JPS62226855A - Low temperature sintering ceramic composition for multi-layer substrate - Google Patents

Low temperature sintering ceramic composition for multi-layer substrate

Info

Publication number
JPS62226855A
JPS62226855A JP61072288A JP7228886A JPS62226855A JP S62226855 A JPS62226855 A JP S62226855A JP 61072288 A JP61072288 A JP 61072288A JP 7228886 A JP7228886 A JP 7228886A JP S62226855 A JPS62226855 A JP S62226855A
Authority
JP
Japan
Prior art keywords
weight
less
ceramic composition
low temperature
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072288A
Other languages
Japanese (ja)
Inventor
治文 万代
公英 須郷
塚本 和吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP61072288A priority Critical patent/JPS62226855A/en
Publication of JPS62226855A publication Critical patent/JPS62226855A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、多層基板用低温焼結磁器組成物に関し、特
に、複数の磁器層が積層きれ、磁器間に回路が形成され
てなる多層磁器基板に適した、多層基板用低温焼結磁器
組成物に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a low-temperature sintered porcelain composition for a multilayer substrate, and particularly to a multilayer porcelain composition in which a plurality of porcelain layers are laminated and a circuit is formed between the porcelains. The present invention relates to a low-temperature sintered ceramic composition for multilayer substrates, which is suitable for substrates.

(従来技術) 一般に、電子機器の小型化に伴い、電気回路を構成する
各種電子部品を実装するのに磁器基板が汎用され、最近
では、実装密度をさらに高めるため、表面に導電材料で
回路パターンを形成した未焼成の磁器シートをw、rl
l、枚積層し、これを焼成して一体化した多層磁器基板
が開発されている。この種の多層磁器基板の磁器材料に
はアルミナが用いられているが、その焼結温度は150
0〜1600℃と高温であるため、次のような問題があ
った。まず、焼結に多量のエネルギを必要とするため製
造コストが高くなる。また、基板内部に形成される内部
回路などの導電材料が、たとえば、高温の焼結温度に耐
えられるタングステンやモリブデンなどに限定されるた
め、内部回路などの抵抗が大きくなる。そして、アルミ
ナの熱膨張係数がシリコンチップのそれよりも大きいた
め、シリコンチップにサーマルストレスがかかり、クラ
ックの原因になることなどである。そこで、これらの問
題を解決するために、低温で焼結させることができる基
板用磁器組成物として、アルミナに多量の結晶化ガラス
成分を添加したもの、あるいは特開昭57−18428
9号公報に開示されている組成物のように、BaSnO
3にホウ素を多量に添加したものが用いられている。ま
た、特開昭6o−zzs454号公報、あるいは特開昭
60−227311号公報に開示されているように、ア
ルミナ、シリカ、アルカリ土類金属酸化物、ホウ素、酸
化リチウム、酸化亜鉛などの成分からなるものが用いら
れている。
(Prior art) Generally, with the miniaturization of electronic devices, ceramic substrates are commonly used to mount various electronic components that make up electric circuits.Recently, in order to further increase the mounting density, circuit patterns are being patterned using conductive materials on the surface. The unfired porcelain sheet formed with w, rl
A multilayer porcelain substrate has been developed in which the porcelain substrates are laminated and then fired and integrated. Alumina is used as the porcelain material for this type of multilayer porcelain substrate, and its sintering temperature is 150°C.
Due to the high temperature of 0 to 1600°C, there were the following problems. First, sintering requires a large amount of energy, which increases manufacturing costs. Further, since the conductive material for the internal circuits formed inside the substrate is limited to, for example, tungsten or molybdenum, which can withstand high sintering temperatures, the resistance of the internal circuits becomes large. Furthermore, since the coefficient of thermal expansion of alumina is larger than that of the silicon chip, thermal stress is applied to the silicon chip, causing cracks. Therefore, in order to solve these problems, as a ceramic composition for a substrate that can be sintered at a low temperature, a ceramic composition in which a large amount of crystallized glass component is added to alumina, or JP-A-57-18428
As in the composition disclosed in Publication No. 9, BaSnO
3 with a large amount of boron added. In addition, as disclosed in JP-A No. 6O-ZZS454 or JP-A No. 60-227311, it is possible to use materials such as alumina, silica, alkaline earth metal oxides, boron, lithium oxide, zinc oxide, etc. Something is being used.

