JPS62229833A - Photochemical reaction - Google Patents

Photochemical reaction

Info

Publication number
JPS62229833A
JPS62229833A JP7186786A JP7186786A JPS62229833A JP S62229833 A JPS62229833 A JP S62229833A JP 7186786 A JP7186786 A JP 7186786A JP 7186786 A JP7186786 A JP 7186786A JP S62229833 A JPS62229833 A JP S62229833A
Authority
JP
Japan
Prior art keywords
light
photochemical reaction
irradiated
reaction method
organic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7186786A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mochizuki
康弘 望月
Kenji Shibata
芝田 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP7186786A priority Critical patent/JPS62229833A/en
Publication of JPS62229833A publication Critical patent/JPS62229833A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decompose and treat the organic substance layers on substrates at high vaporization and decomposition rates by intermittingly performing the irradiation of light from light sources on the surfaces of the organic substance layers. CONSTITUTION:Ultraviolet lights from low-pressure mercury-arc lamps 17 are irradiated on the surfaces of the photosensitive resins on wafers 13 in a state that oxygen gas or gas containing oxygen gas has been fed in a chamber 11 through a gas feeding nozzle 20. At the same time, a current is made to flow through a heater 14 and with the wafers 13 heated by the heating of the heater 14 through a susceptor 12, the susceptor 12 is rotated by the driving of a motor 16 and the wafers 13 on the susceptor 12 are rotated along the upper part of the circumference. As fan-shaped opening parts 19 are ready-formed on a light-shielding plate 18, the ultraviolet lights are irradiated intermittingly and uniformly on the surfaces of the photosensitive resins formed on the surfaces of the wafers 13. Thereby, even though the irradiation intensity of light is made larger to some extent, the vaporization rate and the decomposition rate of the organic substances are nover saturated and the oraganic substance layers can be efficiently decomposed and removed in a short time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光化学反応方法に係り、特に基体上の有機物層
の気化、分解処理における分解処理速度を向上させるの
に好適な光化学反応方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photochemical reaction method, and particularly to a photochemical reaction method suitable for improving the decomposition processing speed in vaporizing and decomposing an organic layer on a substrate.

〔従来の技術〕[Conventional technology]

ウェハ上に存在する感光性樹脂を除去するために、種々
の方法が実施されているが、自動化が容易、メンテナン
スが簡単、ウェハの損傷が少ないといった有利な点から
UVオゾン法が注目されている。以下、第9図によりU
Vオゾン法の1例を説明する。
Various methods have been implemented to remove the photosensitive resin present on the wafer, but the UV ozone method is attracting attention because of its advantages such as easy automation, easy maintenance, and less damage to the wafer. . Below, according to Figure 9, U
An example of the V ozone method will be explained.

チャンバ1内にはウェハ3を配置するためのサセプタ2
)サセプタ2を介してウェハ3を加熱するための抵抗式
ヒータ7が設置され、チャンバ1内にガス供給ノズル4
から酸素ガス又は酸素ガス含有ガスを供給した状態でウ
ェハ3上に低圧水銀灯5により紫外光(UV光)を照射
できるようになっている。低圧水銀灯5は、波長185
nm、および254nmの強度の強いものを用いている
Inside the chamber 1 is a susceptor 2 for placing a wafer 3.
) A resistance type heater 7 is installed to heat the wafer 3 via the susceptor 2, and a gas supply nozzle 4 is installed in the chamber 1.
Ultraviolet light (UV light) can be irradiated onto the wafer 3 by a low-pressure mercury lamp 5 while oxygen gas or oxygen-containing gas is supplied from the wafer 3 . The low pressure mercury lamp 5 has a wavelength of 185
254 nm and 254 nm are used.

この装置でサセプタ2上に感光性樹脂を塗布したウェハ
3を配置し、紫外線を照射すると所定時間経過後にはウ
ェハ3上の感光性樹脂は、CO2やH,O等になって、
気化、分解して除去される。
With this device, a wafer 3 coated with a photosensitive resin is placed on a susceptor 2, and when ultraviolet rays are irradiated, the photosensitive resin on the wafer 3 turns into CO2, H, O, etc. after a predetermined period of time.
It is removed by vaporization and decomposition.

この原理は、感光性樹脂層中の分子結合(例えば、C−
C,C−H結合)が紫外線のエネルギにより分解する反
応と、酸素に紫外線を照射することにより生成したオゾ
ンや酸素ラジカルが、これらの結合を解かれた炭素原子
や水素原子等と反応し、二酸化炭素や水等を生じる気化
反応とによるものと考えられている。
This principle is based on molecular bonds in the photosensitive resin layer (for example, C-
C, C-H bonds) are decomposed by the energy of ultraviolet rays, and ozone and oxygen radicals generated by irradiating oxygen with ultraviolet rays react with carbon atoms, hydrogen atoms, etc. that have broken these bonds. It is thought that this is due to a vaporization reaction that produces carbon dioxide, water, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ここで感光性樹脂の気化分解速度Rを大きくするために
は、その原理から明らかなように低圧水銀灯5から照射
される紫外光の照射強度を大きくすることが有効である
。第10図は気化分解速度Rに及ぼす紫外光照射強度!
の影響を示している。
Here, in order to increase the vaporization decomposition rate R of the photosensitive resin, it is effective to increase the irradiation intensity of the ultraviolet light irradiated from the low-pressure mercury lamp 5, as is clear from the principle. Figure 10 shows the effect of ultraviolet light irradiation intensity on vaporization decomposition rate R!
It shows the influence of

第10図から明らかなように紫外光照射強度■を強くす
る従って、気化分解速度Rが大きくなることが確かめら
れた。同時に紫外光照射強度■が100w/m”以上で
は気化分解速度Rは飽和状態となり、I X 10−”
m/s e c以上の気化分解速度Rが得られないこと
が判明した。
As is clear from FIG. 10, it was confirmed that as the ultraviolet light irradiation intensity (2) was increased, the vaporization decomposition rate R increased. At the same time, when the ultraviolet light irradiation intensity ■ is 100 w/m" or more, the vaporization decomposition rate R becomes saturated, and I x 10-"
It was found that a vaporization decomposition rate R of m/sec or higher could not be obtained.

