JPS62224608A - Operating method for bell-less type blast furnace - Google Patents

Operating method for bell-less type blast furnace

Info

Publication number
JPS62224608A
JPS62224608A JP6808986A JP6808986A JPS62224608A JP S62224608 A JPS62224608 A JP S62224608A JP 6808986 A JP6808986 A JP 6808986A JP 6808986 A JP6808986 A JP 6808986A JP S62224608 A JPS62224608 A JP S62224608A
Authority
JP
Japan
Prior art keywords
furnace
distribution
raw materials
raw material
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6808986A
Other languages
Japanese (ja)
Inventor
Takanobu Inada
隆信 稲田
Yoshimasa Kajiwara
梶原 義雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6808986A priority Critical patent/JPS62224608A/en
Publication of JPS62224608A publication Critical patent/JPS62224608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To adequately adjust the grain size distribution of the raw materials in the radial direction of a blast furnace by estimating the shape of a fusion zone from the deposition angle on the surface of the raw materials charged into the furnace and the gaseous flow distribution in the radial direction and controlling the accepting and feeding of the raw materials in a distributing chute and bunker in accordance with the estimated shape. CONSTITUTION:The surface shape of the charge is measured by a profile meter 11 right after the charge of the raw materials into the blast furnace. The deposition angle, descending speed distribution in the radial direction and O/C distribution of the raw materials are calculated by a calculator 12. The temp. of the gas in the radial direction and the compsn. of the gas are measured in a sonde 13 in the upper part of the shaft and the shape of the fusion zone in the furnace is calculated by a calculator 14. The section and the rate of increasing and decreasing the O/C are instructed at the same instant. The combination of the controlled variable for control factors is calculated by a calculator 12 in accordance with the value obtd. in such a manner and the operating method of the distributing chute 10 and the accepting and feeding of the raw materials in the bunker 6 are controlled. The grain size distribution of the raw materials in the radial direction of the furnace is easily controlled and the operation of the blast furnace is stabilized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ベルレス式装入装置を有する高炉の操業方法
に係るものであり、より詳細には、炉内における装入原
料の堆積角、半径方向の鉱石とコークスの重量比(以下
「0/C」と略記する)分布、半径方向の粒径方向等の
いわゆる、装入物分布を適確に制御し、高炉操業の安定
化を図ることを目的としたベルレス式高炉の操業方法に
関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method of operating a blast furnace having a bell-less charging device, and more specifically, the present invention relates to a method of operating a blast furnace having a bellless charging device, and more particularly, to We aim to stabilize blast furnace operations by accurately controlling the so-called charge distribution, such as the radial distribution of the weight ratio of ore to coke (hereinafter abbreviated as "0/C") and the radial grain size direction. This paper relates to a method of operating a bellless blast furnace for the purpose of

(従来の技術) 高炉操業においては、高炉炉頂部における装入物のO/
C1粒径等の半径方向の分布を適確に制御して、炉内に
おける半径方向のガス流分布、熱流比分布を適正な範囲
に維持し、鉱石の還元・溶解を安定に行う必要がある。
(Prior art) In blast furnace operation, the O/
It is necessary to accurately control the radial distribution of C1 grain size, etc., maintain the radial gas flow distribution and heat flow ratio distribution in the furnace within appropriate ranges, and stably reduce and melt the ore. .

従来のベルレス式高炉の原料装入方法を第6図を用いて
説明する。第6図はベルレス式高炉の炉頂部の原料装入
装置の概略図を示すものであり、高炉1の炉頂部へベル
トコンベア2によって搬送された原料3は、上部ゲート
弁4、上部シール弁5を介して一旦炉頂バンカー6内に
貯蔵され、高炉内の装入物が荷下がりして補給すべき所
定のストックレベル7に到達すると、装入物流量調整用
の下部ゲート弁8および下部シール弁9を開操作し、炉
頂バンカー6内の原料を分配シュート10を介して炉内
に装入するのである。
A conventional method for charging raw materials into a bellless blast furnace will be explained using FIG. 6. FIG. 6 shows a schematic diagram of a raw material charging device at the top of the furnace of a bellless type blast furnace. Once the charge in the blast furnace is unloaded and reaches a predetermined stock level 7 to be replenished, the lower gate valve 8 for adjusting the charge flow rate and the lower seal The valve 9 is opened and the raw material in the furnace top bunker 6 is charged into the furnace through the distribution chute 10.

