコン基板60の上面に、シリコン酸化膜51を形成し、図5(A)に示すように、ポリシリコンパターン40がシリコン酸化膜51でもって覆われた状態とする。   Next, a silicon oxide film 51 is formed on the upper surface of the silicon substrate 60 so that the polysilicon pattern 40 is covered with the silicon oxide film 51 as shown in FIG.

次いで、二層のシリコン酸化膜50、51のうちP型拡散抵抗20の両端とポリシリコンパターン40の両端に対応する部分を除去して開口53,54を形成し、P型拡散抵抗20の両端にP+拡散させて、図5(B)に示すように、P+型拡散層22,23を形成する。このとき、ポリシリコンパターン40の両端にもP+拡散がなされる。また、このとき、基板60の上面全体に薄い酸化膜(図示せず)が形成される。   Next, portions of the two-layer silicon oxide films 50 and 51 corresponding to both ends of the P-type diffused resistor 20 and both ends of the polysilicon pattern 40 are removed to form openings 53 and 54, and both ends of the P-type diffused resistor 20 are formed. P + diffusion layers 22 and 23 are formed as shown in FIG. 5B. At this time, P + diffusion is also performed on both ends of the polysilicon pattern 40. At this time, a thin oxide film (not shown) is formed on the entire upper surface of the substrate 60.

最後に、ポリシリコンパターン40の両端とP型拡散抵抗20の両端に対応する部分を除去して開口55,56を形成し、アルミニウムを蒸着し、エッチングして、開口55,56を埋めるように、コンタクト21、41、端子25,35を形成する。これによって、抵抗素子12が形成される。   Finally, portions corresponding to both ends of the polysilicon pattern 40 and both ends of the P-type diffusion resistor 20 are removed to form openings 55 and 56, and aluminum is deposited and etched to fill the openings 55 and 56. The contacts 21 and 41 and the terminals 25 and 35 are formed. Thereby, the resistance element 12 is formed.

上記より分かるように、抵抗素子12は、図6に示す拡散抵抗素子部RAとポリシリコン抵抗素子部RBとが平面図上並んだ配置の抵抗素子を製造する工程と略同じ工程でもって、即ち、従来の製造工程を変更せずに製造することが可能である。   As can be seen from the above, the resistance element 12 has substantially the same process as the process of manufacturing the resistance element in which the diffused resistance element portion RA and the polysilicon resistance element portion RB shown in FIG. It is possible to manufacture without changing the conventional manufacturing process.

[変形例]
上記の構造の抵抗素子12はバイポーラ半導体装置にも形成することが可能である。
[Modification]
The resistance element 12 having the above structure can also be formed in a bipolar semiconductor device.

なお、配線37は形成しないで、拡散抵抗素子部RAを一つの抵抗素子、ポリシリコン抵抗素子部RBを別の一つの抵抗素子として使用することも可能である。   It is also possible to use the diffusion resistance element portion RA as one resistance element and the polysilicon resistance element portion RB as another resistance element without forming the wiring 37.

なお、温度特性を考慮しない場合には、ポリシリコン抵抗素子部RBに変えて別の抵抗素子部を設けてもよい。   In the case where temperature characteristics are not considered, another resistance element portion may be provided instead of the polysilicon resistance element portion RB.

また、前記のように温度特性を零であるようにする他に、ポリシリコン抵抗素子部RB及び拡散抵抗素子部RAを適宜形成して、上記の構造の抵抗素子12を故意に何がしかの温度特性を有するように構成することも出来る。   In addition to making the temperature characteristics zero as described above, the polysilicon resistance element portion RB and the diffusion resistance element portion RA are appropriately formed, and the resistance element 12 having the above-described structure is deliberately formed. It can also be configured to have temperature characteristics.

また、前記のように抵抗素子部RA、RBの向きを揃えなくても、抵抗素子12は形成出来る。例えば、抵抗素子部RAの向きに対して90度の向きに抵抗素子部RBを形成してもよい。その場合には、P型拡散抵抗パターン及びポリシリコンパターンの長さは、L2<L1の関係はなくてもよい。   Further, the resistance element 12 can be formed without aligning the directions of the resistance element portions RA and RB as described above. For example, the resistance element portion RB may be formed in a direction of 90 degrees with respect to the direction of the resistance element portion RA. In that case, the lengths of the P-type diffused resistor pattern and the polysilicon pattern may not have a relationship of L2 <L1.