(発明が解決しようとする問題点) しかしながら、アルミナに多量の結晶化ガラス成分を添
加した組成物では、得られた磁器に空孔が多数存在し、
空孔を介して導体路間にマイグレーションが発生すると
いう問題が生じる。また、特開昭57−184289号
公報に開示された組成物では、仮焼物がガラス状となる
ので、その粉砕が困難となるばかりでなく、焼成の際に
ホウ素が激しく蒸発し、導電材料と反応したり、炉の材
料に損傷を与えたりするという問題が生じる。また、特
開昭60−226454号公報、特開昭60−2273
11号公報に開示された組成物についても、多量のホウ
素を用いるため、同様の問題を生じる。また、多量のホ
ウ素の存在はサーメット抵抗体をその表面に形成した場
合に抵抗体を劣化させるという問題を生じる。さらに、
表面に導体を形成すると、多量のホウ素の存在で導体の
特性を劣化させる。その他、酸化リチウムの添加は絶縁
抵抗の信頼性の低下を招くという問題を有している。
(Problems to be Solved by the Invention) However, in a composition in which a large amount of crystallized glass component is added to alumina, a large number of pores are present in the resulting porcelain.
A problem arises in that migration occurs between the conductor paths via the holes. Furthermore, in the composition disclosed in JP-A-57-184289, the calcined material becomes glassy, which not only makes it difficult to crush, but also causes the boron to evaporate violently during firing, resulting in a conductive material. Problems arise with reactions and damage to the materials in the furnace. Also, JP-A No. 60-226454, JP-A No. 60-2273
The composition disclosed in Japanese Patent No. 11 also uses a large amount of boron, so similar problems occur. Further, the presence of a large amount of boron causes a problem of deterioration of the resistor when a cermet resistor is formed on the surface thereof. moreover,
When a conductor is formed on the surface, the presence of a large amount of boron deteriorates the characteristics of the conductor. Another problem is that the addition of lithium oxide causes a decrease in the reliability of insulation resistance.

それゆえに、この発明の主たる目的は、低い温度で焼成
でき、特性的には比抵抗が高く、かつ誘電率が低く、ざ
らに誘電体損失が小さく、しかも熱膨張係数がアルミナ
以下である多層基板用低温焼結磁器組成物を提供するこ
とである。
Therefore, the main object of the present invention is to provide a multilayer substrate that can be fired at a low temperature, has high specific resistance, low dielectric constant, roughly low dielectric loss, and has a thermal expansion coefficient of less than alumina. An object of the present invention is to provide a low-temperature sintered porcelain composition for use in the present invention.

また、この発明の目的は、非酸化性雰囲気でしかも10
00℃以下の低温で焼結可能であり、導体として11(
Cu)、ニッケル(Ni)などの卑金属を用いることが
できる多層基板用低温焼結磁器組成物を提供することで
ある。
Further, the object of this invention is to provide a non-oxidizing atmosphere with 10
It can be sintered at low temperatures below 00°C, and can be used as a conductor.
An object of the present invention is to provide a low-temperature sintered ceramic composition for a multilayer substrate in which base metals such as Cu) and nickel (Ni) can be used.

(問題点を解決するための手段) この発明は、Si成分が5iOzに換τyして25〜7
0重景%、重量成分がBaOに換算して15〜70重蛋
%、B成分がB2O3に換話して1.5重量%以上で3
重量%未満、AI酸成分Al2O3に換算して1重量%
以上で20重量%未満、Ca成分がCaOに換算してO
重量%を超え30重置部以下含まれる、多l基板用低温
焼結磁器組成物である。
(Means for Solving the Problems) This invention provides that the Si component is 25 to 7 τy in terms of 5 iOz.
0 weight%, weight component is 15-70 weight% in terms of BaO, B component is 1.5% by weight or more in terms of B2O3, 3
Less than 1% by weight, calculated as AI acid component Al2O3
or more, less than 20% by weight, Ca component is O in terms of CaO
This is a low-temperature sintered porcelain composition for multi-liter substrates containing more than 30 overlapping parts by weight%.

なお、微量添加物として、L i 20、N20、N 
a 20などのアルカリ金JKi4化物の少なくとも1
種を1.0重ff1%以下添加するようにしてもよい。
In addition, as trace additives, L i 20, N20, N
At least one of alkali gold JKi tetrahydride such as a 20
Seeds may be added in an amount of 1.0 weight ff1% or less.

