JPH0768270A - Chlorine injection control device - Google Patents

Chlorine injection control device

Info

Publication number
JPH0768270A
JPH0768270A JP21877093A JP21877093A JPH0768270A JP H0768270 A JPH0768270 A JP H0768270A JP 21877093 A JP21877093 A JP 21877093A JP 21877093 A JP21877093 A JP 21877093A JP H0768270 A JPH0768270 A JP H0768270A
Authority
JP
Japan
Prior art keywords
solar radiation
control
amount
residual chlorine
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21877093A
Other languages
Japanese (ja)
Inventor
Hitoshi Kawamichi
路 等 川
Mayumi Kurata
田 まゆみ 倉
Chiyouko Miyajima
島 潮 子 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21877093A priority Critical patent/JPH0768270A/en
Publication of JPH0768270A publication Critical patent/JPH0768270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To accurately control the concn. of residual chlorine by accurately calculating the decomposition amt. of residual chlorine due to solar radiation. CONSTITUTION:The estimated quantity of solar radiation after a predetermined time from control time is calculated as the estimated quantity of solar radiation for control by a first operation means 13 and corrected by a second operation means 17 on the basis of the estimated quantity of solar radiation at the control time and the actually measured quantity of solar radiation. The decomposition amt. of residual chlorine due to solar radiation is calculated on the basis of the corrected estimated quantity of solar radiation for control by a third operation means 19 and chlorine injection ratio is calculated by a fourth operation means 20 on the basis of the decomposition amt. of residual chlorine, the actually measured concn. of residual chlorine and the objective concn. of residual chlorine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は浄水場の塩素注入制御装
置に係り、とりわけ日射による残留塩素の分解を補償す
ることができる浄水場の塩素注入制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chlorine injection control device for a water purification plant, and more particularly to a chlorine injection control device for a water purification plant capable of compensating for decomposition of residual chlorine due to solar radiation.

【0002】[0002]

【従来の技術】従来の浄水場の塩素注入制御装置を図8
に示す。
2. Description of the Related Art A conventional chlorine injection control device for a water purification plant is shown in FIG.
Shown in.

【0003】図8において、原水は着水井1の出口にお
いて、塩素注入装置30から原水に消毒のための塩素が
注入され、図示していないアルカリ注入装置から原水に
PH調整用のアルカリ剤が注入され、原水の処理が行な
われる。
In FIG. 8, raw water is injected at the outlet of the landing well 1 with chlorine for disinfecting into the raw water from a chlorine injection device 30, and an alkaline agent for pH adjustment is injected into the raw water from an alkali injection device (not shown). The raw water is treated.

【0004】さらに、処理水に対して、除濁のために図
示していない凝集剤注入装置から凝集剤が注入され、処
理水は急速混和池2においてフラッシュミキサ3により
急激に攪拌される。次にフロック形成池4において処理
水にフロックが形成され、沈澱池5において大部分のフ
ロックが沈澱除去される。
Further, a coagulant is injected into the treated water from a coagulant injecting device (not shown) for turbidity, and the treated water is rapidly stirred by the flash mixer 3 in the rapid mixing basin 2. Next, flocs are formed in the treated water in the flocculation basin 4, and most of the flocs are precipitated and removed in the sedimentation basin 5.

【0005】着水井1に流入する原水中には、無機物、
有機物および病原体を含む微生物が含まれており、原水
に注入された塩素はこれらの物質や微生物と反応するこ
とによって分解を受ける。また沈澱池5は一般的に滞留
時間が長いので、沈澱池5を処理水が通過する間に処理
水中の残留塩素は日光の日射によって分解される。この
場合、残留塩素の一部は飛散し、特に日射の大きい夏期
にはその影響が顕著となる。
In the raw water flowing into the landing well 1, inorganic substances,
It contains microorganisms including organic substances and pathogens, and chlorine injected into raw water is decomposed by reacting with these substances and microorganisms. Further, since the settling basin 5 generally has a long residence time, residual chlorine in the treated water is decomposed by solar radiation while the treated water passes through the settling basin 5. In this case, some of the residual chlorine is scattered, and the effect becomes remarkable especially in the summer when the amount of solar radiation is large.

