JPH10202268A - Chlorine injector at water treating plant - Google Patents

Chlorine injector at water treating plant

Info

Publication number
JPH10202268A
JPH10202268A JP2854097A JP2854097A JPH10202268A JP H10202268 A JPH10202268 A JP H10202268A JP 2854097 A JP2854097 A JP 2854097A JP 2854097 A JP2854097 A JP 2854097A JP H10202268 A JPH10202268 A JP H10202268A
Authority
JP
Japan
Prior art keywords
outlet
pond
residual chlorine
chlorine concentration
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2854097A
Other languages
Japanese (ja)
Inventor
Kazuya Okazaki
和也 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2854097A priority Critical patent/JPH10202268A/en
Publication of JPH10202268A publication Critical patent/JPH10202268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a safety drinking water by calculating an objective residual chlorine concn. at an outlet of a rapid agitation pond in accordance with a change of season and weather and flow rate in a device in which a chlorine injector injecting the chlorine in the rapid agitation pond is controlled to keep the residual chlorine concn. at the outlet of a settling pond in a desired value. SOLUTION: An arrived water well 1, the rapid agitation pond 2, a slow agitation pond 3 and the settling pond 4 are arranged side by side, and the chlorine injector 7 is controlled depending on a raw water chlorine consumption of the arrived water well 1 and a result calculated the residual chlorine concn. at the outlet of the rapid agitation pond and the objective residual chlorine concn. In such a chlorine injecting device at a water treating plant, the objective residual chlorine concn. at the outlet of the rapid agitation pond 2 is required by formula Co= 1+(k1 I+k0 )/Q}<n> Cn. But k1 is a reaction rate constant with solar radiation, k0 is the reaction rate constant consumed with a factor other than solar radiation, Q is an inflow flow rate of the slow agitation pond, (I) is solar radiation rate, Cn is the objective residual chlorine concn. at an outlet of the settling pond and (n) is a tank number in the case when the slow agitation pond and the settling pond are approximated with a perfectly mixing tank series model.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、急速撹拌池の出口
の目標残留塩素濃度等を演算して塩素注入器を制御し、
沈殿池の出口の残留塩素濃度を所望の値に維持する浄水
場の塩素注入装置に関する。
The present invention relates to a method for controlling a chlorine injector by calculating a target residual chlorine concentration at the outlet of a rapid stirring pond.
The present invention relates to a chlorine injection device of a water purification plant that maintains a residual chlorine concentration at an outlet of a settling tank at a desired value.

【0002】[0002]

【従来の技術】従来の浄水場の塩素注入装置につき、ブ
ロック図の図4を参照して説明する。同図において、1
は原水が注入する着水井、2,3及び4は着水井1に順
次並設された急速撹拌池,緩速撹拌池及び沈殿池、5は
急速撹拌池2の出口の目標残留塩素濃度を手動で設定す
る設定器、6は演算器であり、着水井1の原水水質,急
速撹拌池2の出口の計測残留塩素濃度及び設定器5から
の急速撹拌池2の出口の目標残留塩素濃度を演算する。
7は塩素注入器であり、演算器6の出力により急速撹拌
池2への塩素の注入を制御する。
2. Description of the Related Art A conventional chlorine injection apparatus for a water purification plant will be described with reference to FIG. In the figure, 1
Is a landing well into which raw water is injected, 2, 3 and 4 are rapid stirring ponds, slow stirring ponds and sedimentation basins arranged side by side in the landing well 1, and 5 is the target residual chlorine concentration at the outlet of the rapid stirring basin 2 manually. And 6 is a calculator for calculating the raw water quality of the landing well 1, the measured residual chlorine concentration at the outlet of the rapid stirring pond 2 and the target residual chlorine concentration at the outlet of the rapid stirring pond 2 from the setting device 5. I do.
Reference numeral 7 denotes a chlorine injector, which controls the injection of chlorine into the rapid stirring tank 2 based on the output of the calculator 6.

