JPS62227497A - Apparatus for controlling injection of chlorine in water treatment plant - Google Patents

Apparatus for controlling injection of chlorine in water treatment plant

Info

Publication number
JPS62227497A
JPS62227497A JP7083986A JP7083986A JPS62227497A JP S62227497 A JPS62227497 A JP S62227497A JP 7083986 A JP7083986 A JP 7083986A JP 7083986 A JP7083986 A JP 7083986A JP S62227497 A JPS62227497 A JP S62227497A
Authority
JP
Japan
Prior art keywords
chlorine
solar radiation
amount
water
residual chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7083986A
Other languages
Japanese (ja)
Inventor
Chiyouko Kurihara
潮子 栗原
Ryosuke Miura
良輔 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7083986A priority Critical patent/JPS62227497A/en
Publication of JPS62227497A publication Critical patent/JPS62227497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To make the concn. of residual chlorine at the outlet of a sedimentation basin constant, by determining the decomposition quantity of chlorine due to solar radiation with the transition of an amount of daily solar radiation and using the decomposition quantity as a correction value to perform control so that the concn. of residual chlorine in water is allowed to coincide with an objective value. CONSTITUTION:Chlorine and an alkali agent are injected in raw water at the outlet of a water arrival basin 1. Further, raw water receives the injection of a flocculant at the inlet of a rapid mixing basin 2 and rapidly stirred in the rapid mixing basin 2 by a flash mixer 3. Flocs are grown in a floc forming basin 4 and the greater part of the grown flocs are sedimented and removed in a sedimentation basin 5. The inlet water of the floc forming basin 4 and the outlet water of the sedimentation basin 5 are respectively guided to residual chlorine densitometers 6, 10 by water examination pumps 8, 9 and the indication values are monitored by an operator. By this method, good treatment can be performed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は日射による残留塩素の分解に対処する水処理プ
ラントの塩素注入制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a chlorine injection control device for a water treatment plant that deals with the decomposition of residual chlorine due to solar radiation.

(従来の技術) 第4図に従来の水処理プラントの塩素注入制御装置を示
す。第4図において原水は着水井1に流入し、この出口
で消毒のための塩素と、図示していないアルカリ注入装
置がらのp H:Jj4?I用のアルカリ剤とが注入さ
れる。さらに、処理水は除濁のために図示していない凝
集剤注入装置がら凝集剤の注入を受け、急速混和池2に
てフラッシュミキサー3により急激に撹拌される。フロ
ック形成池4ではフロックが形成され、沈澱池5にて大
部分のフロックが沈澱除去される。
(Prior Art) FIG. 4 shows a conventional chlorine injection control device for a water treatment plant. In Fig. 4, raw water flows into the landing well 1, and at its outlet, chlorine for disinfection and an alkali injection device (not shown) supply pH: Jj4? An alkaline agent for I is injected. Further, the treated water is injected with a flocculant from a flocculant injection device (not shown) to remove turbidity, and is rapidly stirred by a flash mixer 3 in a rapid mixing pond 2. Flocks are formed in the floc formation tank 4, and most of the flocs are removed by sedimentation in the settling tank 5.

原水中には無機物、有機物および病原体を含む微生物が
含まれており、注入された塩素はこれらの物質や微生物
と反応することによって酸化能力を失う。また沈澱池5
は一般的に滞留時間が長く、沈澱池5を処理水が通過す
る間に、処理水中の残留塩素は日光の照射によって分解
されたり、一部は飛散したりする。特に日射の大きい夏
期にはこの影響が顕著である。
Raw water contains inorganic substances, organic substances, and microorganisms including pathogens, and the injected chlorine loses its oxidizing ability by reacting with these substances and microorganisms. In addition, sedimentation pond 5
Generally, the residence time is long, and while the treated water passes through the sedimentation tank 5, residual chlorine in the treated water is decomposed by sunlight irradiation or some of it is scattered. This effect is particularly noticeable in the summer when solar radiation is large.