【0006】従来、図8に示すように、フロック形成池
4の入口に設置された検水ポンプ10から処理水を残留
塩素濃度計6に送り、残留塩素濃度計6の指示値に従っ
てフィードバック制御をPI演算器7で行なうことによ
り、塩素注入制御が行なわれている。また、沈澱池5の
出口水の残留塩素濃度計(図示せず)を計測し、その指
示値によるフィードバック制御を行なうこともある。し
かしながらフロック形成池4の入口に設置された検水ポ
ンプ10から処理水を残留塩素濃度計6に送る場合、残
留塩素の計測場所が塩素の分解される沈澱池5の上流に
あるので、沈澱池5で分解される残留塩素を補償するこ
とはできない。また沈澱池5の出口で残留塩素を計測す
る場合、塩素注入点から沈澱池5の出口までの流下時間
が大きいので、塩素注入制御の結果ができるまでに時間
がかかりすぎ、安定した塩素注入制御を行なうことがで
きないという欠点がある。
Conventionally, as shown in FIG. 8, treated water is sent to a residual chlorine concentration meter 6 from a test water pump 10 installed at an inlet of a floc formation pond 4, and feedback control is performed according to an instruction value of the residual chlorine concentration meter 6. Chlorine injection control is performed by the PI calculator 7. In addition, a residual chlorine concentration meter (not shown) of the outlet water of the settling basin 5 may be measured and feedback control may be performed according to the indicated value. However, when the treated water is sent from the test water pump 10 installed at the inlet of the floc formation pond 4 to the residual chlorine concentration meter 6, the residual chlorine is measured at the upstream of the sedimentation pond 5 where chlorine is decomposed. The residual chlorine decomposed in 5 cannot be compensated. When measuring residual chlorine at the outlet of the sedimentation tank 5, it takes a long time until the result of chlorine injection control is obtained because the flow time from the chlorine injection point to the outlet of the sedimentation tank 5 is long, and stable chlorine injection control is performed. It has the drawback of not being able to do.

【0007】また他の塩素注入制御の例として、実測日
射量を一次式を用いて注入率に変換し、注入率の補正を
行う方法があり、さらに実測日射量を午前中に前倒し的
に多くし、これを注入率に変換して補正を行う方法もあ
る。しかしながら、これらの方法では実際の日射開始後
に補正が開始されることになるので、補正開始前の処理
水は沈澱池5を通過する間に日射を受け、残留塩素が低
下してしまうという欠点がある。
As another example of chlorine injection control, there is a method of converting an actually measured solar radiation amount into an injection ratio by using a linear expression and correcting the injection ratio. Furthermore, the actually measured solar radiation amount is increased in the morning in advance. However, there is also a method of converting this into an injection rate and performing correction. However, in these methods, the correction is started after the actual start of solar radiation, so that the treated water before the start of correction is exposed to solar radiation while passing through the settling tank 5, and the residual chlorine decreases. is there.

【0008】さらに他の塩素注入制御の例として、沈澱
池5の滞留時間を考慮して予測日射量に基づき実際の日
の出よりも早くから補正を開始し、実際の日射が観測さ
れるようになった時点から実測日射量によって補正値を
修正する方法もある。しかしながら、制御実施日の天気
が曇や雨であった場合には予測日射量が実測日射量より
も大きくなり、さらに修正が沈澱池5の滞留時間分だけ
遅れるので、初めは塩素注入の過剰を生じ、時間が経過
するにつれて塩素注入の不足を生じるという問題があ
る。
As still another example of chlorine injection control, correction is started earlier than the actual sunrise based on the predicted amount of solar radiation in consideration of the residence time in the settling basin 5, and actual solar radiation has come to be observed. There is also a method of correcting the correction value from the time point on the basis of the measured solar radiation amount. However, if the weather on the control day is cloudy or rainy, the predicted amount of solar radiation will be larger than the measured amount of solar radiation, and the correction will be delayed by the residence time of the settling basin 5. However, there is a problem that chlorine injection becomes insufficient as time passes.