【0003】そして、演算器6に、着水井1でセンシン
グされた原水水質,急速撹拌池2の計測残留塩素濃度及
び設定器5の目標残留塩素濃度が入力され、原水水質か
ら算出される原水塩素消費率,残留塩素濃度,目標残留
塩素濃度から、急速撹拌池2の出口の残留塩素濃度を設
定器5の目標残留塩素濃度に維持するように、演算器6
により、塩素注入器7の急速撹拌池2へ注入する塩素の
量を制御し、沈殿池4の出口の残留塩素濃度を所望の値
に維持している。
The raw water quality sensed at the landing well 1, the measured residual chlorine concentration of the rapid stirring pond 2 and the target residual chlorine concentration of the setting device 5 are input to an arithmetic unit 6, and the raw water chlorine calculated from the raw water quality is input. Based on the consumption rate, the residual chlorine concentration, and the target residual chlorine concentration, the computing unit 6 maintains the residual chlorine concentration at the outlet of the rapid stirring tank 2 at the target residual chlorine concentration of the setting device 5.
Thereby, the amount of chlorine injected into the rapid stirring tank 2 of the chlorine injector 7 is controlled, and the residual chlorine concentration at the outlet of the settling tank 4 is maintained at a desired value.

【0004】ところで、浄水場における前塩素注入制御
においては、沈殿池4の出口の残留塩素濃度を安定して
維持することが重要である。ここで、問題となるのは、
日射による塩素の消費量の変動であり、沈殿池4におい
て、水が数時間滞留するため、注入する塩素の量を、朝
方には太陽が昇る数時間前から増大させていき、夕方に
は太陽が沈む数時間前から減少させる工夫が必要であ
る。
In the pre-chlorine injection control in a water purification plant, it is important to stably maintain the residual chlorine concentration at the outlet of the sedimentation basin 4. The problem here is that
This is fluctuation of chlorine consumption due to solar radiation, and water stays in the sedimentation basin 4 for several hours. Therefore, the amount of chlorine to be injected is increased several hours before the sun rises in the morning and the sun is increased in the evening. It is necessary to reduce it several hours before the sun sets.

【0005】そして、注入する塩素の量の増大,減少
を、人がこれまでの経験と勘とに基づき、朝方に手動に
よる設定器5の設定値の変更により行っている。
The amount of chlorine to be injected is increased or decreased by manually changing the set value of the setting device 5 in the morning based on the experience and intuition of the person.

【0006】[0006]

【発明が解決しようとする課題】従来の前記装置の場
合、設定器5の目標残留塩素濃度の設定を、人の経験と
勘とに基づいて手動で変更しているため、季節及び天候
の変化,流量の変動に対応するのが難しく、沈殿池4の
出口の残留塩素濃度を一定値に維持するのが困難であ
る。
In the case of the conventional apparatus, since the setting of the target residual chlorine concentration of the setting device 5 is manually changed based on human experience and intuition, seasonal and weather changes. , It is difficult to cope with fluctuations in the flow rate, and it is difficult to maintain the residual chlorine concentration at the outlet of the sedimentation tank 4 at a constant value.

【0007】このため、沈殿池4の出口の残留塩素濃度
を計測可能な範囲で、できるだけ小さな値にすることが
できず、注入する塩素量が多くなり、発ガン性物質であ
るトリハロメタン等の有機塩素化合物の生成量が多くな
るという問題点がある。
For this reason, the residual chlorine concentration at the outlet of the sedimentation basin 4 cannot be made as small as possible within a measurable range, the amount of chlorine to be injected becomes large, and organic substances such as trihalomethane which is a carcinogenic substance. There is a problem that the generation amount of chlorine compounds increases.