この理由は明らかではないが、紫外光照射強度が大きく
なると、反応機構がそれまでの光照射過程律速ではなく
なること、及び感光性樹脂が難分解性物質へ変質するこ
と等が考えられる。
The reason for this is not clear, but it is thought that when the intensity of ultraviolet light irradiation increases, the reaction mechanism no longer controls the rate of the light irradiation process, and the photosensitive resin changes into a difficult-to-decompose substance.

本発明の目的は、上記した従来技術の問題点を解消し、
基体上の有機物層を高い気化分解速度で分解処理できる
光化学反応方法を提供することにある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a photochemical reaction method capable of decomposing an organic layer on a substrate at a high vaporization rate.

〔問題点を解決するための手段〕[Means for solving problems]

上記した問題点を解決するために、本発明は、基体上の
有機物層を酸素を含む気体中で加熱すると同時に有機物
層に光源から光を照射して有機物層を酸化、分解する際
に、光源からの有機物層面への光の照射を断続的に行う
ようにしたものである。
In order to solve the above-mentioned problems, the present invention provides a method for heating an organic material layer on a substrate in a gas containing oxygen and at the same time irradiating the organic material layer with light from a light source to oxidize and decompose the organic material layer. The organic material layer is irradiated with light intermittently.

〔作用〕[Effect]

有機物層を有する基体を、酸素ガスを含む気体中で加熱
すると同時に光源からの光を断続的に照射すると、光の
照射強度をある程度まで大きくしても有機物の気化分解
速度が飽和することなく、増大する。したがって気体上
の有機物層を短時間で効率よく分解除去できる。
When a substrate having an organic substance layer is heated in a gas containing oxygen gas and at the same time is intermittently irradiated with light from a light source, the rate of vaporization and decomposition of the organic substance does not become saturated even if the intensity of light irradiation is increased to a certain degree. increase Therefore, the organic layer on the gas can be efficiently decomposed and removed in a short time.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明にかかる方法を実施するのに好適な感
光性樹脂分解除去装置の第1の実施例を示す断面図であ
る。第1図において、チャンバ1)内にはサセプタ12
が配置され、このサセプタ12の上面にはウェハ13が
設置されている。サセプタ12にはヒータ14が内蔵さ
れるとともに回転軸15が連結され、この回転軸15は
モータ16により回転するようになっている。チャンバ
1)内のウェハ13の上方に低圧水銀灯17が設置され
、この低圧水銀灯17の下方に遮光板18が配置されて
いる。この遮光板18は、第2図に示すように円板状に
形成され、遮光板の中心部から周縁部になるにつれて次
第にその幅が拡大され12個の開口部(スリット)19
が遮光板18の中心部から放射状に設けられている。な
お、第1図中、20は酸素ガス又は酸素を含むガスを供
給するためのガス供給ノズル、21はガス排気ノズルで
ある。
FIG. 1 is a sectional view showing a first embodiment of a photosensitive resin decomposition and removal apparatus suitable for carrying out the method according to the present invention. In FIG. 1, there is a susceptor 12 in the chamber 1).
A wafer 13 is placed on the upper surface of the susceptor 12. The susceptor 12 has a built-in heater 14 and is connected to a rotating shaft 15, which is rotated by a motor 16. A low-pressure mercury lamp 17 is installed above the wafer 13 in the chamber 1), and a light shielding plate 18 is placed below the low-pressure mercury lamp 17. This light shielding plate 18 is formed into a disc shape as shown in FIG.
are provided radially from the center of the light shielding plate 18. In FIG. 1, 20 is a gas supply nozzle for supplying oxygen gas or a gas containing oxygen, and 21 is a gas exhaust nozzle.

第1図および第2図に示す装置において、チャンバ1)
内にガス供給ノズル20から酸素ガス又は酸素ガスを含
むガスが供給された状態でウェハ13上の感光性樹脂面
に低圧水銀灯17からの紫外光が照射される。同時にヒ
ータ14に通電され、ヒータ14の加熱によりサセプタ
12を介してウェハ13が加熱されるとともにモータ1
6の駆動によりサセプタ12が回転し、サセプタ12上
のウェハ13は円周上に沿って回転する。第2図に示す
遮光板18には、扇形の開口部19が形成されているの
で、遮光板1日の半径方向の照射光量が等しくされてい
る。したがって、回転運動するサセプタ12上のウェハ
13面上に形成された感光性樹脂の面には、感光性樹脂
の面に断続的に、かつ均一に紫外光が照射される。
In the apparatus shown in FIGS. 1 and 2, chamber 1)
The photosensitive resin surface on the wafer 13 is irradiated with ultraviolet light from the low-pressure mercury lamp 17 while oxygen gas or a gas containing oxygen gas is supplied from the gas supply nozzle 20 inside the wafer 13 . At the same time, the heater 14 is energized, and the heating of the heater 14 heats the wafer 13 via the susceptor 12, and the motor 1
6 rotates the susceptor 12, and the wafer 13 on the susceptor 12 rotates along the circumference. Since the light-shielding plate 18 shown in FIG. 2 is formed with a fan-shaped opening 19, the amount of light irradiated on the light-shielding plate in the radial direction in one day is made equal. Therefore, the surface of the photosensitive resin formed on the surface of the wafer 13 on the rotating susceptor 12 is intermittently and uniformly irradiated with ultraviolet light.