【0009】他方、塩素注入を上述した自動運転によら
ずに手動操作によって行う場合には、その日の天候を見
ながら沈澱池までの流下時間を考慮して塩素注入率を増
加させ、昼過ぎから夕方にかけて塩素注入率を減少させ
るという運転を行っている。しかしながら、この方法で
は制御の外乱である日射量の変化に沿って連続的に注入
率を変更することはできず、注入率を段階状に変化させ
ているので、残留塩素濃度の過不足を招くという問題が
ある。
On the other hand, when chlorine injection is performed manually instead of the above-mentioned automatic operation, the chlorine injection rate is increased in consideration of the flow time to the sedimentation pond while observing the weather of the day, and from the afternoon to the evening. The operation is being carried out to reduce the chlorine injection rate. However, with this method, the injection rate cannot be changed continuously along with the change in the amount of solar radiation, which is a control disturbance, and the injection rate is changed stepwise, resulting in excess or deficiency of the residual chlorine concentration. There is a problem.

【0010】[0010]

【発明が解決しようとする課題】上述のように、従来か
ら日射による残留塩素の文化を考慮して塩素注入を行な
う塩素注入制御が行なわれている。しかしながら、この
うち実測日射量により注入率を補正する場合、実際の日
射開始後に塩素注入量を補正することになって残留塩素
が低下してしまう。また予測日射量に基づいて、実際の
日の出より早くから補正を開始する場合は、天候が雨や
曇になると、予測日射量が実測日射量より大きくなって
塩素注入過剰が生じたり、時間の経過とともに塩素注入
不足となったりする。
As described above, conventionally, chlorine injection control has been performed in which chlorine is injected in consideration of the culture of residual chlorine due to solar radiation. However, if the injection rate is corrected by the actually measured solar radiation amount, the chlorine injection amount is corrected after the actual start of solar radiation, and the residual chlorine is reduced. If the correction is started earlier than the actual sunrise based on the estimated insolation, if the weather becomes rainy or cloudy, the estimated insolation will be larger than the measured insolation, resulting in excessive chlorine injection, or over time. There is a shortage of chlorine injection.

【0011】本発明はこのような点を考慮してなされた
ものであり、日射による残留塩素の分解を考慮するとと
もに、精度良く残留塩素濃度を制御することができる塩
素注入制御装置を提供することを目的とする。
The present invention has been made in consideration of the above points, and provides a chlorine injection control device capable of accurately controlling the residual chlorine concentration while considering the decomposition of residual chlorine due to solar radiation. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明は、制御実施日の
予測日射量が入力されるとともに、制御時刻から所定時
間後の予測日射量を制御用予測日射量として求める第1
の演算手段と、予測日射量とこれに対応する時刻の実測
日射量とを用いて第1の制御手段で求めた制御用予測日
射量を補正する第2の演算手段と、補正された制御用予
測日射量に基づいて、日射による残留塩素分解量を求め
る第3の演算手段と、残留塩素分解量、実測残留塩素濃
度および目標残留塩素濃度に基づいて、塩素注入率を求
める第4の演算手段と、を備えたことを特徴とする塩素
注入制御装置である。
According to a first aspect of the present invention, a predicted solar radiation amount of a control execution day is input and a predicted solar radiation amount after a predetermined time from a control time is obtained as a control predicted solar radiation amount.
And a second calculating means for correcting the predicted predicted solar radiation amount obtained by the first control means using the predicted solar radiation amount and the actually measured solar radiation amount at the time corresponding thereto, and the corrected control solar radiation amount. Third computing means for obtaining the residual chlorine decomposition amount due to solar radiation based on the predicted solar radiation amount, and fourth computing means for obtaining the chlorine injection rate based on the residual chlorine decomposition amount, the actually measured residual chlorine concentration and the target residual chlorine concentration. And a chlorine injection control device.