従来はフロック形成池4の入口に設置された残留塩素濃
度計6の指示値によってフィードバック制御をPID演
算器7で行い、原水の塩素要求量の変動に対処していた
。しかしこの方法ではフィードバックループより下流に
ある沈澱池5での日射による残留塩素の分解に対処でき
なかった。また他の従来技術として沈澱池出口水の残留
塩素濃度を計測し、その指示値によるフィードバック制
御を行う方法がある。しかし塩素注入点がら沈澱池出口
までの流下時間が大きいため、フィードバックによって
沈澱池出口水の残留塩素濃度が回復するまでに時間がか
かりすぎ、安定した残留塩素濃度を保持できない。
Conventionally, feedback control was performed by a PID calculator 7 based on the indicated value of a residual chlorine concentration meter 6 installed at the entrance of the floc formation pond 4, to cope with fluctuations in the amount of chlorine required for raw water. However, this method could not deal with the decomposition of residual chlorine due to solar radiation in the sedimentation tank 5 located downstream of the feedback loop. Another conventional technique is a method of measuring the residual chlorine concentration in the water at the outlet of the sedimentation tank and performing feedback control based on the indicated value. However, since the flow time from the chlorine injection point to the sedimentation tank outlet is long, it takes too much time for the residual chlorine concentration in the sedimentation tank outlet water to recover due to feedback, making it impossible to maintain a stable residual chlorine concentration.

さらに他の従来技術として実測日射量を一次式によって
注入率に変換し、注入率の補正を行う方法や、実測日射
量を午前中に前倒し的に多くし、これを注入率に変換し
て補正を行う方法があった。
Furthermore, other conventional techniques include a method of converting the measured solar radiation into an injection rate using a linear equation and correcting the injection rate, or increasing the measured solar radiation in advance in the morning, converting it into an injection rate, and correcting it. There was a way to do it.

これらの方法では実際の日射開始後に補正がかがるため
、補正開始前の処理水は沈澱池を通過する間に日射を受
け、残留塩素が低下してしまうという欠点があった。
These methods have the drawback that since the correction is applied after the actual start of solar radiation, the treated water before the start of the correction receives solar radiation while passing through the settling tank, resulting in a decrease in residual chlorine.

一方、塩素注入を上述した自動運転によらず、手動操作
によって行う場合は、その日の天候をみながら沈澱池ま
での流下時間を参酌して早期に塩素注入率を増加させ、
昼すぎから夕方にかけて塩素注入率を減少させるという
運転を行っていた。
On the other hand, if chlorine injection is to be carried out manually rather than automatically, the rate of chlorine injection should be increased early by monitoring the weather that day and taking into account the flow time to the sedimentation basin.
The chlorine injection rate was reduced from mid-afternoon to early evening.

こ、の方法は制御の外乱である日射量の変化に沿って注
入率を変更するのではなく、注入率を階段状に変化させ
るため、残留塩素濃度の過不測を招くという欠点があっ
た。
This method does not change the injection rate in accordance with changes in solar radiation, which is a control disturbance, but rather changes the injection rate in a stepwise manner, which has the drawback of causing an overestimation of the residual chlorine concentration.

(発明が解決しようとする問題点) すなわち発明が解決しようとする問題点は次の3点に要
約される。
(Problems to be solved by the invention) In other words, the problems to be solved by the invention can be summarized into the following three points.

■ 沈澱池より上流側に設置した残留塩素濃度計による
フィードバック制御では、下流にある沈澱池で消失する
塩素量を補償できない。
■ Feedback control using a residual chlorine concentration meter installed upstream of the settling tank cannot compensate for the amount of chlorine lost in the downstream settling tank.

■ 沈澱池より下流側に設置された残留塩素濃度計によ
るフィードバック制御では、時間おくれが数時間になる
ためフィードバック制御では応答遅れが大きくうまくゆ
かない。
■ Feedback control using a residual chlorine concentration meter installed downstream from the sedimentation basin has a time lag of several hours, so feedback control has a large response delay and does not work well.

■ 手動操作による塩素注入では、四六時中操作員が制
御するわけではなく注入率の変更が階段状に大きく行わ
れるので残留塩素の過不足を生じる。
■ In manual chlorine injection, the operator does not control the system 24/7, and the injection rate is changed in a stepwise manner, resulting in excess or deficiency of residual chlorine.