【0008】本発明は、前記の点に留意し、季節及び天
候の変化,流量の変動に応じて急速撹拌池の出口の目標
残留塩素濃度を自動的に変更し、沈殿池の残留塩素濃度
を計測可能な範囲で、できるだけ小さな値にし、安全な
飲料水が得られる浄水場の塩素注入装置を提供すること
を目的とする。
In view of the above, the present invention automatically changes the target residual chlorine concentration at the outlet of the rapid stirring tank in accordance with seasonal and weather changes and fluctuations in the flow rate, thereby reducing the residual chlorine concentration in the sedimentation tank. It is an object of the present invention to provide a chlorine injecting device for a water purification plant that can obtain safe drinking water with a value as small as possible within a measurable range.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明の浄水場の塩素注入装置は、着水井,急速撹
拌池,緩速撹拌池及び沈殿池が順次並設され、前記着水
井の原水塩素消費率と,前記急速撹拌池の出口の残留塩
素濃度と,前記急速撹拌池の出口の目標残留塩素濃度と
を演算器により演算し、前記演算器の出力により前記急
速撹拌池に塩素を注入する塩素注入器を制御し、前記沈
殿池の出口の残留塩素濃度を所望の値に維持する浄水場
の塩素注入装置において、前記急速撹拌池の出口の目標
残留塩素濃度Coを次式により求めるようにしたもので
ある。
In order to solve the above-mentioned problems, a chlorine injection apparatus for a water purification plant according to the present invention is provided with a landing well, a rapid stirring pond, a slow stirring pond, and a sedimentation pond in order. An arithmetic unit calculates the raw water chlorine consumption rate of the well, the residual chlorine concentration at the outlet of the rapid stirring pond, and the target residual chlorine concentration at the exit of the rapid stirring pond, and outputs the result to the rapid stirring pond by the output of the computing device. In a chlorine injection device of a water purification plant that controls a chlorine injector for injecting chlorine and maintains a residual chlorine concentration at an outlet of the sedimentation tank at a desired value, a target residual chlorine concentration Co at an outlet of the rapid stirring tank is expressed by the following equation. Is obtained by the following.

【0010】 Co={1+(k1 I+k0 )/Q}n Cn 但しk1 :日射による反応速度定数 k0 :日射以外の要因により消費される反応速度定数 Q:緩速撹拌池の流入流量 I:日射量 Cn:沈殿池の出口の目標残留塩素濃度 n:緩速撹拌池及び沈殿池を完全混合槽列モデルで近似
した場合の槽数
Co = {1+ (k 1 I + k 0 ) / Q} n Cn where k 1 is a reaction rate constant due to solar radiation k 0 is a reaction rate constant consumed by factors other than solar radiation Q: inflow rate into the slow stirring tank I: Insolation Cn: Target residual chlorine concentration at the outlet of the sedimentation basin n: Number of tanks when the slow stirring basin and sedimentation basin are approximated by a complete mixing tank series model

【0011】したがって、季節及び天候の変化,流量の
変動に応じて急速撹拌池の出口の目標残留塩素濃度Co
が自動的にかつ経時的に変更され、沈殿池の目標残留塩
素濃度Cnを一定値に維持することができるとともに、
沈殿池の出口の目標残留塩素濃度Cnを計測可能な範囲
で、できるだけ小さな値にし、安全な飲料水を得ること
ができる。
Therefore, the target residual chlorine concentration Co at the outlet of the rapid stirring tank is changed in accordance with changes in season, weather, and flow rate.
Is automatically and temporally changed, and the target residual chlorine concentration Cn of the sedimentation basin can be maintained at a constant value.
Safe drinking water can be obtained by setting the target residual chlorine concentration Cn at the outlet of the sedimentation basin as small as possible within a measurable range.

【0012】[0012]

【発明の実施の形態】実施の形態につき、ブロック図の
図1を参照して説明する。同図において図4と同一符号
は同一もしくは相当するものを示し、異なる点はつぎの
とおりである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described with reference to a block diagram of FIG. 4, the same reference numerals as those in FIG. 4 denote the same or corresponding elements, and the differences are as follows.