ここで第1図および第2図に示す装置において、サセプ
タ12を6Orpmで回転し、ウェハを150℃とした
ときの感光性樹脂の気化分解速度Rと平均紫外光照射強
度!との関係を第3図に実線で示す。なお、第3図中の
破線は、遮光板18を設置しない他は、上記と同様な条
件により操作したとき(従来例)の特性を示している。
Here, in the apparatus shown in FIGS. 1 and 2, when the susceptor 12 is rotated at 6 Orpm and the wafer is heated to 150° C., the rate R of vaporization and decomposition of the photosensitive resin and the average ultraviolet light irradiation intensity! The relationship with is shown by the solid line in Figure 3. Note that the broken line in FIG. 3 indicates the characteristics when operated under the same conditions as above (prior art example) except that the light shielding plate 18 is not installed.

第3図から明らかなように、従来例によれば1、紫外光
照射強度■を高くしても感光性樹脂の気化分解速度Rが
lXl0−”m/sec以上になることなく飽和してい
る。一方、本実施例では、紫外光照射強度!を高くする
に従って気化分解速度Rが高くなり、紫外光照射強度■
が200w/m”において、気化分解速度Rが2. 1
 X 10−’m7secとなり、従来例の2倍以上の
気化分解速度を得ることができる。
As is clear from Fig. 3, according to the conventional example, even if the ultraviolet light irradiation intensity (1) is increased, the vaporization decomposition rate R of the photosensitive resin is saturated without exceeding lXl0-''m/sec. On the other hand, in this example, as the ultraviolet light irradiation intensity ! increases, the vaporization decomposition rate R increases, and the ultraviolet light irradiation intensity !
is 200 w/m'', the vaporization decomposition rate R is 2.1
X 10-'m7 sec, and it is possible to obtain a vaporization decomposition rate that is more than twice that of the conventional example.

第1図および第2図に示す装置において、遮光板18の
寸法、遮光板19の開口部の数、開口部面積と遮光部面
積との比(開口率)、サセプタ12の回転数等は、除去
しようとする感光性樹脂の種類、ウェハ13に対する加
熱温度、低圧水銀灯17等の光源の強度等を考慮し、任
意に選定することができる。
In the apparatus shown in FIGS. 1 and 2, the dimensions of the light shielding plate 18, the number of openings in the light shielding plate 19, the ratio of the opening area to the light shielding area (aperture ratio), the rotation speed of the susceptor 12, etc. It can be arbitrarily selected in consideration of the type of photosensitive resin to be removed, the heating temperature for the wafer 13, the intensity of the light source such as the low pressure mercury lamp 17, etc.

〔発明の他の実施例〕[Other embodiments of the invention]

第4図は、本発明にかかる方法を実施するための感光性
樹脂分解除去装置の第2の実施例を示す断面図である。
FIG. 4 is a sectional view showing a second embodiment of a photosensitive resin decomposition and removal apparatus for carrying out the method according to the present invention.

第4図において、ヒータ31を内蔵するサセプタ32が
チャンバ33に固定され、第2図に示す遮光板と同様の
構造の遮光板34がモータ35の駆動により回転する回
転軸36を介して回転する機構となっている点が、第1
の実施例における装置と基本的に異なる。なお、37は
ウェハ、38はガス供給ノズル、39は低圧水銀灯、4
0はガス排気ノズルである。
In FIG. 4, a susceptor 32 containing a heater 31 is fixed to a chamber 33, and a light shielding plate 34 having the same structure as the light shielding plate shown in FIG. The first point is that it is a mechanism.
The device is fundamentally different from the device in the embodiment. In addition, 37 is a wafer, 38 is a gas supply nozzle, 39 is a low-pressure mercury lamp, and 4
0 is a gas exhaust nozzle.

第4図において、遮光板34の回転によりウェハ37上
の感光性樹脂には断続的に紫外光が照射され、高い気化
分解速度で感光性樹脂を分解除去することができる。特
に本実施例において、回転により発塵の可能性が高く、
比較的重量の大きいサセプタ32を回転させることなく
、板状の軽重量の遮光板34を回転させるので発塵を未
然に防止でき、かつモータ35の容量を小さくできる。
In FIG. 4, as the light shielding plate 34 rotates, the photosensitive resin on the wafer 37 is intermittently irradiated with ultraviolet light, and the photosensitive resin can be decomposed and removed at a high vaporization rate. Especially in this example, there is a high possibility of dust generation due to rotation.
Since the light shielding plate 34 is rotated without rotating the relatively heavy susceptor 32, dust generation can be prevented and the capacity of the motor 35 can be reduced.

第5図は、本発明にかかる方法を実施するための感光性
樹脂分解除去装置の第3の実施例を示す断面図である。
FIG. 5 is a sectional view showing a third embodiment of a photosensitive resin decomposition and removal apparatus for carrying out the method according to the present invention.

第5図において、ヒータ51を内鱗するサセプタ52が
、チャンバ53の外部に設置されたモータ54の駆動に
より回転軸55を介して回転するようになっている。ま
た、第2図の遮光板と同様の構造の遮光板56がチャン
バ53の外部に設置されたモータ57の駆動によす回転
軸58を介してサセプタ52と逆方向に回転する機構と
なっている点が第1図に示す装置と基本的に異なる。な
お、59はウェハ、60は低圧水銀灯、61はガス供給
ノズル、62はガス排気ノズルである。
In FIG. 5, a susceptor 52 enclosing a heater 51 is rotated via a rotating shaft 55 by a motor 54 installed outside a chamber 53. As shown in FIG. Further, a light shielding plate 56 having a structure similar to that of the light shielding plate shown in FIG. This is fundamentally different from the device shown in FIG. Note that 59 is a wafer, 60 is a low-pressure mercury lamp, 61 is a gas supply nozzle, and 62 is a gas exhaust nozzle.