したがって本発明の目的は、沈澱池で日射によって消失
する塩素量を補償して、沈澱池出口の残留塩素濃度を一
定にする水処理プラントの塩素注入制御装置を提供する
ことにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a chlorine injection control device for a water treatment plant that compensates for the amount of chlorine lost in a sedimentation tank due to solar radiation and keeps the residual chlorine concentration at the outlet of the sedimentation tank constant.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明による水処理プラントの塩素注入制御装置では 第1の演算手段により、予め設定されている日の出から
日没までの各時刻毎にその時刻より所定時間り以前にて
時刻毎の予測日射量RIEtを求める。
(Means for Solving the Problems) In the chlorine injection control device for a water treatment plant according to the present invention, the first calculation means calculates a predetermined period of time from each preset time from sunrise to sunset. The predicted solar radiation amount RIEt for each time is previously determined.

第2の演算手段では上記第1の演算手段にて求められた
現在゛時刻の予測日射量RF!、−,とその時刻におけ
る日射量実測値Rpvとを用いてその時点で求められる
予測日射量Rt!tを補正した日射量修正値Rtを求め
、この日射量修正値Rtを基に第4の演算手段にて日射
による残留塩素分解量DStを求める。
The second calculation means calculates the predicted solar radiation amount RF at the current time obtained by the first calculation means! , -, and the measured solar radiation amount Rpv at that time, the predicted solar radiation amount Rt! A solar radiation correction value Rt is obtained by correcting the solar radiation amount Rt, and based on this solar radiation correction value Rt, a residual chlorine decomposition amount DSt due to solar radiation is obtained by the fourth calculation means.

第4の演算手段は上記残留塩素分解量DS、を修正値と
して水中の残留塩素濃度の実測値と目標残留塩素濃度と
の偏差から塩素注入率CLtを求める。
The fourth calculation means calculates the chlorine injection rate CLt from the deviation between the actual measured residual chlorine concentration in water and the target residual chlorine concentration using the residual chlorine decomposition amount DS as a correction value.

第5の演算手段は前記日射量修正値Rtの現時点までの
変化の傾向から応答遅れに対する操作量修正値Dvtを
求める。
The fifth calculation means calculates a manipulated variable correction value Dvt for response delay from the trend of change of the solar radiation amount correction value Rt up to the present time.

そして加算手段により前記塩素注入率CLゎと操作量修
正値D V tとを加えて塩素注入量設定値を得るもの
である。
Then, the addition means adds the chlorine injection rate CLゎ and the manipulated variable correction value D V t to obtain a chlorine injection amount set value.

(作用) 本発明では、−日の日射量の推移を予測し、この日射に
よる塩素の分解量を把握し、この分解量を修正値として
水中の残留塩素濃度を目標値に一致させるべく制御を行
うようにしたので、常に必要量の残留塩素濃度を得るこ
とができる。
(Function) In the present invention, the change in the amount of solar radiation on -day is predicted, the amount of decomposition of chlorine due to this solar radiation is grasped, and the amount of decomposition is used as a correction value to control the residual chlorine concentration in water to match the target value. By doing this, it is possible to always obtain the necessary amount of residual chlorine concentration.

(実施例) 本発明の一実施例を第1図によって説明する。(Example) An embodiment of the present invention will be described with reference to FIG.

なお、第4図と同じ部分には同一の番号を附しである。Note that the same parts as in FIG. 4 are given the same numbers.