【0013】[0013]

【作用】第1の演算手段によって制御時刻から所定時間
後の予測日射量を制御用予測日射量として求め、第2の
演算手段によって予測日射量とこれに対応する時刻の実
測日射量とを用いて制御予測日射量を補正する。第3の
演算手段によって、補正された制御用予測日射量に基づ
いて日射による残留塩素分解量を求め、第4の演算手段
によってこの残留塩素分解量、実測残留塩素濃度および
目標残留塩素濃度に基づいて塩素注入率を求める。
The predicted amount of solar radiation after a predetermined time from the control time is obtained as the predicted amount of solar radiation for control by the first calculating means, and the predicted amount of solar radiation and the actually measured amount of solar radiation at the corresponding time are used by the second calculating means. To correct the predicted control solar radiation. The third calculating means calculates the residual chlorine decomposition amount due to the solar radiation based on the corrected predicted control solar radiation amount, and the fourth calculating means calculates the residual chlorine decomposition amount, the actually measured residual chlorine concentration and the target residual chlorine concentration. Calculate the chlorine injection rate.

【0014】[0014]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1乃至図7は、本発明による塩素注入制
御装置の一実施例を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 7 are views showing an embodiment of a chlorine injection control device according to the present invention.

【0015】図1において、着水井1に原水が流入す
る。その後着水井1の出口において塩素注入装置30か
ら原水に対して塩素が注入され、また図示していないア
ルカリ注入装置から原水にアルカリ剤が注入されて処理
される。さらに急速混和池2の入口において、図示して
いない凝集剤注入制御装置から処理水に凝集剤が注入さ
れ、処理水は急速混和池2においてフラッシュミキサ3
によって急速攪拌される。
In FIG. 1, raw water flows into a landing well 1. After that, chlorine is injected into the raw water from the chlorine injection device 30 at the outlet of the landing well 1, and an alkaline agent is injected into the raw water from an alkali injection device (not shown) for treatment. Further, at the inlet of the rapid mixing basin 2, a coagulant is injected into the treated water from a coagulant injection control device (not shown), and the treated water is supplied to the flash mixer 3 in the rapid mixing basin 2.
It is rapidly stirred by.

【0016】フロック形成池4では処理水にフロックが
成長し、沈澱池5では成長したフロックの多くが沈澱除
去され、沈澱池5の流出水はろ過池8で清澄にされる。
さらに処理水に対して図示していない後塩素注入機によ
り後塩が注入されて、処理水は浄水池9に貯えられる。
またフロック形成池4の入口水と沈澱池5の出口水は、
検水ポンプ10および11によって、それぞれ残留塩素
濃度計6および12に導かれる。
Flock grows in the treated water in the flocculation basin 4, most of the grown flocs are removed by sedimentation in the sedimentation basin 5, and the effluent of the sedimentation basin 5 is clarified in the filtration basin 8.
Further, post-salt is injected into the treated water by a post-chlorine injecting machine (not shown), and the treated water is stored in the water purification basin 9.
The inlet water of the floc formation pond 4 and the outlet water of the sedimentation pond 5 are
It is led to the residual chlorine concentration meters 6 and 12 by the test water pumps 10 and 11, respectively.

【0017】次に本発明における塩素注入制御装置につ
いて、図1および図7を参照して説明する。塩素注入制
御装置は、制御実施日の予測日射量等の気象情報データ
を入力とし、制御時刻より所定時間h後の予測日射量R
Etを制御用予測日射量として出力する第1の演算手段1
3を備えている。この第1の演算手段13は、図2に示
すように気象情報(制御実施日の予測日射量等)が入力
される気象情報入力装置14と、入力されたデータを格
納する記憶装置15と、時刻に対応する格納されたデー
タを取り出す算出部16とから構成されている。
Next, a chlorine injection control device according to the present invention will be described with reference to FIGS. 1 and 7. The chlorine injection control device inputs the weather information data such as the predicted solar radiation amount on the control execution date, and predicts the solar radiation amount R after a predetermined time h from the control time.
First computing means 1 for outputting Et as a predicted solar radiation amount for control
Equipped with 3. As shown in FIG. 2, the first computing means 13 includes a weather information input device 14 to which weather information (predicted solar radiation amount on the control execution date) is input, a storage device 15 to store the input data, The calculation unit 16 extracts the stored data corresponding to the time.