本実施例によれば、回転により発塵の可能性の高いサセ
プタ52の回転数を大きくすることなく、低圧水銀灯6
0からウェハ59に照射される光の明暗のパルスを大き
くすることができ、気化分解速度を高めることができる
According to this embodiment, the low-pressure mercury lamp 6 can be used without increasing the rotational speed of the susceptor 52, which is likely to generate dust due to its rotation.
The bright and dark pulses of light irradiated onto the wafer 59 from zero can be increased, and the rate of vaporization and decomposition can be increased.

第6図は、本発明にかかる方法を実施するための感光性
樹脂分解除去装置の第4の実施例を示す断面図である。
FIG. 6 is a sectional view showing a fourth embodiment of a photosensitive resin decomposition and removal apparatus for carrying out the method according to the present invention.

第6図において、モータ101によって回転するコンベ
ヤ102内にヒータ103が配置されている。コンベヤ
102に上方にはチャンバ104が配置され、このチャ
ンバ104の天井面には一対の平行な円柱状の低圧水銀
灯105が所定の間隔をおいて複数個配置され、これら
の一対の低圧水銀灯105より下方で、かつ隣接する一
対の低圧水銀灯105の間に板状の遮光板106が配置
されている。またチャンバ104とコンベヤ102との
間にはシール部材107が設けられている。なお、10
8はウェハ、109はガス供給ノズル、1)0はガス排
気ノズルである。
In FIG. 6, a heater 103 is disposed within a conveyor 102 that is rotated by a motor 101. As shown in FIG. A chamber 104 is arranged above the conveyor 102, and a plurality of parallel cylindrical low-pressure mercury lamps 105 are arranged on the ceiling surface of the chamber 104 at predetermined intervals. A plate-shaped light-shielding plate 106 is arranged below and between a pair of adjacent low-pressure mercury lamps 105 . Further, a sealing member 107 is provided between the chamber 104 and the conveyor 102. In addition, 10
8 is a wafer, 109 is a gas supply nozzle, and 1) 0 is a gas exhaust nozzle.

この装置では、コンベヤ102上に所定の間隔をおいて
ウェハ108が載置され、コンベヤ102の移動に伴い
、チャンバ104内で移動する。
In this apparatus, wafers 108 are placed on a conveyor 102 at predetermined intervals and are moved within a chamber 104 as the conveyor 102 moves.

チャンバ104内にはガス供給ノズル109から酸素ガ
ス又は酸素ガスを含むガスが供給され、低圧水銀灯10
5から紫外光が照射される。ウェハ108はコンベヤ1
02によって移動する際、ヒータ103を介して加熱さ
れると同時に逐次光の照射傾城と非照射領域を通過する
。このとき、紫外光の明暗のパルスはコンベヤ102の
e ’JJJ a 度により調整される。
Oxygen gas or a gas containing oxygen gas is supplied into the chamber 104 from a gas supply nozzle 109, and the low-pressure mercury lamp 10
Ultraviolet light is irradiated from 5. Wafer 108 is conveyor 1
02, it is heated by the heater 103 and at the same time passes successively through the irradiated inclined area and the non-irradiated area. At this time, the bright and dark pulses of the ultraviolet light are adjusted by the e'JJJ a degree of the conveyor 102.

本実施例によれば、ウェハ108上の感光性樹脂の除去
操作を一過処理できるため、ウェハ108の処理を連続
的に行うことができ、また処理時間の短縮を図ることが
できる。
According to this embodiment, since the operation for removing the photosensitive resin on the wafer 108 can be performed in a one-time process, the wafer 108 can be processed continuously, and the processing time can be shortened.

第7図は、本発明にかかる方法を実施するための感光性
樹脂分解除去装置の第5の実施例を示す断面図である。
FIG. 7 is a sectional view showing a fifth embodiment of a photosensitive resin decomposition and removal apparatus for carrying out the method according to the present invention.

第7図の装置は、基本的には第6図に示す実施例の装置
と同じであるが、第6図の遮光板106の代わりに遮光
ベル)121が配設されている。この遮光ベルト121
は、第8図に示すようにベルトの長手方向に沿って所定
の間隔をおいて複数個の開口部122が設けられている
The apparatus of FIG. 7 is basically the same as the apparatus of the embodiment shown in FIG. 6, but a light-shielding bell 121 is provided in place of the light-shielding plate 106 of FIG. This light shielding belt 121
As shown in FIG. 8, a plurality of openings 122 are provided at predetermined intervals along the longitudinal direction of the belt.

遮光ベルト121はモータ123に移動自在に設置され
るとともにこの遮光ベルト121内の空間部には遮光ベ
ル)121の移動方向に沿って所定の間隔をおいて低圧
水銀灯124が設置されている。
The light-shielding belt 121 is movably installed on a motor 123, and low-pressure mercury lamps 124 are installed in the space inside the light-shielding belt 121 at predetermined intervals along the moving direction of the light-shielding belt 121.

第7図において、その他の構成部分は第6図に示す装置
と実質的に同じであるので第6図と同一符号で示し、詳
細な説明は省略する。
In FIG. 7, other constituent parts are substantially the same as the apparatus shown in FIG. 6, and therefore are designated by the same reference numerals as in FIG. 6, and detailed explanation thereof will be omitted.