この発明の多層基板用低温焼結磁器組成物を用いて多層
回路基板を製造する場合、たとえば、5i1Ba、B、
AIおよびCaの酸化物もしくは焼成時に分解して酸化
物となる化合物の粉末を秤量、調合し、その原料混合物
を850〜950℃で仮焼した後、粉砕し、その粉末を
バインダと混練してからシート状に成形し、次いで、得
られたグリーンシートを酸化性雰囲気あるいは非酸化性
もしくは還元雰囲気中、850〜1000℃で焼成すれ
ばよい。また、多層回路基板を製造する場合、グリーン
シート上にAg、Ag−Pd、Cu、Niなどの導電材
料を含有する導電性ペーストで回路パターンを印刷し、
それらを複数枚積層してから、導電性ペーストを構成す
る導電材料に応じた雰囲気で焼成すればよい。内部導電
材料どしてCuやNiなとの卑金属を使用する場合、そ
れらの酸化を防止するため、非酸化性もしくは二元性の
雰囲気で焼成するのが好ましい。たとえば、窒素をキャ
リアガスとして水蒸気(70℃)中を通過ぎせ、酸素お
よび水素の含有量を微量含有きせた窒素−水蒸気雰囲気
(通常、N299゜7〜99.8%)中、850〜10
00℃で焼成するのが好ましい。なお、酸素を微量含有
させるのは、グリーンシートの形成に使用するバインダ
を仮焼段階で、炭素として残存させないために、完全に
燃焼させて除去するためである。
When manufacturing a multilayer circuit board using the low-temperature sintered ceramic composition for multilayer boards of the present invention, for example, 5i1Ba, B,
Powders of AI and Ca oxides or compounds that decompose to become oxides during firing are weighed and prepared, and the raw material mixture is calcined at 850 to 950°C, then crushed, and the powder is kneaded with a binder. The green sheet may be formed into a sheet shape, and then the obtained green sheet may be fired at 850 to 1000°C in an oxidizing atmosphere, a non-oxidizing atmosphere, or a reducing atmosphere. In addition, when manufacturing a multilayer circuit board, a circuit pattern is printed on a green sheet using a conductive paste containing a conductive material such as Ag, Ag-Pd, Cu, or Ni.
After laminating a plurality of them, they may be fired in an atmosphere depending on the conductive material constituting the conductive paste. When using a base metal such as Cu or Ni as the internal conductive material, it is preferable to sinter in a non-oxidizing or binary atmosphere to prevent oxidation of the base metal. For example, nitrogen is passed through water vapor (70°C) as a carrier gas, and 850 to 10
It is preferable to bake at 00°C. The reason why a small amount of oxygen is included is to completely burn off and remove the binder used for forming the green sheet during the calcination stage so that it does not remain as carbon.

この発明の上述の目的、その他の目的、特徴および利点
は、以下の実施例の詳細な説明から一層明らかになろう
The above objects, other objects, features and advantages of the present invention will become more apparent from the detailed description of the following embodiments.

(実施例1) 原料として、BaO,SiOAI  O2−23’ BOもしくはBNまたはB 4C1Ca OまたはCa
 CO3を、別表1の組成になるように秤量して混合し
た。この混合物を850〜950℃で仮焼し、粉砕した
後、有機バインダを加えて混練し、ドクターブレード法
によって厚き1mmのシート状に成形した。このグリー
ンシートをPJ130mm1横10mmにカットし、こ
れを空気中、850〜1000℃で1時間焼成して磁器
を得た。また、このグリーンシートを樅3111ff+
、横20mmの角板状にカットして、これを3枚積層し
、200Kg/cm2で加圧し角柱状にした。そして、
これを上述の方法で焼成し、熱膨張測定用の試料とした
(Example 1) As raw materials, BaO, SiOAI O2-23' BO or BN or B 4C1Ca O or Ca
CO3 was weighed and mixed to have the composition shown in Attached Table 1. This mixture was calcined at 850 to 950°C, pulverized, then kneaded with an organic binder and formed into a 1 mm thick sheet by a doctor blade method. This green sheet was cut into pieces with a PJ of 130 mm and a width of 10 mm, and this was fired in air at 850 to 1000° C. for 1 hour to obtain porcelain. Also, use this green sheet as a fir 3111ff+
It was cut into a rectangular plate shape with a width of 20 mm, and three of these plates were laminated and pressed at 200 kg/cm2 to form a rectangular column shape. and,
This was fired by the method described above and used as a sample for thermal expansion measurement.