原水には、着水井1の出口で塩素と、図示していないア
ルカリ注入装置からのアルカリ剤とが注入される。さら
に急速混和池2の入口で図示していない凝集剤注入制御
装置から凝集剤の注入を受け、かつ急速混和池2内にて
フラッシュミキサー3によって急速撹拌される。フロッ
ク形成池4ではフロックが成長し、沈澱池5では成長し
たフロックの多くが沈澱除去される。フロック形成池4
の入口水と沈澱池5の出口水はそれぞれ検水ポンプ8と
検水ポンプ9によって残留塩素濃度計6と残留塩素濃度
計10に導かれる。それぞれの残留塩素濃度計6,10
の指示値は操作員によって監視される。
Chlorine and an alkaline agent from an alkali injection device (not shown) are injected into the raw water at the outlet of the water receiving well 1. Furthermore, a flocculant is injected from a flocculant injection control device (not shown) at the entrance of the rapid mixing basin 2, and is rapidly stirred in the rapid mixing basin 2 by a flash mixer 3. In the floc formation pond 4, flocs grow, and in the settling basin 5, most of the grown flocs are removed by sedimentation. Flock formation pond 4
The inlet water of the settling tank 5 and the outlet water of the settling tank 5 are guided to a residual chlorine concentration meter 6 and a residual chlorine concentration meter 10 by a water test pump 8 and a water test pump 9, respectively. Residual chlorine concentration meter 6, 10
The indicated value is monitored by the operator.

第1図において、第1の演算手段11は、実際の日射が
始まるよりも日の出早め時間りだけ前から時間り後の予
測日射量を演算する。この予測日射fitRptは、水
処理プラントの方位p、暦m、および現在時刻tの関数
である。
In FIG. 1, the first calculation means 11 calculates the predicted amount of solar radiation from before to after sunrise time before the actual solar radiation starts. This predicted solar radiation fitRpt is a function of the orientation p of the water treatment plant, the calendar m, and the current time t.

Rgt= f (p −m−t )  −03具体的に
は、理科年表(昭和59年、東京天文台編纂)のデータ
を使用して日の出と日没時刻を計算し、 この両時刻か
ら算出した日照時間T8と、1年を周期とする正弦波関
数で表わした1日の最高日射量Rt118xとがら第2
式によって演算する。
Rgt= f (p - m - t ) -03 Specifically, the sunrise and sunset times were calculated using data from the Science Chronology (edited by the Tokyo Astronomical Observatory in 1982), and the calculation was made from these two times. The second solar radiation time T8 and the daily maximum solar radiation Rt118x expressed by a sine wave function with a period of one year.
Calculate by formula.

Rgaつは第0式によって演算する。Rga is calculated using the 0th equation.

ただしα、β、γは係数で過去数年間の日照データから
求められる。d′は元旦から数えた制御を行っている日
までの日数である。
However, α, β, and γ are coefficients that are obtained from sunlight data from the past several years. d' is the number of days from New Year's Day to the day on which control is performed.

第2の演算手段12は、第1の演算手段11にて時間を
前に求められた出力である。現時点での日射量予測値R
,,−hと、日射量計13の指示値Rpvとの比較を行
い、 日射量の修正値Rゎを第(へ)式に従って演算す
る。
The second calculation means 12 is the output obtained by the first calculation means 11 in advance of the time. Current predicted amount of solar radiation R
.

Rt”Rat+kt(Rpv−Rt!t−h)  ・・
・(IDただしに□は定数で、水処理プラントに固有の
値を有する。
Rt"Rat+kt(Rpv-Rt!t-h)...
・(ID where □ is a constant and has a value specific to the water treatment plant.

第3の演算手段14では第2の演算手段12の出力であ
る修正日射量Rtに基づいて日射量による残留塩素分解
量DS、を第0式に従って計算する。
The third calculating means 14 calculates the residual chlorine decomposition amount DS according to the amount of solar radiation based on the corrected amount of solar radiation Rt which is the output of the second calculating means 12 according to the zeroth equation.

DSゎ=DS、、十に2・k、・(RtRt−J  ・
・・0ここでに2は日射量を残留塩素濃度に変換するた
めの係数tk3は定数である。またR、−、は前回計算
周期での修正日射量の値である。
DSゎ=DS,, 2・k in ten,・(RtRt−J・
...0 Here, 2 is a constant, and the coefficient tk3 for converting the amount of solar radiation into the residual chlorine concentration is a constant. Further, R,−, is the value of the corrected solar radiation amount in the previous calculation cycle.