【0018】記憶装置15には、気象情報入力装置14
により入力された制御実施日の予測日射量が図3に示す
ように時刻毎に格納される。図4は格納されているデー
タをグラフ化したものであり、制御実施日の日の出から
日の入りまでの予測日射量が時刻に対応して変化してい
る。算出部16は時刻に対応した予測日射量を記憶装置
15から取り出すものであり、取り出したい時刻を指定
することにより、その時刻の予測日射量を求めることが
できる。指定時刻が制御時刻より所定時間h後ならば、
制御時刻に所定時間hを加算し、該当する予測日射量R
etを制御用予測日射量として出力する。
The storage device 15 includes a weather information input device 14
The predicted solar radiation amount input on the control execution date is stored for each time as shown in FIG. FIG. 4 is a graph of the stored data, in which the predicted amount of solar radiation from the sunrise on the control execution day to the sunset changes according to the time. The calculation unit 16 retrieves the predicted solar radiation amount corresponding to the time from the storage device 15. By designating the time to be retrieved, the predicted solar radiation amount at that time can be obtained. If the specified time is a predetermined time h after the control time,
Predetermined time h is added to the control time, and the corresponding predicted solar radiation amount R
Output et as the predicted solar radiation amount for control.

【0019】図1において、第1の演算手段13に第2
の演算手段17が接続されている。第2の演算手段17
は、第1の演算手段13で求めた制御時刻より所定時間
h後の予測日射量Ret(制御用予測日射量)と、制御時
刻の予測日射量Ret-hと、制御時刻の日射量計18の指
示値Rpv(実測日射量)との比較を行い、制御用予測日
射量の修正値Rtを下記(1)式を用いて演算する。 Rt =REt+K1 ・(Rpv−REt-h) ・・・(1) 式(1)において、K1 は定数であり、浄水場に対応し
た固有の値を有する。
In FIG. 1, the first computing means 13 has a second
The calculation means 17 of is connected. Second computing means 17
Is a predicted solar radiation amount Ret (predicted solar radiation amount for control) after a predetermined time h from the control time calculated by the first calculation means 13, a predicted solar radiation amount Ret-h at the control time, and a solar radiation meter 18 at the control time. Is compared with the indicated value Rpv (measured solar radiation amount), and the correction value Rt of the control predicted solar radiation amount is calculated using the following equation (1). Rt = REt + K1. (Rpv-REt-h) (1) In the formula (1), K1 is a constant and has a unique value corresponding to the water purification plant.

【0020】また第2の演算手段17に第3の演算手段
19が接続されている。第3の演算手段19は第2の演
算手段17で求めた制御用日射量の修正値Rt に基づい
て、日射による残留塩素分解量DSt を下記(2)式を
用いて演算する。 DSt =DSt-1 +K2 ・K3 ・(Rt −Rt-1 ) ・・・(2) 式(2)において、K2 は日射量を残留塩素濃度に変換
するための係数であり、季節によってその値が変化す
る。またK3 は日射補正の強度を調整するための係数で
あり、浄水場に対応した固有の値を有する。さらにRt-
1 は前回演算周期での修正日射量の値である。
The third computing means 19 is connected to the second computing means 17. The third calculating means 19 calculates the residual chlorine decomposition amount DSt due to solar radiation using the following equation (2) based on the correction value Rt of the controlling solar radiation amount obtained by the second calculating means 17. DSt = DSt-1 + K2.K3. (Rt-Rt-1) (2) In equation (2), K2 is a coefficient for converting the amount of solar radiation into the residual chlorine concentration, and its value changes depending on the season. Change. K3 is a coefficient for adjusting the intensity of solar radiation correction, and has a unique value corresponding to the water purification plant. Furthermore Rt-
1 is the value of modified solar radiation in the previous calculation cycle.