すなわち、ベルレス式装入法による炉内装入物分布の制
御は、主に、分配シュート10の運転方法を変化させる
ことによって実施され、ベル・アーマ式装人法に比較し
て装入物分布制御の自由度が大きく、高精度制御の可能
な点が該装入法の特徴と言える。
That is, the control of the charge distribution in the furnace by the bell-less charging method is mainly performed by changing the operating method of the distribution chute 10, and the control of the charge distribution in the furnace is improved compared to the bell-armor charging method. The characteristics of this charging method are that it has a large degree of freedom and can be controlled with high precision.

(発明が解決しようとする問題点) しかしながら、従来のベルレス式高炉の装入物分布制御
には、以下の2つの問題があった。
(Problems to be Solved by the Invention) However, the charge distribution control of the conventional bellless blast furnace has the following two problems.

先ず、第1の問題は、炉内半径方向の0/C分布および
粒径分布の制御性が不十分なことである。
First, the first problem is that the controllability of the O/C distribution and particle size distribution in the radial direction within the furnace is insufficient.

即ち、従来の原料装入方法においては、殆どの場合、装
入後の表面形状は第6図に示すような、M型あるいはM
型の形状を成しており、いづれも斜面を形成していた。
That is, in the conventional raw material charging method, in most cases, the surface shape after charging is M-shaped or M-shaped, as shown in Figure 6.
It was shaped like a mold, and each formed a slope.

このためコークス層の上に鉱石を装入した場合、鉱石落
下位置近傍のコークス層の表層部の一部が鉱石の衝撃エ
ネルギーによって崩れ削りとられて、炉中心部方向に移
動し、炉中心部に広範囲にわたってコークス層厚の上昇
や、鉱石とコークスとの混合層が形成されることが知ら
れている(例えば、「鉄と1JVo1.71.175頁
)。このような現象について、最近、研究が進められて
いるが、完全な定量把握には至っておらず、半径方向0
/C分布制御の上での不確定要素となっている。
Therefore, when ore is charged on top of the coke layer, a part of the surface layer of the coke layer near the ore falling position is crushed by the impact energy of the ore and moved toward the center of the furnace. It is known that the coke layer thickness increases over a wide range and a mixed layer of ore and coke is formed (for example, "Iron and 1JVo1.71.175).Recently, research has been conducted on such phenomena. Although progress is being made, a complete quantitative understanding has not yet been reached, and radial direction zero
/C is an uncertain element in distribution control.

さらに、装入面が傾斜していることから、炉内に装入さ
れた原料は、この斜面で再分級されながら堆積する結果
、斜面の上流側即ち炉壁部に細粒が、斜面の下流側即ち
中心部に相流が偏析して堆積する。即ち、従来の装入法
においては、斜面での再分級によって最終的な半径方向
の粒径分布が決定されることになるが、この現象は、半
径方向のガス流分布変動や荷下がり速度分布変動による
斜面形状の変動の影響を大きく受け、また、装入原料の
粒度構成が変動した場合も斜面上での再分級の様子は変
化する。
Furthermore, since the charging surface is sloped, the raw materials charged into the furnace are reclassified and deposited on this slope, resulting in fine particles on the upstream side of the slope, that is, on the furnace wall, and on the downstream side of the slope. The phase flow is segregated and deposited on the sides, that is, in the center. In other words, in the conventional charging method, the final radial particle size distribution is determined by reclassification on the slope, but this phenomenon is caused by fluctuations in the radial gas flow distribution and unloading rate distribution. It is greatly affected by changes in the shape of the slope due to fluctuations, and the state of reclassification on the slope also changes when the particle size composition of the charged material changes.

以上述べた現象を抑制し、炉内半径方向0/C分布およ
び粒径分布の制御性を向上させるべく本発明者等は原料
装入時に、分配シュートの傾動角度を所定角度から順次
増加することによって、原料を炉内の中心部から順次炉
壁方向に装入すること、および、装入後の原料表面の傾
斜角が20度を超えないように、当該シュートの傾動角
度、各傾動角度における旋回数、下部ゲート弁開度のう
ち少なくとも一つを制御する方法を特願昭61−190
24号で提案した。
In order to suppress the above-mentioned phenomenon and improve the controllability of the radial O/C distribution and particle size distribution in the furnace, the present inventors have proposed to gradually increase the tilt angle of the distribution chute from a predetermined angle when charging raw materials. In order to charge the raw materials sequentially from the center of the furnace toward the furnace wall, and to ensure that the angle of inclination of the raw material surface after charging does not exceed 20 degrees, the tilting angle of the chute and each tilting angle are Japanese Patent Application No. 1983-1980 describes a method for controlling at least one of the number of rotations and the opening degree of the lower gate valve.
I proposed this in issue 24.