これらの試料について、次のとおり各特性をそれぞれの
条件や測定方法で測定し、別表1に示す結果を得た。
Regarding these samples, each characteristic was measured using the respective conditions and measurement methods as follows, and the results shown in Attached Table 1 were obtained.

誘電率:IMHzの条件 誘電体損失:IMHzの条件 比抵抗二直流100■の条件 抗折強度:次の(1)式より算出 式中、Tr:抗折強度、 P :試料が切断したときの荷重(Kg)l :支点間
距離(cm) b :試料の輻(cm) d :試料の厚さくam) 熱膨張係数:次の(2)式より算出 式中、α :熱膨張係数 ΔL:加熱による試料の見掛けの伸び (InIll) L :室温での試料の長き(mm) T1:室温 ”r:500℃ αS i O2:石英ガラスの熱膨張係数また、これと
は別に同じ方法で厚さ0.3〜0.4mmのグリーンシ
ートを作成する一方、粒径5μm以下のAgまたばAg
−P dの導電材料粉末と有機質ビヒクルとを重量比8
0 : 20の割合で混合して導電ペーストを調整して
、前述のグリーンシートの表面に各導電性ペーストを全
面に印刷し、これを3枚積層して熱圧着し、空気中85
0〜1000’Cで焼成した。なお、有機質ビヒクルは
、エチルセルロースをα−テレピネオールで10倍に希
釈したものを使用した。
Dielectric constant: IMHz condition Dielectric loss: IMHz condition Specific resistance 2 DC 100cm condition Transverse strength: Calculated from the following formula (1) In the formula, Tr: Transverse strength, P: When the sample is cut Load (Kg) l: Distance between fulcrums (cm) b: Convergence of sample (cm) d: Thickness of sample (am) Coefficient of thermal expansion: Calculated from the following formula (2), α: Coefficient of thermal expansion ΔL: Apparent elongation of the sample due to heating (InIll) L: Length of the sample at room temperature (mm) T1: Room temperature"r: 500°C αS i O2: Coefficient of thermal expansion of silica glass Also, separately from this, the thickness can be measured using the same method. While creating a green sheet of 0.3 to 0.4 mm, Ag or Ag with a particle size of 5 μm or less
- Pd conductive material powder and organic vehicle at a weight ratio of 8
The conductive pastes were adjusted by mixing them in a ratio of 0:20, each conductive paste was printed on the entire surface of the green sheet, three sheets were stacked, thermo-compressed, and heated at 85% in the air.
It was fired at 0-1000'C. The organic vehicle used was ethyl cellulose diluted 10 times with α-terpineol.

こうして得られた多層磁器基板について、磁器とAgま
たはAg−Pdとの反応を分析したところ、両者間での
反応は見られず、AgおよびAg−Pdはいずれも良好
な導電性を示し、Agの面積抵抗は2mΩ/口で、Ag
−Pdの面積抵抗は20mΩ/口であった。
When the reaction between the porcelain and Ag or Ag-Pd was analyzed for the thus obtained multilayer ceramic substrate, no reaction was observed between the two, and both Ag and Ag-Pd showed good conductivity. The areal resistance of Ag
-Pd had a sheet resistance of 20 mΩ/hole.

(実施例2) 実施例1で作成した厚さ1mmのグリーンシートを用い
、樅30 mm %横10mmの角板状にカットしたグ
リーンシートを、水蒸気(70℃)中に通過させた窒素
をキャリアガスとする窒素−水蒸気の還元性もしくは非
酸化性雰囲気中900℃の温度で完全燃焼させ、950
〜1000℃で1時間焼成して試料とした。また、実施
例1と同様にして、加圧成形しt:角柱状の試料につい
ても、上述と同じ焼成を行ない、熱膨張係数測定用の試
料とした。そして、これらの試料を用いて、実施例1中
で測定した各特性について測定し、別表2の結果を得た
(Example 2) Using the green sheet with a thickness of 1 mm prepared in Example 1, the green sheet was cut into a rectangular plate shape of 30 mm thick fir and 10 mm in width. Complete combustion at a temperature of 900°C in a reducing or non-oxidizing atmosphere of nitrogen-steam as a gas,
A sample was prepared by firing at ~1000°C for 1 hour. Further, in the same manner as in Example 1, a pressure-formed prismatic sample was also fired in the same manner as described above, and was used as a sample for measuring the coefficient of thermal expansion. Using these samples, each characteristic measured in Example 1 was measured, and the results shown in Appendix 2 were obtained.