【0021】図1において、第3の演算手段19に第4
の演算手段20が接続され、また第4の演算手段20に
は残留塩素濃度計6が接続されている。第4の演算手段
20は第3の演算手段19で求めた日射による塩素分解
量DSt と、残留塩素濃度計6により実測された残留塩
素濃度Rc とを入力として、フィードバックにより塩素
注入率CLt を演算する。この場合、第4の制御手段2
0のフィードバック制御で用いられる偏差Et は、予め
設定された残留塩素目標値Rsvと実測された残留塩素濃
度Rc との差だけではなく、(2)式であたえられた残
留塩素分解量DSt を考慮したものであり、下記(3)
式であたえられる。 Et =Rsv−Rc +DSt ・・・(3) 次に第4の演算手段20はこの偏差Et を用いて塩素注
入率CLt を下記(4)、(5)式を用いて演算する。 CLt =CLt-1 +△CL ・・・(4) △CL=Kc ・{Kp ・(Et −Et-1 )+Ki ・Et} ・・・(5) 式(4)(5)において、Kc ,Kp ,Ki は制御ゲイ
ンである。
In FIG. 1, the third computing means 19 has a fourth
The calculating means 20 is connected, and the residual chlorine concentration meter 6 is connected to the fourth calculating means 20. The fourth calculation means 20 inputs the chlorine decomposition amount DSt due to solar radiation obtained by the third calculation means 19 and the residual chlorine concentration Rc measured by the residual chlorine concentration meter 6 and calculates the chlorine injection rate CLt by feedback. To do. In this case, the fourth control means 2
The deviation Et used in the feedback control of 0 takes into consideration not only the difference between the preset residual chlorine target value Rsv and the actually measured residual chlorine concentration Rc, but also the residual chlorine decomposition amount DSt given by the equation (2). The following (3)
It can be given with a formula. Et = Rsv-Rc + DSt (3) Next, the fourth computing means 20 computes the chlorine injection rate CLt by using the deviation Et using the following equations (4) and (5). CLt = CLt-1 + [Delta] CL (4) [Delta] CL = Kc * {Kp * (Et-Et-1) + Ki * Et} (5) In the equations (4) and (5), Kc, Kp and Ki are control gains.

【0022】第4の演算手段20は、フィードバックに
よる塩素注入率CLt を塩素注入率設定値として注入量
制御器21に出力する。注入量制御器21は塩素注入率
CLt に急速混和池流入流量Qを乗算して塩素注入量設
定値に変換し、塩素注入量の制御を行う。
The fourth calculating means 20 outputs the chlorine injection rate CLt by feedback as a chlorine injection rate set value to the injection amount controller 21. The injection amount controller 21 multiplies the chlorine injection rate CLt by the inflow flow rate Q of the rapid mixing tank to convert it into a chlorine injection amount set value, and controls the chlorine injection amount.

【0023】次に図5および図6により、本発明の作用
効果を具体例を挙げて説明する。
Next, referring to FIGS. 5 and 6, the operation and effect of the present invention will be described with reference to a concrete example.

【0024】図5は本発明において、日の出から日の入
りまでの予測日射量、実測日射量および日射によって分
解される残留塩素の変化の一例を示す図である。
FIG. 5 is a diagram showing an example of changes in the predicted amount of solar radiation from sunrise to sunset, the amount of actually measured solar radiation, and the residual chlorine decomposed by solar radiation in the present invention.

【0025】また図6は本発明の効果を示すグラフであ
り、図6においてAは実測日射量を示し、B,Cはそれ
ぞれフロック形成池4の入口水残留塩素濃度と沈澱池5
の出口水残留塩素濃度とを、本発明と従来技術とを比較
して示す図である。なお、図6において従来技術は前述
の従来技術のうち、予測日射量に基づいて実際の日の出
よりも早くから塩素注入率補正を開示する制御方法に相
当する。
FIG. 6 is a graph showing the effect of the present invention. In FIG. 6, A indicates the measured amount of solar radiation, and B and C indicate the residual chlorine concentration in the inlet water of the floc formation pond 4 and the sedimentation pond 5, respectively.
FIG. 4 is a diagram showing the residual chlorine concentration in the outlet water of the present invention in comparison with the present invention and the prior art. Note that, in FIG. 6, the conventional technique corresponds to the control method which discloses the chlorine injection rate correction earlier than the actual sunrise based on the predicted solar radiation amount, among the above-described conventional techniques.