当該方法は、上述した現象を抑制するのに極めて有効で
はあるが、時々刻々炉内状態が変化する実際の高炉に適
用する時、具体的にいかにして最適な分配シュートの運
転スケジュールを選択していけば良いかという実用上の
問題については述べられていない。
Although this method is extremely effective in suppressing the above-mentioned phenomena, when applied to an actual blast furnace where conditions inside the furnace change from moment to moment, it is difficult to determine how to select the optimal distribution chute operation schedule. No mention is made of the practical issue of whether or not it is appropriate to do so.

即ら、第2の問題は、分配シュート運転スケジュールの
決定方法である。
That is, the second problem is how to determine the distribution chute operation schedule.

従来、最適な分配シュート運転スケジュールを決める指
針としては、分配シュートの旋回数と各旋回における傾
動角度から構成される装入物分布指数なるものを定義し
、鉱石、コークスについての前記指数値を夫々、x、y
軸にとり過去の操業実績を基に最適炉況をもたらす条件
をその図上に記し、これを基に分配シュート運転法を決
定する方法(特公昭60−23161号公報)や、ガス
流分布制御から見た分配シュート運転スケジュールを炉
芯流、炉壁流、中間流を頂点とする三角形ダイヤグラム
に記入し、これを基に炉体熱負荷、ガス温度、ガス利用
率等の炉況指数を見ながら、最適運転スケジュールを選
択する方法(特公昭60−41121号公報)などがあ
る。
Conventionally, as a guideline for determining the optimal distribution chute operation schedule, a charge distribution index consisting of the number of revolutions of the distribution chute and the tilting angle at each revolution was defined, and the index values for ore and coke were calculated respectively. ,x,y
Based on the past operating results, the conditions that bring about the optimal furnace condition are written on the diagram, and the distribution chute operation method is determined based on this method (Japanese Patent Publication No. 60-23161), and from gas flow distribution control. Enter the distribution chute operation schedule you have seen into a triangular diagram with the core flow, wall flow, and intermediate flow at the vertices, and based on this, check the furnace condition indices such as the furnace heat load, gas temperature, and gas utilization rate. , a method of selecting an optimal driving schedule (Japanese Patent Publication No. 60-41121), etc.

しかし、いずれの方法も、原料粒度の変動などの原料条
件の変動や、ガス流分布や荷下がり速度分布などの炉内
状態の変動に対して、十分対処しうるちのではなかった
However, none of these methods can adequately deal with fluctuations in raw material conditions such as fluctuations in raw material particle size, and fluctuations in furnace conditions such as gas flow distribution and unloading speed distribution.

本発明は、上記した問題点を解消し、炉内における半径
方向のO/C分布、粒径分布等のいわゆる装入物分布の
制御性を向上し、高炉操業を安定化するベルレス式高炉
の操業方法を提供せんとするものである。
The present invention solves the above-mentioned problems, improves the controllability of so-called charge distribution such as radial O/C distribution and particle size distribution in the furnace, and stabilizes blast furnace operation. The purpose is to provide operating methods.

(問題点を解決するための手段) 本発明は、装入後の原料表面の堆積角が20度を超えな
いようにベルレス式高炉の炉中心部から炉側壁方向に向
かって原料を装入するに際し、前記原料表面の堆積角及
び半径方向ガス流分布と、必要に応じて荷下がり速度分
布、原料の半径方向粒径分布を計測して当該計測値に基
づいて炉内融着帯形状を推定し、この推定した炉内融着
帯形状が予め設定した融着帯形状になるよう、分配シュ
ートの運転方法や炉頂バンカー内の原料受入れ、切出し
のうちの少なくとも一つを制御することを要旨とするベ
ルレス式高炉の操業方法である。
(Means for Solving the Problems) The present invention charges raw materials from the center of the bellless blast furnace toward the furnace side wall so that the deposition angle on the surface of the raw materials after charging does not exceed 20 degrees. At this time, the deposition angle and radial gas flow distribution on the raw material surface, as well as the unloading speed distribution and radial particle size distribution of the raw material are measured as necessary, and the shape of the cohesive zone in the furnace is estimated based on the measured values. However, the main idea is to control at least one of the distribution chute operating method and the raw material receiving and cutting in the furnace top bunker so that the estimated cohesive zone shape in the furnace becomes the preset cohesive zone shape. This is a method of operating a bellless blast furnace.

本発明におけるベルレス式装入法においては、原料を炉
中心部から炉壁方向に向かって装入し、かつ装入後の前
記原料の堆積角が20度を超えないようにしている。
In the bellless charging method of the present invention, the raw material is charged from the center of the furnace toward the furnace wall, and the stacking angle of the raw material after charging is made not to exceed 20 degrees.