本発明の実施例1になるCMOS半導体装置を示す斜視図である。It is a perspective view which shows the CMOS semiconductor device which becomes Example 1 of this invention. CMOS半導体装置の抵抗素子の部分を拡大して示す、図3中、II-II線に沿う断面図である。It is sectional drawing which follows the II-II line | wire in FIG. 3, which expands and shows the part of the resistive element of a CMOS semiconductor device. CMOS半導体装置の抵抗素子の部分を拡大して示す平面図である。It is a top view which expands and shows the part of the resistive element of a CMOS semiconductor device. CMOS半導体装置の抵抗素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the resistive element of a CMOS semiconductor device. 図4(E)に続く抵抗素子の製造工程を示す図である。It is a figure which shows the manufacturing process of the resistive element following FIG.4 (E). 従来のCMOS半導体装置を示す斜視図である。It is a perspective view which shows the conventional CMOS semiconductor device.

符号の説明Explanation of symbols

10 CMOS半導体装置
11 シリコンチップ基板
12 抵抗素子
RA 拡散抵抗素子部
RB ポリシリコン抵抗素子部
20 P型拡散抵抗パターン
21Y1,21Y2 コンタクト
22,23 P+型拡散層
25,26 端子
35,36 端子
37 配線
40 ポリシリコンパターン
41Y1,41Y2 コンタクト
50,51 シリコン酸化膜
60 P型のシリコン基板
61 Nウエル
DESCRIPTION OF SYMBOLS 10 CMOS semiconductor device 11 Silicon chip substrate 12 Resistance element RA Diffusion resistance element part RB Polysilicon resistance element part 20 P-type diffusion resistance pattern 21Y1, 21Y2 Contact 22, 23 P + type diffusion layer 25, 26 Terminal 35, 36 Terminal 37 Wiring 40 Polysilicon pattern 41Y1, 41Y2 Contact 50, 51 Silicon oxide film 60 P type silicon substrate 61 N well

Claims (4)

抵抗素子を有し、
該抵抗素子は、正又は負の温度特性を有する第1の抵抗素子部と、該第1の抵抗素子部とは逆の温度特性を有する第2の抵抗素子部とが上下の配置で形成してあり、該第1の抵抗素子部と該第2の抵抗素子部とが重なっている構成であることを特徴とする半導体装置。
Having a resistance element,
The resistance element includes a first resistance element portion having a positive or negative temperature characteristic and a second resistance element portion having a temperature characteristic opposite to that of the first resistance element portion. A semiconductor device characterized in that the first resistance element portion and the second resistance element portion overlap each other.
請求項1に記載の半導体装置において、
前記第1の抵抗素子部は、拡散抵抗素子部であり、下側に位置し、
前記第2の抵抗素子部は、ポリシリコン抵抗素子部であり、前記拡散抵抗素子部の上側に位置している構成としたことを特徴とする半導体装置。
The semiconductor device according to claim 1,
The first resistance element portion is a diffused resistance element portion, and is located on the lower side.
2. The semiconductor device according to claim 1, wherein the second resistance element portion is a polysilicon resistance element portion and is positioned above the diffused resistance element portion.
請求項2に記載の半導体装置において、
前記拡散抵抗素子部と前記ポリシリコン抵抗素子部とは電気的に直列に接続してある構成としたことを特徴とする半導体装置。
The semiconductor device according to claim 2,
The semiconductor device characterized in that the diffusion resistance element portion and the polysilicon resistance element portion are electrically connected in series.
請求項2又は請求項3に記載の半導体装置において、
前記拡散抵抗素子部は、複数の拡散抵抗パターンが平行に並んでおり、隣同士の拡散抵抗パターンの両側の端が互い違いに第1のコンタクトでもって電気的に接続してあり、ジグザク状となっている構成であり、
前記ポリシリコン抵抗素子部は、複数のポリシリコンパターンが平行に並んでおり、隣同士のポリシリコンパターンの両側の端が互い違いに第2のコンタクトでもって電気的に接続してあり、ジグザク状となっている構成であり、
前記ポリシリコンパターンの長さは前記拡散抵抗パターンの長さよりも短く、前記第1のコンタクトと前記第2のコンタクトとは干渉しないで配置してある構成としたことを特徴とする半導体装置。
The semiconductor device according to claim 2 or claim 3,
The diffused resistor element portion has a plurality of diffused resistor patterns arranged in parallel, and the ends on both sides of the adjacent diffused resistor pattern are alternately electrically connected by the first contact, and have a zigzag shape. The configuration
In the polysilicon resistance element portion, a plurality of polysilicon patterns are arranged in parallel, and both ends of the adjacent polysilicon patterns are alternately electrically connected by the second contacts, It is the composition that
The length of the polysilicon pattern is shorter than the length of the diffused resistor pattern, and the first and second contacts are arranged so as not to interfere with each other.
JP2004381864A 2004-12-28 2004-12-28 Semiconductor device Pending JP2006190709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381864A JP2006190709A (en) 2004-12-28 2004-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381864A JP2006190709A (en) 2004-12-28 2004-12-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2006190709A true JP2006190709A (en) 2006-07-20