また、実施例1の後半で述べた厚さ0.3〜0.4mm
のグリーンシートを用い、その表面上に粒径5μm以下
の銅粉末と有機質ビヒクルとを重量比80 : 20の
割合で混合した銅ペーストを印刷し、これを3枚積層し
て熱圧着し、窒素−水蒸気の還元性もしくは非酸化性雰
囲気中950〜1000℃で1時間焼成した。こうして
得た多層磁器基板のCu導体は酸化されておらず、良好
な導電性を示し、その面積抵抗は2mΩ/口であった。
In addition, the thickness 0.3 to 0.4 mm described in the latter half of Example 1
A copper paste made by mixing copper powder with a particle size of 5 μm or less and an organic vehicle at a weight ratio of 80:20 was printed on the surface of the green sheet, and three sheets of this were stacked and bonded by thermocompression. - Calcined at 950-1000°C for 1 hour in a reducing or non-oxidizing atmosphere of water vapor. The Cu conductor of the multilayer ceramic substrate thus obtained was not oxidized and exhibited good conductivity, and its sheet resistance was 2 mΩ/hole.

別表1、別表2の結果は次の基準に従うて判定きれた。The results in Attached Tables 1 and 2 were determined according to the following criteria.

焼結温度:1000℃以下(Cu導体およびAg−Pd
導体の使用可能な温度、た だしAg−Pd導体はAg : Pd=80 : 20
のもの) 誘電率(ε):IMHzの条件ドで10以下(アルミナ
の誘電率の値以下) 誘電体損失(tanδ):IMHzの条件下で0゜2%
以下 抗折強度: 1500Kg/cm2以上熱膨張係数: 
7. OX 10’/l:以下(アルミナの熱膨張係数
の値以下) 非酸化性雰囲気で使用できるサーメット抵抗を表面に形
成した場合、この発明にかかる多層磁器基板上のサーメ
ット抵抗はアルミナ基板と同等の特性が得られた。また
B2O3Mkを3重量%にすると半田付は性が悪くなる
ことが確認された。
Sintering temperature: 1000℃ or less (Cu conductor and Ag-Pd
Usable temperature of conductor, except for Ag-Pd conductor: Ag: Pd = 80: 20
) Dielectric constant (ε): 10 or less under IMHz conditions (less than the dielectric constant of alumina) Dielectric loss (tan δ): 0°2% under IMHz conditions
Breaking strength below: 1500Kg/cm2 or more Coefficient of thermal expansion:
7. OX 10'/l: Below (below the value of the thermal expansion coefficient of alumina) When a cermet resistor that can be used in a non-oxidizing atmosphere is formed on the surface, the cermet resistor on the multilayer ceramic substrate according to the present invention is equivalent to the alumina substrate. characteristics were obtained. It was also confirmed that when B2O3Mk was increased to 3% by weight, the soldering properties deteriorated.

なお、別表1および別表2において、*印を付したもの
はこの発明範囲外のものであり、それ以外はこの発明範
囲内のものである。
In addition, in Attached Table 1 and Attached Table 2, those marked with * are outside the scope of this invention, and the others are within the scope of this invention.

別表1および別表2から明らかなように、この発明の多
層基板用低温焼結磁器組成物における組成範囲を前記し
た範囲に限定した理由は次の通りである。
As is clear from Attached Tables 1 and 2, the reason why the composition range of the low temperature sintered ceramic composition for multilayer substrates of the present invention is limited to the above range is as follows.

(1)S102が70重畳%を超えると、抗折強度が1
500Kg/am2未満になり、かつ焼結温度が100
0℃より高くなるので好ましくない(試料番号1参照)
。一方、S i 02が25ft景%未満では、誘電率
が10より大きくなるので好ましくない(試料番号4参
照)。
(1) When S102 exceeds 70% overlap, the bending strength is 1
less than 500Kg/am2, and the sintering temperature is 100Kg/am2
It is not preferable because it becomes higher than 0℃ (see sample number 1)
. On the other hand, if S i 02 is less than 25 ft.%, the dielectric constant becomes greater than 10, which is not preferable (see sample number 4).