【0013】8は急速撹拌池2の出口の目標残留塩素濃
度Coの自動設定器、9は沈殿池4の出口の目標残留塩
素濃度Cnの設定器であり、濃度Cnを自動設定器8に
入力する。10は天気予報より予測日射量Iのパターン
を形成する日射量パターン形成器であり、パターンを自
動設定器8に入力する。
Reference numeral 8 denotes an automatic setting device for the target residual chlorine concentration Co at the outlet of the rapid stirring tank 2, and reference numeral 9 denotes a setting device for the target residual chlorine concentration Cn at the outlet of the sedimentation tank 4, which inputs the concentration Cn to the automatic setting device 8. I do. Reference numeral 10 denotes a solar radiation pattern forming unit that forms a pattern of the predicted solar radiation I from the weather forecast, and inputs the pattern to the automatic setting unit 8.

【0014】つぎに、日射量Iを考慮した急速撹拌池2
の出口の目標残留塩素濃度Coの算出方法につき、緩速
撹拌池3及び沈殿池4を完全混合槽列モデルで示した図
2を参照して説明する。図中の符号はつぎの通りであ
る。
Next, the rapid stirring pond 2 considering the solar radiation I
The method of calculating the target residual chlorine concentration Co at the outlet of the above will be described with reference to FIG. 2 showing the slow stirring tank 3 and the sedimentation tank 4 in a complete mixing tank row model. The reference numerals in the figure are as follows.

【0015】Ci(i=1,2,…,n):第i槽の残
留塩素濃度〔mg/l〕 Vi(i=1,2,…,n):第i槽の体積〔m3 〕 Q:緩速撹拌池4の流入流量〔m3 /h〕 Co:急速撹拌池2の出口の目標残留塩素濃度〔mg/
l〕 I:日射量〔KW/m2
Ci (i = 1, 2,..., N): residual chlorine concentration in tank i [mg / l] Vi (i = 1, 2,..., N): volume of tank i [m 3 ] Q: Inflow rate [m 3 / h] of the slow stirring tank 4 Co: Target residual chlorine concentration [mg /
l] I: Solar radiation [KW / m 2 ]

【0016】そして、緩速撹拌池3及び沈殿池4での日
射による塩素の消費の仕方は、日射量が強い程、残留塩
素濃度が高い程多く消費されるとし、第i槽の体積Vi
は次式により得られる。
The method of consuming chlorine due to the solar radiation in the slow stirring tank 3 and the sedimentation basin 4 is that the greater the amount of solar radiation and the higher the residual chlorine concentration, the more the chlorine is consumed.
Is obtained by the following equation.

【0017】Vi=V/n 但しV:緩速撹拌池3及び沈殿池4の体積Vi = V / n where V is the volume of the slow stirring tank 3 and the sedimentation tank 4.

【0018】また、各槽について以下の物質収支式が得
られる。 第1槽:V1 (dc1 /dt)=QC0 −QC1 −k1 1 I−k0 1 第2槽:V2 (dc2 /dt)=QC1 −QC2 −k1 2 I−k0 2 : 第n槽:Vn(dcn /dt)=QCn-1 −QCn−k1 CnI−k0 Cn
Further, the following material balance equation is obtained for each tank. First tank: V 1 (dc 1 / dt) = QC 0 −QC 1 −k 1 C 1 I−k 0 C 1 Second tank: V 2 (dc 2 / dt) = QC 1 −QC 2 −k 1 C 2 I-k 0 C 2 : n-th tank: Vn (dc n / dt) = QC n-1 -QCn-k 1 CnI-k 0 Cn

【0019】ここでk1 :日射による反応速度定数〔m
5 /KW/h〕 k0 :日射以外の要因により消費される反応速度定数
〔m3 /h〕 Cn:沈殿池4の出口の目標残留塩素濃度〔mg/l〕
Here, k 1 : reaction rate constant due to solar radiation [m
5 / KW / h] k 0 : Reaction rate constant consumed by factors other than solar radiation [m 3 / h] Cn: Target residual chlorine concentration at the outlet of the sedimentation tank 4 [mg / l]

【0020】つぎに沈殿池4の出口の目標残留塩素濃度
Cnを設定した時に、急速撹拌池2の出口の目標残留塩
素濃度Coをいくらにするかにつき、急速撹拌池2の出
口の目標残留塩素濃度Coの目安を得るという観点から
定常状態(d/dt=0)を考える。
Next, when the target residual chlorine concentration Cn at the outlet of the sedimentation basin 4 is set, the target residual chlorine concentration at the outlet of the rapid stirring basin 2 is determined as to the target residual chlorine concentration Co at the outlet of the rapid stirring basin 2. A steady state (d / dt = 0) is considered from the viewpoint of obtaining a standard of the concentration Co.