第4の演算手段15では、第3の演算手段14で求めた
日射量による残留塩素分解量DS、と実測された残留塩
素濃度Rcとを入力として、 フィードバックによる塩
素注入率CLtを計算する。ただし、ここで用いられる
偏差E、は、予め設定された残留塩素目標値Rsvと実
測された残留塩素濃度Rcとの差だけではなく、第0式
に示すように残留塩素分解量DStによって修正したも
のである。
The fourth calculation means 15 calculates the chlorine injection rate CLt by feedback using the residual chlorine decomposition amount DS according to the amount of solar radiation obtained by the third calculation means 14 and the actually measured residual chlorine concentration Rc as input. However, the deviation E used here is not only the difference between the preset residual chlorine target value Rsv and the actually measured residual chlorine concentration Rc, but also is corrected by the residual chlorine decomposition amount DSt as shown in equation 0. It is something.

E t= R3V  RC+ D S t  −(6)
この偏差E、を用いて塩素注入率CLtを第■、(ハ)
式によって計算する。
E t = R3V RC + D S t - (6)
Using this deviation E, the chlorine injection rate CLt is calculated as
Calculate by formula.

CL t= CL t−t+ΔCL  ・・・■ΔCL
=に、(k、・(E t−E t−x)+ k 3・E
t)  ・・・(8)ここでに、、kp、に、は制御ゲ
インである。
CL t= CL t-t+ΔCL ・・・■ΔCL
=, (k,・(E t−E t−x)+k 3・E
t)...(8) Here, , kp, and are control gains.

また第4の演算手段15で求めた塩素注入率で塩素を注
入してもその効果が現われるまでには応答逐れがあるの
で、迅速に制御を行うためにこのフィードバック出力値
に対する修正演算を第5の演算手段16にて行う。 こ
の操作量の修正値Dvtは第2の演算手段12の出力で
ある修正日射量Rtを基に、その変化に対応させるべく
次の第(9)式および第(lO)式によって演算される
Furthermore, even if chlorine is injected at the chlorine injection rate determined by the fourth calculation means 15, there is a delay in response before the effect appears, so in order to perform control quickly, a correction calculation is performed on this feedback output value. The calculation means 16 of No. 5 performs the calculation. The modified value Dvt of the manipulated variable is calculated based on the modified solar radiation amount Rt, which is the output of the second calculation means 12, by the following equations (9) and (lO) in order to correspond to the change.

D V t =D V t−1+ D M t    
          ’ ” (9)DMt=DM、、
+に2・k4・(Rt  2Rゎ−t + Rt −2
)・・・(10)ただしに4は定数である。
D V t = D V t-1+ D M t
''' (9) DMt=DM,,
+2・k4・(Rt 2Rゎ−t + Rt −2
)...(10) However, 4 is a constant.

加算手段17は第4の演算手段15の出力値であるフィ
ードバックによる塩素注入率CLtと第5の演算手段の
出力値である操作量修正値DVtとを加算し、塩素注入
率設定値を演算する。この塩素注入率設定値は塩素の注
入量を制御している制御器18に伝送され、ここで急速
混和池流入量を乗じることによって塩素注入量設定値に
変換され塩素注入量の制御が行われる。 。
The addition means 17 adds the feedback chlorine injection rate CLt, which is the output value of the fourth calculation means 15, and the manipulated variable correction value DVt, which is the output value of the fifth calculation means, to calculate the chlorine injection rate set value. . This chlorine injection rate setting value is transmitted to the controller 18 that controls the chlorine injection amount, and is converted into a chlorine injection amount setting value by multiplying it by the rapid mixing tank inflow rate, and the chlorine injection amount is controlled. . .

第2図は上記制御における日の出から日没までの各値の
変化を表わしている。
FIG. 2 shows changes in each value from sunrise to sunset in the above control.

第3図は、本発明の上記一実施例における効果を示すグ
ラフで、Aは実日射量、B、Cはそれぞれフロック形成
池4の入口水残留塩素濃度と沈澱水残留塩素濃度とに関
して、本発明による結果と従来技術による結果とを比較
したグラフである。
FIG. 3 is a graph showing the effects of the above-mentioned embodiment of the present invention, where A is the actual solar radiation amount, B and C are the residual chlorine concentrations of the inlet water and precipitated water of the floc formation pond 4, respectively. It is a graph comparing the results according to the invention and the results according to the prior art.