(2)BaOがToi量%を超えると、誘電率が10よ
り大きくなるので好ましくない(試料番号5参照)。一
方、BaOが15重量%未満では、焼結温度が1000
℃より高くなり好ましくない(試料番号12参照)。
(2) If BaO exceeds the amount of Toi%, the dielectric constant becomes greater than 10, which is not preferable (see sample number 5). On the other hand, when BaO is less than 15% by weight, the sintering temperature is 1000% by weight.
℃, which is not preferable (see sample number 12).

(3)CaOが30重置部を超えると、焼結温度が10
00℃より高くなり好ましくない(試料番号11)。一
方、CaOが含有されていないときは、熱膨張係数が7
.0X10−6/’Cより大きくなり好ましくない(試
料番号8参照)。
(3) When the CaO content exceeds 30, the sintering temperature increases to 10
It becomes higher than 00°C, which is not preferable (sample number 11). On the other hand, when CaO is not contained, the thermal expansion coefficient is 7.
.. It becomes larger than 0X10-6/'C, which is not preferable (see sample number 8).

(4) A l 203が20M量%以上になると、誘
電体損失が0.2%より大きくなり好ましくない(試料
番号14参照)。一方、AJ22o3が1重量%以下の
ときは、焼結温度が1ooo℃より高くなり好ましくな
い(試料番号15参照)。
(4) When Al 203 exceeds 20 M%, the dielectric loss becomes greater than 0.2%, which is not preferable (see sample number 14). On the other hand, when AJ22o3 is 1% by weight or less, the sintering temperature becomes higher than 100° C., which is not preferable (see sample number 15).

(5)B203が3重量%以上であると、抗折強度が1
500Kg/cm2より小さくなり好ましくない(試料
番号12参照)。一方、BaO3が1.5!i%未満で
は、焼結温度が1000℃より高くなるので好ましくな
い(試料番号19参照)。
(5) When B203 is 3% by weight or more, the bending strength is 1
It is less than 500 Kg/cm2, which is not preferable (see sample number 12). On the other hand, BaO3 is 1.5! If it is less than i%, the sintering temperature will become higher than 1000°C, which is not preferable (see sample number 19).

(発明の効果) この発明によれば、高比抵抗かつ低誘電率で誘電体損失
が少なく、しかも熱膨張例数がアルミナよりも小きくな
る。また、製造過程においても仮焼後の粉砕などの処理
がしゃす<、シかも、1000℃以下で焼成でき、酸化
性雰囲気中あるいは非酸化性雰囲気中で焼成しても、電
気的特性、物理的特性ざらには熱的特性の変化がな(、
内部導体との反応も見られないので、内部導体材料とし
て、たとえば、Ag、Ag−Pdペースト、Cuおよび
Niなとの卑金属を使用することができ、多層基板のコ
ストダウンを図ることができる。
(Effects of the Invention) According to the present invention, the material has high resistivity and low dielectric constant, has low dielectric loss, and has a smaller number of thermal expansion cases than alumina. In addition, even in the manufacturing process, processing such as pulverization after calcination is difficult, and it can be fired at temperatures below 1000°C, and even when fired in an oxidizing or non-oxidizing atmosphere, the electrical properties and physical properties There is no change in thermal properties (,
Since there is no reaction with the internal conductor, base metals such as Ag, Ag-Pd paste, Cu, and Ni can be used as the internal conductor material, and the cost of the multilayer board can be reduced.

また、熱膨張係数がアルミナ以下であるため、サーマル
ストレスによるクラックが生じにくくなる。
Furthermore, since the coefficient of thermal expansion is less than or equal to alumina, cracks due to thermal stress are less likely to occur.

ざらに、サーメット抵抗材料などを印刷して、抵抗体も
形成することができる。
Alternatively, a resistor can also be formed by printing a cermet resistive material or the like.