第7図に示す装置において、チャンバ104内に酸素ガ
ス又は酸素ガスを含むガスが供給された状態でコンベヤ
102上のウェハ108はヒータ103を介して加熱さ
れる。同時に遮光ベルト121はモータ123により一
定間隔で並設された光源(低圧水銀灯124)とウェハ
108との間を移動し、ウェハ108の面には紫外光が
断続的に照射される。このとき、ウェハ108および遮
光ベル)121はそれぞれ第7図中、矢印で示すように
互いに反対方向に移動する。
In the apparatus shown in FIG. 7, a wafer 108 on a conveyor 102 is heated via a heater 103 while oxygen gas or a gas containing oxygen gas is supplied into a chamber 104. At the same time, the light shielding belt 121 is moved by a motor 123 between the light sources (low-pressure mercury lamps 124) arranged in parallel at regular intervals and the wafer 108, and the surface of the wafer 108 is intermittently irradiated with ultraviolet light. At this time, the wafer 108 and the light shielding bell 121 move in opposite directions as shown by arrows in FIG.

本実施例によれば、光の明暗のパルスを、コンベヤ10
2の移動速度を変えることなく変化させることができ、
最適なパルス数を選択することができる。
According to this embodiment, the bright and dark pulses of light are transmitted to the conveyor 10.
You can change the movement speed of 2 without changing it,
The optimal number of pulses can be selected.

第1図、第4図〜第7図に示す装置による光化学反応方
法では、紫外光をウェハ面上の感光性樹脂に対して断続
的に照射することにより感光性樹脂の気化分解速度Rが
飽和することなく増大する。
In the photochemical reaction method using the apparatus shown in Figures 1 and 4 to 7, the photosensitive resin on the wafer surface is intermittently irradiated with ultraviolet light to saturate the vaporization rate R of the photosensitive resin. It increases without increasing.

この理由は、詳細には明らかではないが次の2点が考え
られる。
The reason for this is not clear in detail, but the following two points can be considered.

(1)紫外光を連続的に照射する従来の方法では、紫外
光照射強度■が100w/rrr以上では反応機構が光
照射過程律速ではなくなり、過剰な光の照射により感光
性樹脂が変質し、難分解除去性のものになる。一方、紫
外光を断続的に照射する方法では光の照射を必要な量に
抑えるために感光性樹脂の変質を防止できる。
(1) In the conventional method of continuously irradiating ultraviolet light, when the ultraviolet light irradiation intensity (■) exceeds 100 W/rrr, the reaction mechanism is no longer rate-limiting in the light irradiation process, and the photosensitive resin changes in quality due to excessive light irradiation. It becomes difficult to remove. On the other hand, in the method of intermittently irradiating ultraviolet light, deterioration of the photosensitive resin can be prevented because the irradiation of light is suppressed to the required amount.

(2)紫外光照射強度Iが100 w/m以上では反応
生成物のウェハ面からの脱離過程が律速になると考えら
れる。しかし、紫外光を連続的に照射する従来の方法で
は1、この際の過剰な光の照射は、反応生成物の再反応
を招く。この結果、感光性樹脂の分解のための反応活性
点が減少し、全体としての分解反応速度を低下させるも
のと考えられる。一方、紫外光を断続的に照射する方法
では、光がウェハ面に対して照射されない時に反応生成
物の脱離過程のみが促進され、分解反応のための反応活
性点の減少を防止できるものと考えられる。
(2) When the ultraviolet light irradiation intensity I is 100 w/m or more, it is thought that the process of desorption of reaction products from the wafer surface becomes rate-determining. However, in the conventional method of continuously irradiating ultraviolet light 1, excessive light irradiation causes re-reaction of the reaction products. As a result, the number of active sites for decomposition of the photosensitive resin decreases, which is thought to reduce the overall decomposition reaction rate. On the other hand, in the method of intermittently irradiating ultraviolet light, only the desorption process of reaction products is promoted when the wafer surface is not irradiated with ultraviolet light, which prevents the reduction of reaction active sites for decomposition reactions. Conceivable.

したがって、第3図に示す試験結果では紫外光照射強度
Iが200 w/rri付近までの感光性樹脂の気化分
解速度Rを示しているが、上記のような反応機構から、
適当な遮光板形状およびサセプタ回転数等を選択するこ
とにより紫外光照射強度Iを20000w/nl程度ま
で大きくすることによって感光性樹脂の気化分解速度R
を向上できることが推察される。
Therefore, the test results shown in FIG. 3 show the vaporization decomposition rate R of the photosensitive resin when the ultraviolet light irradiation intensity I reaches around 200 w/rr, but due to the reaction mechanism described above,
By increasing the ultraviolet light irradiation intensity I to about 20,000 w/nl by selecting an appropriate light shielding plate shape, susceptor rotation speed, etc., the vaporization decomposition rate R of the photosensitive resin can be increased.
It is inferred that it is possible to improve the

このような効果は、感光性樹脂の分解に限らず、他の高
分子化合物およびその他の有機物の分解おいても同様に
期待できる。したがって、例えば基体上のワックス等の
分解除去にも本発明を適用することができる。
Such effects can be expected not only in the decomposition of photosensitive resins but also in the decomposition of other polymeric compounds and other organic substances. Therefore, the present invention can also be applied to, for example, decomposition and removal of wax on a substrate.

また、基体上の有機物は必ずしも層状に形成されている
場合に限らず、基体上にランダムに点在する場合にもそ
の有機物が酸素ガスを含む気体中で加熱されると同時に
その有機物に断続的に光が照射されることによって有機
物の気化分解速度を向上させることができる。この方法
は、特に気体上に点在する有機物の所謂表面洗浄に対し
て適用でき、洗浄時間の短縮を図ることができる。
In addition, the organic matter on the substrate is not necessarily formed in a layered manner, but even when it is randomly scattered on the substrate, when the organic matter is heated in a gas containing oxygen gas, the organic matter is intermittently By irradiating the organic matter with light, the rate of vaporization and decomposition of organic matter can be improved. This method is particularly applicable to so-called surface cleaning of organic matter scattered on a gas, and can shorten the cleaning time.