【0021】 第1槽の収支式より C0 =(Q+k1 I+k0 )C1 /Q 第2槽の収支式より C1 =(Q+k1 I+k0 )C2 /Q : 第n槽の収支式より Cn-1=(Q+k1 I+k0 )Cn/QFrom the balance formula of the first tank C 0 = (Q + k 1 I + k 0 ) C 1 / Q From the balance formula of the second tank C 1 = (Q + k 1 I + k 0 ) C 2 / Q: Balance formula of the n-th tank From Cn -1 = (Q + k 1 I + k 0 ) Cn / Q

【0022】したがって、 Co={1+(k1 I+k0 )/Q}n Cn …数1 となり、日射による反応速度定数k1 ,日射以外の要因
により消費される反応速度定数k0 ,日射量I,緩速撹
拌池4の流入流量Q,緩速撹拌池3及び沈殿池4を完全
混合槽列モデルで近似した場合の槽数nが既知であれ
ば、沈殿池4の出口の目標残留塩素濃度Cnを設定する
ことにより、急速撹拌池2の出口の目標残留塩素濃度C
oが算出される。
Therefore, Co = {1+ (k 1 I + k 0 ) / Q} n Cn ( 1 ), where the reaction rate constant k 1 due to solar radiation, the reaction rate constant k 0 consumed by factors other than solar radiation, and the amount of solar radiation I If the number of tanks n when the inflow flow rate Q of the slow stirring tank 4 and the slow stirring tank 3 and the sedimentation tank 4 are approximated by the complete mixing tank row model is known, the target residual chlorine concentration at the outlet of the sedimentation tank 4 is known. By setting Cn, the target residual chlorine concentration C at the outlet of the rapid stirring tank 2 is set.
o is calculated.

【0023】つぎに、塩素の注入制御につき、説明す
る。図3Aは晴天の時の日射量のパターンを示し、図3
Bは晴のち曇りの時の日射量のパターン(点線はAの晴
天時のパターン)を示し、図3Cは晴のち曇りの時の急
速撹拌池2の出口の目標残留塩素濃度を示す。
Next, control of chlorine injection will be described. FIG. 3A shows a pattern of the amount of solar radiation in fine weather, and FIG.
B shows the pattern of the amount of solar radiation when it is fine and cloudy (the dotted line is the pattern of fine weather in A), and FIG. 3C shows the target residual chlorine concentration at the outlet of the rapid stirring pond 2 when it is fine and cloudy.

【0024】まず、図1の設定器9の沈殿池4の出口の
目標残留塩素濃度Cnを所望の値に設定し、日射量パタ
ーン形成器10により、天気予報から例えば図3Aに示
すように、晴天の日の日射量Iのパターン、或いは図3
Bに示すように、晴のち曇りの日の日射量Iのパターン
等が形成され、自動設定器8に、沈殿池4の出口の目標
残留塩素濃度Cn及び日射量Iのパターンが入力され、
前記数1により急速撹拌池2の出口の目標残留塩素濃度
Coが得られる。
First, the target residual chlorine concentration Cn at the outlet of the sedimentation basin 4 of the setter 9 in FIG. 1 is set to a desired value, and the solar radiation pattern former 10 uses the solar radiation pattern former 10 as shown in FIG. Pattern of solar radiation I on a clear day, or FIG.
As shown in B, a pattern of the amount of solar radiation I on a sunny and cloudy day is formed, and a pattern of the target residual chlorine concentration Cn at the outlet of the sedimentation basin 4 and the pattern of the amount of solar radiation I are input to the automatic setting unit 8.
The target residual chlorine concentration Co at the outlet of the rapid stirring pond 2 is obtained from the above equation (1).