Claims (1)

【特許請求の範囲】 Si成分がSiO_2に換算して25〜70重量%、 Ba成分がBaOに換算して15〜70重 量%、 B成分がB_2O_3に換算して1.5重量%以上で3
重量%未満、 Al成分がAl_2O_3に換算して1重量%以上で2
0重量%未満、 Ca成分がCaOに換算して0重量%を超え30重量%
以下含まれる、 多層基板用低温焼結磁器基板。
[Claims] The Si component is 25 to 70% by weight in terms of SiO_2, the Ba component is 15 to 70% by weight in terms of BaO, and the B component is 1.5% by weight or more in terms of B_2O_3.
Less than 2% by weight, when the Al content is 1% by weight or more calculated as Al_2O_3
Less than 0% by weight, Ca component exceeds 0% by weight and 30% by weight in terms of CaO
Included below are low temperature sintered porcelain substrates for multilayer substrates.
JP61072288A 1986-03-28 1986-03-28 Low temperature sintering ceramic composition for multi-layer substrate Pending JPS62226855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072288A JPS62226855A (en) 1986-03-28 1986-03-28 Low temperature sintering ceramic composition for multi-layer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072288A JPS62226855A (en) 1986-03-28 1986-03-28 Low temperature sintering ceramic composition for multi-layer substrate

Publications (1)

Publication Number Publication Date
JPS62226855A true JPS62226855A (en) 1987-10-05

Family

ID=13484940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072288A Pending JPS62226855A (en) 1986-03-28 1986-03-28 Low temperature sintering ceramic composition for multi-layer substrate

Country Status (1)

Country Link
JP (1) JPS62226855A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185921A1 (en) * 2015-05-15 2016-11-24 株式会社村田製作所 Low-temperature-sintering ceramic material, ceramic sintered body, and ceramic electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187159A (en) * 1986-02-10 1987-08-15 株式会社村田製作所 Low temperature sinterable ceramic composition for multi-layer substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187159A (en) * 1986-02-10 1987-08-15 株式会社村田製作所 Low temperature sinterable ceramic composition for multi-layer substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185921A1 (en) * 2015-05-15 2016-11-24 株式会社村田製作所 Low-temperature-sintering ceramic material, ceramic sintered body, and ceramic electronic component
CN107531577A (en) * 2015-05-15 2018-01-02 株式会社村田制作所 Low-temperature sintered ceramics material, ceramic sintered bodies and ceramic electronic components
JPWO2016185921A1 (en) * 2015-05-15 2018-01-18 株式会社村田製作所 Low temperature sintered ceramic materials, ceramic sintered bodies and ceramic electronic components
US20180044244A1 (en) * 2015-05-15 2018-02-15 Murata Manufacturing Co., Ltd. Low temperature cofired ceramic material, ceramic sintered body, and ceramic electronic component
US10906839B2 (en) 2015-05-15 2021-02-02 Murata Manufacturing Co., Ltd. Low temperature cofired ceramic material, ceramic sintered body, and ceramic electronic component
DE112016001804B4 (en) 2015-05-15 2021-12-16 Murata Manufacturing Co., Ltd. Low-temperature single-fused ceramic, ceramic sintered body and electronic ceramic component

Similar Documents

Publication Publication Date Title
KR900002303B1 (en) Insulating paste for multilayer substrate
EP0163478A2 (en) Process of manufacturing ceramic circuit board
JP3528037B2 (en) Manufacturing method of glass ceramic substrate
JP3687443B2 (en) Low temperature fired ceramic composition and ceramic multilayer substrate
JP3419291B2 (en) Low-temperature sintered ceramic composition and multilayer ceramic substrate using the same
JP2001084835A (en) Insulation composition, insulation paste, and laminated electronic part
JPS62226855A (en) Low temperature sintering ceramic composition for multi-layer substrate
JPS62252365A (en) Low temperature sintered ceramic composition for multilayer substrate
JPS62187159A (en) Low temperature sinterable ceramic composition for multi-layer substrate
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JP2753892B2 (en) Composite circuit board with built-in capacitor
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JPH0636473B2 (en) Multilayer ceramic board
JPS62256758A (en) Low temperature sintered ceramic composition for multilayer substrate
JPH02141458A (en) Low-temperature calcined ceramic multilayered base plate and production thereof
JPH11186727A (en) Wiring board and manufacture thereof
JPS62187160A (en) Low temperature sinterable ceramic composition for multi-layer substrate
JPS62182157A (en) Ceramic composition for electric circuit substrate
JPH0686327B2 (en) Ceramic substrate composition
JPS6235696A (en) Ceramic substrate for electric circuit and manufacture thereof
JPS6389454A (en) Low temperature sintering ceramic composition for multilayer substrate
JPH01197359A (en) Porcelain composition sinterable at low temperature for multilayered board
JP2580439B2 (en) High dielectric constant alumina sintered body and method for producing the same
JPS59162169A (en) Ceramics and multilayer distribution panel
JPS61281403A (en) Ceramic composition for electric circuit substrate