上記した実施例では、特に光源として低圧水銀灯を例示
したが、使用される光源は紫外光領域の光を照射できる
ものであればとくに制約はない。
In the embodiments described above, a low-pressure mercury lamp was particularly used as a light source, but there are no particular restrictions on the light source used as long as it can emit light in the ultraviolet region.

さらに気体上の有機物を加熱する手段は、サセプタを介
して加熱する方法に限らず、サセプタの有機物が所定の
温度に維持できる方法であればよい。
Further, the means for heating the organic substance in the gas is not limited to the method of heating via the susceptor, and any method may be used as long as the organic substance in the susceptor can be maintained at a predetermined temperature.

なお、紫外光を断続的に照射することにより光化学反応
方法によって基板上に薄膜を形成する手段は既に提案さ
れている(特開昭59−2241)8号)。しかし、こ
の方法は光の照射から非照射に至る瞬間での非平衡状態
における気相反応速度の向上させるものであって、基体
上の有機物に対して光の照射時に進行する反応と非照射
時に進行する反応とを整合させること、および光の過剰
照射による除去対象物の変質を防止する本発明と本質的
に異なるものである。
Note that a method of forming a thin film on a substrate by a photochemical reaction method by intermittently irradiating ultraviolet light has already been proposed (Japanese Patent Laid-Open No. 59-2241 No. 8). However, this method improves the gas phase reaction rate in a non-equilibrium state at the moment from light irradiation to non-irradiation, and the reaction that progresses to organic matter on the substrate during light irradiation and the reaction that progresses during non-irradiation. This is essentially different from the present invention, which involves matching the progressing reaction and preventing deterioration of the object to be removed due to excessive irradiation with light.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、基体上に存在する有機物
を短時間で、かつ効率よく分解除去することができる。
As described above, according to the present invention, organic substances present on a substrate can be decomposed and removed efficiently in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる光化学反応方法を実施するた
めの感光性樹脂分解除去装置の第1の実施例を示す断面
図、第2図は第1図における遮光板を示す平面図、第3
図は第1図に示す装置を用いた方法により感光性樹脂を
分解させたときの気化分解速度Rと紫外光照射強度■と
の関係を示すグラフ、第4図は本発明にかかる光化学反
応方法を実施するための感光性樹脂分解除去装置の第2
の実施例を示す断面図、第5図は本発明にかかる光化学
反応方法を実施するための感光性樹脂分解除去装置の第
3の実施例を示す断面図、第6図は本発明にかかる光化
学反応方法を実施するための感光性樹脂分解除去装置の
第4の実施例を示す断面図、第7図は本発明にかかる光
化学反応方法を実施するための感光性樹脂分解除去装置
の第5の実施例を示す断面図、第8図は第7図における
遮光ベルトを示す平面図、第9図は従来の感光性樹脂分
解除去!置を示す断面図、第10図は従来の感光性樹脂
分解除去装置を用いた方法により感光性樹脂を分解させ
たときの気化分解速度Rと紫外光照射強度■との関係を
示すグラフである。 1).33.53.104・・・・・・チャンバ、12
.32.52・・・・・・サセプタ、13.37.59
.108・・・・・・ウェハ、14.31.51.10
3・・・・・・ヒータ、16.35.54.57.10
1.123・・・・・・モータ、 17.39.60.105.124 ・・・・・・低圧水 銀灯、 18.34.56.106・・・・・・遮光板、124
・・・・・・遮光ベルト、
FIG. 1 is a sectional view showing a first embodiment of a photosensitive resin decomposition and removal device for carrying out the photochemical reaction method according to the present invention, and FIG. 2 is a plan view showing a light shielding plate in FIG. 3
The figure is a graph showing the relationship between the vaporization decomposition rate R and the ultraviolet light irradiation intensity ■ when a photosensitive resin is decomposed by the method using the apparatus shown in Figure 1, and Figure 4 is a photochemical reaction method according to the present invention. The second part of the photosensitive resin decomposition and removal equipment for carrying out
FIG. 5 is a sectional view showing a third embodiment of a photosensitive resin decomposition and removal device for carrying out the photochemical reaction method according to the present invention, and FIG. A sectional view showing a fourth embodiment of the photosensitive resin decomposition and removal apparatus for carrying out the reaction method, and FIG. 7 shows a fifth embodiment of the photosensitive resin decomposition and removal apparatus for carrying out the photochemical reaction method according to the present invention. A sectional view showing an embodiment, FIG. 8 is a plan view showing the light-shielding belt in FIG. 7, and FIG. 9 is a conventional photosensitive resin decomposition and removal! Fig. 10 is a graph showing the relationship between the vaporization decomposition rate R and the ultraviolet light irradiation intensity (■) when photosensitive resin is decomposed by a method using a conventional photosensitive resin decomposition and removal device. . 1). 33.53.104...Chamber, 12
.. 32.52...Susceptor, 13.37.59
.. 108...Wafer, 14.31.51.10
3... Heater, 16.35.54.57.10
1.123... Motor, 17.39.60.105.124... Low pressure mercury lamp, 18.34.56.106... Light shielding plate, 124
...shading belt,

Claims (8)