このように、日射による外乱にだいし予測日射量によっ
てフィードフォワード的に応答遅れを補償し、かつ実測
日射量でその過剰分を修正して、塩素注入を行うので、
沈澱池出口の残留塩素a度を目的の値にすることが可能
となり、処理水の水質を安定化できた。また、残留塩素
の低下によってひきおこされる沈澱池の汚泥腐敗や藻の
発生を防止することができ、衛生的で安全な水を供給で
きる。
In this way, chlorine injection is performed by compensating for the response delay in a feedforward manner using the predicted amount of solar radiation in response to disturbances caused by solar radiation, and correcting the excess amount using the measured amount of solar radiation.
It became possible to bring the residual chlorine a degree at the outlet of the settling tank to the desired value, and the quality of the treated water was stabilized. Furthermore, it is possible to prevent sludge rot and the growth of algae in the sedimentation basin caused by a decrease in residual chlorine, and it is possible to supply sanitary and safe water.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、日射による塩素の分割量
を把握し、塩素注入を制御するので、常に必要量の残留
塩素濃度を維持して、良好な処理を行える。
As described above, according to the present invention, the amount of chlorine divided by solar radiation is grasped and the chlorine injection is controlled, so that the necessary amount of residual chlorine concentration is always maintained and good processing can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水処理プラントの塩素注入制御装
置の一実施例を示すブロック図、第2図は本発明の詳細
な説明図、第3図は本発明による実施例の効果を示すグ
ラフ、また第4図は従来装置を示すブロック図である。 1・・・着水井     2・・・急速混和池4・・・
フロック形成池 5・・・沈澱池6・・・残留塩素濃度
計 7・・・PID演算器8.9・・・検水ポンプ 1
0・・・残留塩素濃度計11・・・第1の演算手段 1
2・・・第2の演算手段13・・・日射量計    1
4・・・第3の演算手段15・・・第4の演算手段 1
6・・・第5の演算手段17・・・加算器手段   1
8・・・制御器19・・・流量計 代理人 弁理士 則 近 憲 佑 同  三俣弘文 !−ξ     食
FIG. 1 is a block diagram showing an embodiment of the chlorine injection control device for a water treatment plant according to the present invention, FIG. 2 is a detailed explanatory diagram of the present invention, and FIG. 3 is a graph showing the effects of the embodiment according to the present invention. , and FIG. 4 is a block diagram showing a conventional device. 1...Water landing well 2...Rapid mixing pond 4...
Flock formation pond 5...Sedimentation tank 6...Residual chlorine concentration meter 7...PID calculator 8.9...Water test pump 1
0... Residual chlorine concentration meter 11... First calculation means 1
2...Second calculation means 13...Solar radiation meter 1
4...Third calculation means 15...Fourth calculation means 1
6...Fifth calculation means 17...Adder means 1
8... Controller 19... Flow meter agent Patent attorney Nori Chika Ken Yudo Hirofumi Mitsumata! −ξ eclipse

Claims (1)