【0025】つぎに、演算器6に、着水井1でセンシン
グされた原水水質,急速撹拌池2の出口の計測残留塩素
濃度及び設定器8の目標残留塩素濃度Coが入力され、
原水水質から算出される原水塩素消費率,計測残留塩素
濃度,目標残留塩素濃度Coから急速撹拌池2の出口の
残留塩素濃度を目標残留塩素濃度Coに維持するよう
に、演算器6により、塩素注入器7の急速撹拌池2へ注
入される塩素の量を制御し、沈殿池4の出口の残留塩素
濃度を目標残留塩素濃度Cnに維持する。
Next, the raw water quality sensed at the landing well 1, the measured residual chlorine concentration at the outlet of the rapid stirring pond 2, and the target residual chlorine concentration Co of the setting device 8 are input to the arithmetic unit 6.
From the raw water chlorine consumption rate calculated from the raw water quality, the measured residual chlorine concentration, and the target residual chlorine concentration Co, the arithmetic unit 6 controls the chlorine to maintain the residual chlorine concentration at the outlet of the rapid stirring tank 2 at the target residual chlorine concentration Co. The amount of chlorine injected into the rapid stirring tank 2 of the injector 7 is controlled to maintain the residual chlorine concentration at the outlet of the settling tank 4 at the target residual chlorine concentration Cn.

【0026】そして、実際に急速撹拌池2に塩素を注入
する場合、従来と同様に、沈殿池4において、水が数時
間滞留するため、この滞留時間を考慮して注入する塩素
の量を太陽が昇る数時間前から増大させていき、太陽が
沈む数時間前から減らす必要がある。
When chlorine is actually injected into the rapid stirring tank 2, water stays for several hours in the sedimentation tank 4, as in the prior art. It needs to be increased several hours before the sun rises and decreased several hours before the sun sets.

【0027】即ち、例えば、図3Cの破線は晴のち曇り
の時の日射量Iのパターンを、急速撹拌池2の出口の目
標残留塩素濃度Coに変換したものであり、急速撹拌池
2の出口で図3Cの破線の目標残留塩素濃度Coを得よ
うとすれば、図3Cの破線の波形から滞留時間の2分の
1前へずらした同図の実線の波形を求める必要がある。
That is, for example, the broken line in FIG. 3C is a pattern obtained by converting the pattern of the amount of solar radiation I when it is fine and cloudy into a target residual chlorine concentration Co at the outlet of the rapid stirring pond 2. In order to obtain the target residual chlorine concentration Co indicated by the broken line in FIG. 3C, it is necessary to obtain the waveform indicated by the solid line in FIG. 3C shifted from the waveform indicated by the broken line in FIG.

【0028】ここで、滞留時間の2分の1前へずらした
時間をTとすると、Tは次式により得られる。 T=V/2Q 但しV:沈殿池4の体積〔m3 〕 Q:緩速撹拌池4の流入流量〔m3 /h〕
Here, assuming that the time shifted to one half of the residence time is T, T is obtained by the following equation. T = V / 2Q where V: volume of settling tank 4 [m 3 ] Q: inflow rate of slow stirring tank 4 [m 3 / h]

【0029】そして、目標残留塩素濃度Coが実線の波
形になるように塩素注入器7の塩素の注入量を制御す
る。
Then, the chlorine injection amount of the chlorine injector 7 is controlled so that the target residual chlorine concentration Co has a waveform of a solid line.