【0026】図5および図6に示すように、本実施例に
よれば日射による外乱に対して予測日射量を用いてフィ
ードフォワード的に対応遅れを補償し、かつ実測日射量
により日射量の過剰分を修正して塩素注入を行うので、
沈澱池5出口の残留塩素濃度を安定して制御することが
できる。このため処理水の水質を安定化でき、また残留
塩素の低下によって引き起こされる沈澱池の汚泥腐敗や
藻の発生を防止することができ、衛生的で安全な水を供
給することができる。
As shown in FIG. 5 and FIG. 6, according to the present embodiment, the response delay is compensated for the disturbance due to solar radiation by using the predicted amount of solar radiation in a feedforward manner, and the amount of solar radiation is excessive by the actually measured amount of solar radiation. I am going to correct the minute and do chlorine injection,
The residual chlorine concentration at the outlet of the sedimentation tank 5 can be controlled stably. Therefore, the quality of the treated water can be stabilized, sludge decay in the settling basin and generation of algae caused by a decrease in residual chlorine can be prevented, and sanitary and safe water can be supplied.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
制御時刻から所定時間後の予測日射量を制御用予測日射
量とするとともに、この制御用予測日射量を予測日射量
およびこれに対応する実測日射量を用いて補正すること
により、日射による残留塩素分解量を正確に求めること
ができる。このため、この残留塩素分解量を用いて塩素
注入率を求めることにより、精度良く残留塩素濃度を制
御することができる。
As described above, according to the present invention,
Residual chlorine due to solar radiation is obtained by correcting the predicted solar radiation amount for control with the predicted solar radiation amount after a predetermined time from the control time, and by correcting the predicted solar radiation amount for control using the predicted solar radiation amount and the actually measured solar radiation amount corresponding to this. The amount of decomposition can be accurately determined. Therefore, the residual chlorine concentration can be accurately controlled by obtaining the chlorine injection rate using this residual chlorine decomposition amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による塩素注入制御装置の一実施例を示
す系統図。
FIG. 1 is a system diagram showing an embodiment of a chlorine injection control device according to the present invention.

【図2】制御実施日の予測日射量から制御用予測日射量
を求める第1の演算手段の構成を示す図。
FIG. 2 is a diagram showing the configuration of a first calculation means for obtaining a predicted solar radiation amount for control from the predicted solar radiation amount on the control execution date.

【図3】時刻毎に第1の演算手段の記憶装置に格納され
た予測日射量を示す図。
FIG. 3 is a diagram showing a predicted solar radiation amount stored in a storage device of a first calculation means for each time.

【図4】図3に示す予測日射量をグラフ化した図。FIG. 4 is a graph showing the predicted solar radiation amount shown in FIG.

【図5】本発明における残留塩素濃度の変化の一例を示
す図。
FIG. 5 is a diagram showing an example of changes in residual chlorine concentration according to the present invention.

【図6】本発明の効果の一例を示す図。FIG. 6 is a diagram showing an example of the effect of the present invention.

【図7】本発明における演算手段のフローチャート。FIG. 7 is a flowchart of a calculation means according to the present invention.

【図8】従来の塩素注入制御を示す系統図。FIG. 8 is a system diagram showing conventional chlorine injection control.