Family

ID=36797661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381864A Pending JP2006190709A (en) 2004-12-28 2004-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2006190709A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091758A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device and electronic apparatus
JP2011090637A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Regulator, integrated circuit device and electronic apparatus
JP2014099926A (en) * 2014-02-20 2014-05-29 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus
US9014654B2 (en) 2011-12-09 2015-04-21 Murata Manufacturing Co., Ltd. Semiconductor apparatus
WO2015166654A1 (en) * 2014-05-01 2015-11-05 パナソニックIpマネジメント株式会社 Semiconductor device and semiconductor module
JP2016201415A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929054U (en) * 1982-08-18 1984-02-23 日本電気株式会社 semiconductor equipment
JPS62234363A (en) * 1986-04-04 1987-10-14 Fuji Electric Co Ltd Semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929054U (en) * 1982-08-18 1984-02-23 日本電気株式会社 semiconductor equipment
JPS62234363A (en) * 1986-04-04 1987-10-14 Fuji Electric Co Ltd Semiconductor integrated circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091758A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device and electronic apparatus
JP2011090637A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Regulator, integrated circuit device and electronic apparatus
US9014654B2 (en) 2011-12-09 2015-04-21 Murata Manufacturing Co., Ltd. Semiconductor apparatus
JP2014099926A (en) * 2014-02-20 2014-05-29 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus
WO2015166654A1 (en) * 2014-05-01 2015-11-05 パナソニックIpマネジメント株式会社 Semiconductor device and semiconductor module
JP2016201415A (en) * 2015-04-08 2016-12-01 富士電機株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
CN107301990B (en) Contact pad structure and its manufacturing method
JP2010219332A (en) Power supply wiring structure of multilayer wiring layer and method for manufacturing the same
JP2013539605A (en) Resistance element and manufacturing method thereof
JP2006190709A (en) Semiconductor device
CN102956614B (en) Semiconductor device and its manufacture method
JP2009218264A (en) Semiconductor device
JP2006229186A (en) Semiconductor integrated circuit and manufacturing method therefor
JP2011199034A (en) Semiconductor device
JP5554736B2 (en) Semiconductor device
TWI623002B (en) Mass production method of high frequency inductor
JP7291514B2 (en) Wiring circuit board and manufacturing method thereof
KR20010014957A (en) Semiconductor device and manufacturing method thereof
TWI497690B (en) 3d stacking semiconductor device and manufacturing method thereof
JP4191110B2 (en) Semiconductor device
TWI847515B (en) Semconductor structure and method of forming thereof
US8093632B2 (en) Phase change memory device accounting for volume change of phase change material and method for manufacturing the same
KR100745069B1 (en) Method for laying out storage node contact and storage node of semiconductor device, semiconductor device thereby
JP4024736B2 (en) Lateral type semiconductor device
KR20190012272A (en) Semiconductor capacitor
JP2023042764A (en) Capacitor and manufacturing method of capacitor
TW202422664A (en) Semconductor structure and method of forming thereof
JP2008124449A (en) Semiconductor device and method of fabricating same
JP5481928B2 (en) Wiring layer layout method and semiconductor device
US8710553B1 (en) Method and apparatus for connecting signal lines of multiple layers to certain contacts while preventing connections with other contacts
KR20150054327A (en) Semiconductor Device And Method of Forming The same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104