【特許請求の範囲】 原水に対する塩素の注入量を制御する水処理プラントの
塩素注入制御装置において、 予め設定されている日の出から日没までの各時刻毎にそ
の時刻より所定時間h以前にて時刻毎の予測日射量R_
E_tを求める第1の演算手段と、上記第1の演算手段
にて求められた現在時刻の予測日射量R_E_t_−_
hとその時刻における日射量実測値R_p_vとを用い
てその時点で求められる予測日射量R_E_tを補正し
た日射量修正値R_tを求める第2の演算手段と、 上記日射量修正値R_tを基に日射による残留塩素分解
量DS_tを求める第3の演算手段と、上記残留塩素分
解量DS_tを修正値として水中の残留塩素濃度の実測
値と目標残留塩素濃度との偏差から塩素注入率CL_t
を求める第4の演算手段と、 前記日射量修正値R_tの現時点のでの変化の傾向から
応答遅れに対する操作量修正値DV_tを求める第5の
演算手段と、 前記塩素注入率CL_tと操作量修正値DV_tとを加
えて塩素注入量設定値を得る加算手段と、を備えた水処
理プラントの塩素注入制御装置。
[Scope of Claim] In a chlorine injection control device for a water treatment plant that controls the amount of chlorine injected into raw water, the time is set at each preset time from sunrise to sunset a predetermined time h before that time. Predicted amount of solar radiation R_
A first calculating means for calculating E_t, and a predicted solar radiation amount R_E_t_-_ of the current time calculated by the first calculating means.
h and the measured solar radiation amount R_p_v at that time to calculate a solar radiation correction value R_t that corrects the predicted solar radiation amount R_E_t obtained at that time; a third calculating means for calculating the amount of residual chlorine decomposition DS_t by using the residual chlorine decomposition amount DS_t as a correction value, and calculating the chlorine injection rate CL_t from the deviation between the actual measured value of the residual chlorine concentration in water and the target residual chlorine concentration;
a fifth calculation means for calculating a manipulated variable correction value DV_t for response delay from the current change trend of the solar radiation amount correction value R_t; and a fifth calculation means for calculating a manipulated variable correction value DV_t for response delay; A chlorine injection control device for a water treatment plant, comprising: an addition means for adding DV_t to obtain a chlorine injection amount setting value.
JP7083986A 1986-03-31 1986-03-31 Apparatus for controlling injection of chlorine in water treatment plant Pending JPS62227497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7083986A JPS62227497A (en) 1986-03-31 1986-03-31 Apparatus for controlling injection of chlorine in water treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7083986A JPS62227497A (en) 1986-03-31 1986-03-31 Apparatus for controlling injection of chlorine in water treatment plant

Publications (1)

Publication Number Publication Date
JPS62227497A true JPS62227497A (en) 1987-10-06

Family

ID=13443133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7083986A Pending JPS62227497A (en) 1986-03-31 1986-03-31 Apparatus for controlling injection of chlorine in water treatment plant

Country Status (1)

Country Link
JP (1) JPS62227497A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224694A (en) * 1990-01-30 1991-10-03 Toshiba Corp Chlorine dosing control device in water purification plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03224694A (en) * 1990-01-30 1991-10-03 Toshiba Corp Chlorine dosing control device in water purification plant

Similar Documents

Publication Publication Date Title
KR101432026B1 (en) Denitrification process and system
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP4071519B2 (en) Flocculant injection control device for water purification plant
JPS62227497A (en) Apparatus for controlling injection of chlorine in water treatment plant
US20040217067A1 (en) Residual wastewater chlorine concentration control using a dynamic weir
JP2602943B2 (en) Chlorine injection control device for water purification plant
JPH03224694A (en) Chlorine dosing control device in water purification plant
JP5259365B2 (en) PH controller in water treatment plant
JPH0790226B2 (en) Pre-chlorination control system for water treatment plant
JPH0768270A (en) Chlorine injection control device
JP2592965B2 (en) Chlorine injection control device
JPH0472595B2 (en)
JPS62237994A (en) Apparatus for controlling injection of chlorine
JP6466213B2 (en) Chlorine injection rate setting method, chlorine injection rate setting device, and chlorine injection rate setting system
JPS63162007A (en) Method for controlling chemical feeding in water purification
JPS58137488A (en) Method for controlling injection of chlorine in water purifying plant
JPH10202268A (en) Chlorine injector at water treating plant
JP2950661B2 (en) Control unit for water treatment plant
JPS5840113A (en) Flocculant pouring control apparatus in water treatment
JPH0472596B2 (en)
JPH0215278B2 (en)
JP2699588B2 (en) Pre-chlorination injection control device for water purification plant
JPS5888091A (en) Method for controlling injection of chlorine in water purification plant
JPS60150888A (en) Device for controlling injection of chlorine in water purification plant
JPH04256498A (en) Method and device for controlling water treatment