【特許請求の範囲】[Claims] (1)有機物層の存在する基体を酸素を含む気体中に配
置し、前記有機物層を加熱すると同時にその有機物層に
光源から光を照射して有機物層を酸化、分解させる光化
学反応方法において、前記光源から有機物層への光の照
射が断続的に行われることを特徴とする光化学反応方法
(1) A photochemical reaction method in which a substrate on which an organic layer exists is placed in a gas containing oxygen, and the organic layer is heated and simultaneously irradiated with light from a light source to oxidize and decompose the organic layer. A photochemical reaction method characterized by intermittent irradiation of light from a light source to an organic layer.
(2)特許請求の範囲第(1)項において、前記光源と
基体上の有機物層との間に遮光体を設け、該遮光体によ
り形成される照射領域と非照射領域との間を有機物層を
有する基体が移動することを特徴とする光化学反応方法
(2) In claim (1), a light shield is provided between the light source and the organic layer on the substrate, and an organic layer is provided between the irradiated area and the non-irradiated area formed by the light shield. A photochemical reaction method characterized in that a substrate having a structure moves.
(3)特許請求の範囲第(1)項において、有機物層を
有する基体は固定された基台上に載置され、その有機物
層面に前記光源からの光の照射領域と非照射領域とを交
互に形成させることを特徴とする光化学反応方法。
(3) In claim (1), a substrate having an organic material layer is placed on a fixed base, and a region irradiated with light from the light source and a region not irradiated are alternately arranged on the surface of the organic material layer. A photochemical reaction method characterized by forming.
(4)特許請求の範囲第(2)項において、前記基体が
回転自在に設けられた基台上に載置され、その基体と光
源との間にスリットが形成された遮光体が配置されてい
ることを特徴とする光化学反応方法。
(4) In claim (2), the base body is placed on a rotatably provided base, and a light shielding body having a slit is disposed between the base body and the light source. A photochemical reaction method characterized by:
(5)特許請求の範囲第(2)項において、前記光源が
一方向に所定の間隔をおいて複数個並設され、該光源の
並設方向と平行して移動自在にコンベヤを設置し、該コ
ンベヤ上に有機物層を有する基体を設置することを特徴
とする光化学反応方法。
(5) In claim (2), a plurality of the light sources are arranged in parallel at predetermined intervals in one direction, and a conveyor is installed movably in parallel to the direction in which the light sources are arranged in parallel; A photochemical reaction method characterized in that a substrate having an organic layer is placed on the conveyor.
(6)特許請求の範囲第(3)項記載において、基体と
光源との間にスリットが形成された円盤状の遮光体を回
転自在に設け、該遮光体の回転動作により基体上の有機
物層に光の照射領域と非照射領域とを交互に形成させる
ことを特徴とする光化学反応方法。
(6) In claim (3), a disc-shaped light shielding member having a slit formed therein is rotatably provided between the base body and the light source, and the rotational movement of the light shielding member causes the organic substance layer on the base body to be A photochemical reaction method characterized by forming alternately light irradiated areas and non-irradiated areas.
(7)特許請求の範囲第(4)項記載において、前記遮
光体が円盤状に形成されるとともにその中心部から放射
状に複数個のスリットが設けられ、各々のスリットは遮
光体の周縁部側になるにつれて次第にその幅が広くされ
、前記回転自在に設けられた基台上の基体は基台の回転
軸に対して放射状に配置され、前記遮光体と前記基台と
の回転方向を互いに逆方向とすることを特徴とする光化
学反応方法。
(7) In claim (4), the light shielding body is formed into a disc shape, and a plurality of slits are provided radially from the center thereof, and each slit is located on the peripheral edge side of the light shielding body. The width of the light shielding body is gradually increased as the width increases, and the base body on the rotatably provided base is arranged radially with respect to the rotation axis of the base, and the rotation directions of the light shielding body and the base are opposite to each other. A photochemical reaction method characterized by a direction.
(8)特許請求の範囲第(5)項において、前記複数個
の光源は、ベルトの移動方向に沿って所定の間隔をおい
てスリットが形成されたベルト内に配置され、該ベルト
の移動方向と、前記コンベヤの移動方向を互いに逆方向
とすることを特徴とする光化学反応方法。
(8) In claim (5), the plurality of light sources are arranged within a belt in which slits are formed at predetermined intervals along the moving direction of the belt; and a photochemical reaction method, characterized in that the moving directions of the conveyors are opposite to each other.
JP7186786A 1986-03-29 1986-03-29 Photochemical reaction Pending JPS62229833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7186786A JPS62229833A (en) 1986-03-29 1986-03-29 Photochemical reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7186786A JPS62229833A (en) 1986-03-29 1986-03-29 Photochemical reaction

Publications (1)

Publication Number Publication Date
JPS62229833A true JPS62229833A (en) 1987-10-08

Family

ID=13472893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7186786A Pending JPS62229833A (en) 1986-03-29 1986-03-29 Photochemical reaction

Country Status (1)