【符号の説明】[Explanation of symbols]

1 着水井 2 急速混和池 3 フラッシュミキサ 4 フロック形成池 5 沈澱池 6 残留塩素濃度計 8 ろ過池 13 第1の演算手段 17 第2の演算手段 19 第3の演算手段 20 第4の演算手段 21 注入量制御器 1 landing well 2 rapid mixing basin 3 flash mixer 4 floc formation basin 5 sedimentation basin 6 residual chlorine concentration meter 8 filtration basin 13 first computing means 17 second computing means 19 third computing means 20 fourth computing means 21 Injection volume controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】制御実施日の予測日射量が入力されるとと
もに、制御時刻から所定時間後の予測日射量を制御用予
測日射量として求める第1の演算手段と、 予測日射量とこれに対応する時刻の実測日射量とを用い
て第1の制御手段で求めた制御用予測日射量を補正する
第2の演算手段と、 補正された制御用予測日射量に基づいて、日射による残
留塩素分解量を求める第3の演算手段と、 残留塩素分解量、実測残留塩素濃度および目標残留塩素
濃度に基づいて、塩素注入率を求める第4の演算手段
と、を備えたことを特徴とする塩素注入制御装置。
1. A first calculation means for inputting a predicted solar radiation amount of a control execution date and for obtaining a predicted solar radiation amount after a predetermined time from a control time as a control predicted solar radiation amount, and a predicted solar radiation amount and corresponding thereto. The second calculation means for correcting the predicted control solar radiation amount obtained by the first control means by using the actually measured solar radiation amount at the time when the residual chlorine decomposition by the solar radiation is performed based on the corrected control solar radiation amount. Chlorine injection characterized by comprising a third operation means for obtaining the amount and a fourth operation means for obtaining the chlorine injection rate based on the residual chlorine decomposition amount, the measured residual chlorine concentration and the target residual chlorine concentration. Control device.
JP21877093A 1993-09-02 1993-09-02 Chlorine injection control device Pending JPH0768270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21877093A JPH0768270A (en) 1993-09-02 1993-09-02 Chlorine injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21877093A JPH0768270A (en) 1993-09-02 1993-09-02 Chlorine injection control device

Publications (1)

Publication Number Publication Date
JPH0768270A true JPH0768270A (en) 1995-03-14

Family

ID=16725126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21877093A Pending JPH0768270A (en) 1993-09-02 1993-09-02 Chlorine injection control device

Country Status (1)

Country Link
JP (1) JPH0768270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT107098A (en) * 2013-07-31 2015-02-02 Edp Serviços Sist S Para A Qualidade E Efici Ncia Energética S A WATER QUALITY MAINTENANCE PROCESS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT107098A (en) * 2013-07-31 2015-02-02 Edp Serviços Sist S Para A Qualidade E Efici Ncia Energética S A WATER QUALITY MAINTENANCE PROCESS

Similar Documents

Publication Publication Date Title
KR101432026B1 (en) Denitrification process and system
JP4334317B2 (en) Sewage treatment system
JP3961835B2 (en) Sewage treatment plant water quality controller
CN114230110B (en) Short-range intelligent phosphorus removal and medicine addition control method, equipment and system for sewage treatment
JP4492473B2 (en) Flocculant injection control device and method
JP2008161809A (en) Coagulant injection control system
JP2004223357A (en) Flocculant injecting/controlling apparatus
JP4071519B2 (en) Flocculant injection control device for water purification plant
US20040217067A1 (en) Residual wastewater chlorine concentration control using a dynamic weir
CN1270219C (en) Self-adaptive control administration apparatus and process thereof
JPH0768270A (en) Chlorine injection control device
JP2602943B2 (en) Chlorine injection control device for water purification plant
CN114920358A (en) RBS intelligent control method for sewage plant
JPH0790226B2 (en) Pre-chlorination control system for water treatment plant
JP2009061453A (en) pH CONTROL DEVICE IN WATER PURIFICATION PLANT
JP6466213B2 (en) Chlorine injection rate setting method, chlorine injection rate setting device, and chlorine injection rate setting system
JPH0472595B2 (en)
JPS62227497A (en) Apparatus for controlling injection of chlorine in water treatment plant
JPH03224694A (en) Chlorine dosing control device in water purification plant
JPH03165892A (en) Controller for preinjection of chlorine in water purifying plant
JP2592965B2 (en) Chlorine injection control device
JP4249505B2 (en) PH controller in water treatment plant
JPS62237994A (en) Apparatus for controlling injection of chlorine
JPS6228717B2 (en)
JP2004113853A (en) Regulation and control apparatus for ph value of inflow raw water in water purifying treatment process