【0030】[0030]

【発明の効果】本発明は、以上説明したように構成され
ているため、つぎに記載する効果を奏する。本発明の浄
水場の塩素注入装置は、急速撹拌池2の出口の目標残留
塩素濃度Coを前記数1により求めるようにしたため、
季節及び天候の変化,流量の変動に応じて急速撹拌池2
の出口の目標残留塩素濃度Coを自動的にかつ経時的に
変更することができ、沈殿池4の目標残留塩素濃度Cn
を一定値に維持することができるとともに、沈殿池4の
出口の目標残留塩素濃度Cnを計測可能な範囲で、でき
るだけ小さな値にでき、安全な飲料水を得ることができ
る。
Since the present invention is configured as described above, it has the following effects. Since the chlorine injection device of the water purification plant of the present invention obtains the target residual chlorine concentration Co at the outlet of the rapid stirring pond 2 by the above equation 1,
Rapid stirring pond 2 according to changes in season, weather, and flow rate
The target residual chlorine concentration Co at the outlet of the sedimentation tank 4 can be changed automatically and with time, and the target residual chlorine concentration Cn
Can be maintained at a constant value, and the target residual chlorine concentration Cn at the outlet of the sedimentation basin 4 can be set as small as possible within a measurable range, so that safe drinking water can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.

【図2】緩速撹拌池及び沈殿池を完全混合槽列モデルで
示したブロック図である。
FIG. 2 is a block diagram showing a slow mixing tank and a sedimentation tank in a complete mixing tank row model.

【図3】Aは晴天の時の日射量のパターンを示した図、
Bは晴のち曇りの時の日射量のパターンを示した図、C
は急速撹拌池の出口の目標残留塩素濃度を示した図であ
る。
FIG. 3A is a diagram showing a pattern of the amount of solar radiation in fine weather,
B is a diagram showing a pattern of the amount of solar radiation when it is fine and cloudy, and FIG.
FIG. 3 is a diagram showing a target residual chlorine concentration at the outlet of the rapid stirring tank.

【図4】従来例のブロック図である。FIG. 4 is a block diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 着水井 2 急速撹拌池 3 緩速撹拌池 4 沈殿池 6 演算器 7 塩素注入器 8 急速撹拌池の出口の目標残留塩素濃度自動設定器 9 沈殿池の出口の目標残留塩素濃度設定器 10 日射量パターン形成器 DESCRIPTION OF SYMBOLS 1 Landing well 2 Rapid stirring pond 3 Slow stirring pond 4 Sedimentation pond 6 Computing device 7 Chlorine injector 8 Target residual chlorine concentration automatic setting device at the rapid stirring pond outlet 9 Target residual chlorine concentration setting device at the sedimentation pond exit 10 Solar radiation Quantity pattern former

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C02F 1/50 550 C02F 1/50 550L 1/00 1/00 K T 1/76 1/76 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C02F 1/50 550 C02F 1/50 550L 1/00 1/00 KT 1/76 1/76 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 着水井,急速撹拌池,緩速撹拌池及び沈
殿池が順次並設され、 前記着水井の原水塩素消費率と,前記急速撹拌池の出口
の残留塩素濃度と,前記急速撹拌池の出口の目標残留塩
素濃度とを演算器により演算し、 前記演算器の出力により前記急速撹拌池に塩素を注入す
る塩素注入器を制御し、 前記沈殿池の出口の残留塩素濃度を所望の値に維持する
浄水場の塩素注入装置において、 前記急速撹拌池の出口の目標残留塩素濃度Coを次式に
より求めることを特徴とする塩素注入装置。 Co={1+(k1 I+k0 )/Q}n Cn 但しk1 :日射による反応速度定数 k0 :日射以外の要因により消費される反応速度定数 Q:緩速撹拌池の流入流量 I:日射量 Cn:沈殿池の出口の目標残留塩素濃度 n:緩速撹拌池及び沈殿池を完全混合槽列モデルで近似
した場合の槽数
1. A landing well, a rapid stirring pond, a slow stirring pond, and a sedimentation pond are sequentially arranged side by side, the raw water chlorine consumption rate of the landing well, the residual chlorine concentration at the outlet of the rapid stirring pond, and the rapid stirring. The target residual chlorine concentration at the outlet of the pond is calculated by a calculator, and a chlorine injector for injecting chlorine into the rapid stirring tank is controlled by the output of the calculator, and the residual chlorine concentration at the outlet of the sedimentation tank is determined as desired. A chlorine injection device for a water purification plant for maintaining a target value of a chlorine concentration Co at an outlet of the rapid stirring tank by the following equation. Co = {1+ (k 1 I + k 0 ) / Q} n Cn where k 1 is a reaction rate constant due to solar radiation k 0 is a reaction rate constant consumed by factors other than solar radiation Q: inflow rate into a slow stirring tank I: solar radiation Amount Cn: Target residual chlorine concentration at the outlet of the sedimentation basin n: Number of tanks when the slow stirring basin and sedimentation basin are approximated by a complete mixing tank series model
JP2854097A 1997-01-27 1997-01-27 Chlorine injector at water treating plant Pending JPH10202268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2854097A JPH10202268A (en) 1997-01-27 1997-01-27 Chlorine injector at water treating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2854097A JPH10202268A (en) 1997-01-27 1997-01-27 Chlorine injector at water treating plant