Country Link
JP (1) JPS62229833A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02315A (en) * 1987-11-28 1990-01-05 Dainippon Screen Mfg Co Ltd Eliminating and washing method for resist of substrate
JPH0346225A (en) * 1989-07-13 1991-02-27 Nec Corp Resist ashing device
JP2007118001A (en) * 2005-10-26 2007-05-17 Cryovac Inc Method and apparatus for controlled triggering of oxygen scavenging composition utilizing wrap-around shade
US7807111B2 (en) 2004-05-21 2010-10-05 Cryovac, Inc. Method and apparatus for high speed activation of oxygen scavenging compositions
US8033771B1 (en) 2008-12-11 2011-10-11 Novellus Systems, Inc. Minimum contact area wafer clamping with gas flow for rapid wafer cooling
US8137465B1 (en) * 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US8273670B1 (en) 2006-12-07 2012-09-25 Novellus Systems, Inc. Load lock design for rapid wafer heating
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8283644B2 (en) 2008-01-08 2012-10-09 Novellus Systems, Inc. Measuring in-situ UV intensity in UV cure tool
US8371567B2 (en) 2011-04-13 2013-02-12 Novellus Systems, Inc. Pedestal covers
US8398816B1 (en) 2006-03-28 2013-03-19 Novellus Systems, Inc. Method and apparatuses for reducing porogen accumulation from a UV-cure chamber
US8426778B1 (en) 2007-12-10 2013-04-23 Novellus Systems, Inc. Tunable-illumination reflector optics for UV cure system
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8920162B1 (en) 2007-11-08 2014-12-30 Novellus Systems, Inc. Closed loop temperature heat up and control utilizing wafer-to-heater pedestal gap modulation
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
JP2017529236A (en) * 2014-07-25 2017-10-05 北京泊菲莱科技有限公司 Light irradiation multi-sample parallel reaction device
US9835388B2 (en) 2012-01-06 2017-12-05 Novellus Systems, Inc. Systems for uniform heat transfer including adaptive portions
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US10347547B2 (en) 2016-08-09 2019-07-09 Lam Research Corporation Suppressing interfacial reactions by varying the wafer temperature throughout deposition
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02315A (en) * 1987-11-28 1990-01-05 Dainippon Screen Mfg Co Ltd Eliminating and washing method for resist of substrate
JPH0346225A (en) * 1989-07-13 1991-02-27 Nec Corp Resist ashing device
US8080212B2 (en) 2004-05-21 2011-12-20 Cryovac, Inc. Method and apparatus for high speed activation of oxygen scavenging compositions
US7807111B2 (en) 2004-05-21 2010-10-05 Cryovac, Inc. Method and apparatus for high speed activation of oxygen scavenging compositions
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8137465B1 (en) * 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US9384959B2 (en) 2005-04-26 2016-07-05 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US10121682B2 (en) 2005-04-26 2018-11-06 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8951348B1 (en) 2005-04-26 2015-02-10 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US9873946B2 (en) 2005-04-26 2018-01-23 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
JP2007118001A (en) * 2005-10-26 2007-05-17 Cryovac Inc Method and apparatus for controlled triggering of oxygen scavenging composition utilizing wrap-around shade
US8026493B2 (en) 2005-10-26 2011-09-27 Cryovac, Inc. Method and apparatus for controlled triggering of oxygen scavenging compositions utilizing a wrap-around shade
US9073100B2 (en) 2005-12-05 2015-07-07 Novellus Systems, Inc. Method and apparatuses for reducing porogen accumulation from a UV-cure chamber
US11177131B2 (en) 2005-12-05 2021-11-16 Novellus Systems, Inc. Method and apparatuses for reducing porogen accumulation from a UV-cure chamber
US10020197B2 (en) 2005-12-05 2018-07-10 Novellus Systems, Inc. Method for reducing porogen accumulation from a UV-cure chamber
US8398816B1 (en) 2006-03-28 2013-03-19 Novellus Systems, Inc. Method and apparatuses for reducing porogen accumulation from a UV-cure chamber
US8273670B1 (en) 2006-12-07 2012-09-25 Novellus Systems, Inc. Load lock design for rapid wafer heating
US8920162B1 (en) 2007-11-08 2014-12-30 Novellus Systems, Inc. Closed loop temperature heat up and control utilizing wafer-to-heater pedestal gap modulation
US8426778B1 (en) 2007-12-10 2013-04-23 Novellus Systems, Inc. Tunable-illumination reflector optics for UV cure system
US8283644B2 (en) 2008-01-08 2012-10-09 Novellus Systems, Inc. Measuring in-situ UV intensity in UV cure tool
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US8033771B1 (en) 2008-12-11 2011-10-11 Novellus Systems, Inc. Minimum contact area wafer clamping with gas flow for rapid wafer cooling
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US8851463B2 (en) 2011-04-13 2014-10-07 Novellus Systems, Inc. Pedestal covers
US8371567B2 (en) 2011-04-13 2013-02-12 Novellus Systems, Inc. Pedestal covers
US9835388B2 (en) 2012-01-06 2017-12-05 Novellus Systems, Inc. Systems for uniform heat transfer including adaptive portions
JP2017529236A (en) * 2014-07-25 2017-10-05 北京泊菲莱科技有限公司 Light irradiation multi-sample parallel reaction device
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric
US11270896B2 (en) 2015-11-16 2022-03-08 Lam Research Corporation Apparatus for UV flowable dielectric
US10347547B2 (en) 2016-08-09 2019-07-09 Lam Research Corporation Suppressing interfacial reactions by varying the wafer temperature throughout deposition
US11075127B2 (en) 2016-08-09 2021-07-27 Lam Research Corporation Suppressing interfacial reactions by varying the wafer temperature throughout deposition
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing

Similar Documents

Publication Publication Date Title
JPS62229833A (en) Photochemical reaction
US20050205521A1 (en) Wet etching apparatus and wet etching method
JP2801003B2 (en) Organic matter removal equipment
JP2004289032A (en) Ultra-violet light irradiation device, etching device, etching method, and manufacturing method of semiconductor device
JP2001137800A (en) Apparatus and method for treating substrate
JP2001232317A (en) Method and device for treating surface of substrate
JP2540583B2 (en) Substrate cleaning method and apparatus
JPH0628254B2 (en) Photoresist stripping device
JPS61223839A (en) Method for removing resist
JPH0410689Y2 (en)
JPS6333824A (en) Cleaning method for surface
JPS63115343A (en) Processor
JPS63260132A (en) Surface modification apparatus
JP2588511B2 (en) Processing equipment
JPH01179327A (en) Ashing
JPH05315246A (en) Aligner
JPH01272120A (en) Dry ashing apparatus
JPH10242098A (en) Wafer cleaning equipment and wafer cleaning method
JP2702697B2 (en) Processing device and processing method
JPH0266551A (en) Applicator for photoresist
JPH04307734A (en) Ashing apparatus
JP2000323455A (en) Ashing apparatus
US4842828A (en) Apparatus for treating surface of object with ultraviolet rays and reaction gas
JP3248320B2 (en) Resist removing method and resist removing apparatus
JP2003077824A (en) Substrate processing apparatus