Publications (1)

Publication Number Publication Date
JPH10202268A true JPH10202268A (en) 1998-08-04

Family

ID=12251508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2854097A Pending JPH10202268A (en) 1997-01-27 1997-01-27 Chlorine injector at water treating plant

Country Status (1)

Country Link
JP (1) JPH10202268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969986B1 (en) 2010-01-19 2010-07-15 주식회사 지지케이 Automatic chlorine injection device
JP2016168572A (en) * 2015-03-13 2016-09-23 株式会社東芝 Chlorine injection rate setting method, chlorine injection rate setting device and chlorine injection rate setting system
JP2019155283A (en) * 2018-03-13 2019-09-19 住友重機械エンバイロメント株式会社 Chemical addition amount control device and chemical addition amount control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100969986B1 (en) 2010-01-19 2010-07-15 주식회사 지지케이 Automatic chlorine injection device
JP2016168572A (en) * 2015-03-13 2016-09-23 株式会社東芝 Chlorine injection rate setting method, chlorine injection rate setting device and chlorine injection rate setting system
JP2019155283A (en) * 2018-03-13 2019-09-19 住友重機械エンバイロメント株式会社 Chemical addition amount control device and chemical addition amount control method

Similar Documents

Publication Publication Date Title
US3839198A (en) Process for sewage treatment and wastewater reclamation
Fernández et al. Reduction of aeration costs by tuning a multi-set point on/off controller: A case study
Jónasson Bottom fauna and eutrophication
Yongzhen et al. Nitrogen and phosphorus removal in pilot-scale anaerobic-anoxic oxidation ditch system
CA2531764A1 (en) Biological water treatment process and plant using activated sludge with regulation of aeration
Chachuat et al. Dynamic optimisation of small size wastewater treatment plants including nitrification and denitrification processes
JPH10202268A (en) Chlorine injector at water treating plant
JP2005052804A (en) Waste water treatment equipment and operation method for the same
CN114380378A (en) Intelligent phosphorus-control drug feeding method and device and storage medium
CN110436609A (en) A kind of Intellectualized sewage water processing aeration control method with self-learning function
JPS6451197A (en) Biological nitration and denitrification plant of waste water
JP2003300093A (en) Operation support system and control system for water treatment process
Ostace et al. Operational costs reduction for the WWTP by means of substrate to dissolved oxygen correlation, a simulation study
Van Nguyen et al. Combined ILC and PI regulator for wastewater treatment plants
Harja et al. Control of an activated sludge wastewater treatment process based on a Calibrated and modified BSM1 Model
CN214004188U (en) Biological continuous reaction intelligent system
CN104914897B (en) Continuous activated sludge process aeration control method and system
JP6466213B2 (en) Chlorine injection rate setting method, chlorine injection rate setting device, and chlorine injection rate setting system
JPH0768270A (en) Chlorine injection control device
JPH03165892A (en) Controller for preinjection of chlorine in water purifying plant
JPH0472595B2 (en)
JP2602943B2 (en) Chlorine injection control device for water purification plant
JP2592965B2 (en) Chlorine injection control device
JPH0790226B2 (en) Pre-chlorination control system for water treatment plant
JPS62227497A (en) Apparatus for controlling injection of chlorine in water treatment plant