まず第1に、原料を炉内中心から炉壁方向に1111次
装入する理由についてであるが、原料の実質の装入時間
は、原料粒度の変動その他の原因で、不可避的に変化す
る。即ち、炉内中心部から炉壁部に装入する場合は、炉
壁での原料装入量に、また炉壁から炉中心部へ装入する
場合は炉中心部での原料装入量に夫り変動が起こること
になるが、前者の方法では、分配シュートの1旋回当た
りの装入面積の大きい炉壁部での原料装入量に変動が起
こっても当該部の堆積層厚の変動は比較的小さいのに対
し、後者の方法では炉中心部の層厚変動が太き(現れる
。即ち、前者の方法によれば、原料装入時間の変動に伴
う半径方向0/C分布の変動を抑制することができるの
である。
First, regarding the reason why the raw material is charged 1111 times from the center of the furnace toward the furnace wall, the actual charging time of the raw material inevitably changes due to fluctuations in the particle size of the raw material and other causes. In other words, when charging from the center of the furnace to the furnace wall, the amount of material charged at the furnace wall, and when charging from the furnace wall to the center, the amount of material charged at the center of the furnace However, in the former method, even if there is a change in the amount of material charged at the furnace wall where the charging area per revolution of the distribution chute is large, the thickness of the deposited layer at that part will not change. is relatively small, whereas in the latter method, the layer thickness variation in the center of the furnace is large (appears).In other words, according to the former method, the variation in the radial O/C distribution due to the variation in the raw material charging time is can be suppressed.

次に、炉内装入物表面の傾斜角を20度以下と限定した
理由であるが、本発明者等は、炉外において実物大模型
を製作し、コークス層の堆積角を種々変動して鉱石装入
を行い、混合層形戒壇および半径方向の粒径分布を測定
した。その結果を第2図、第3図に示す。
Next, regarding the reason why the inclination angle of the surface of the contents in the furnace was limited to 20 degrees or less, the present inventors manufactured a full-scale model outside the furnace, and by varying the deposition angle of the coke layer, the ore was removed. Charging was carried out, and the mixed layered altar and radial particle size distribution were measured. The results are shown in FIGS. 2 and 3.

第2図はコークス層の堆積角と中心部のコークス層の層
厚増加(コークス単味層の層厚増加+2×混合層層厚増
加)の関係を示す図であり、同図より明らかな如(、コ
ークス堆積角は20度を境にして、それを超えた場合に
は、鉱石装入による中心部のコークス層増加が顕著であ
るが、それ以下では実用上無視しうろことが判明した。
Figure 2 is a diagram showing the relationship between the deposition angle of the coke layer and the increase in the thickness of the coke layer in the center (increase in the thickness of the single coke layer + 2 x increase in the thickness of the mixed layer). (It was found that the coke deposition angle is around 20 degrees, and if it exceeds that, the coke layer in the center increases significantly due to ore charging, but if it is less than that, it can be ignored in practical terms.

即ち、半径方向07C分布制御性の向上のためには装入
後の原料の堆積角を20度以下とすることが必要なので
ある。
That is, in order to improve the controllability of the 07C distribution in the radial direction, it is necessary to set the stacking angle of the raw material after charging to 20 degrees or less.

第3図は、コークス層の堆積角と中心部の鉱石(試験は
全量焼結鉱で実施した)の粒径の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the deposition angle of the coke layer and the grain size of the ore in the center (the test was carried out using all sintered ore).

コークス堆積角は20度を境にして、それを超えた場合
には、斜面での再分級によって中心部の鉱石粒径の増加
が顕著であるが、それ以下では鉱石粒径の増加は実用上
無視しうるほど小さいことが明らかである。その理由は
、斜面の堆積角が十分小さく、装入時に当該旋回に対応
する装入物の山が形成されても原料が、斜面を移動しな
いためと考えられる。即ち半径方向の粒径分布制御性の
向上のためには、装入後の原料の堆積角を20度以下す
ることが必要なのである。
The coke deposition angle has a border of 20 degrees, and when it exceeds this, the ore grain size in the center increases significantly due to reclassification on the slope, but below this, the ore grain size does not increase practically. It is clear that it is so small that it can be ignored. The reason for this is thought to be that the stacking angle of the slope is sufficiently small and the raw material does not move along the slope even if a pile of charge corresponding to the swirl is formed during charging. That is, in order to improve the controllability of the particle size distribution in the radial direction, it is necessary to keep the stacking angle of the raw material after charging to 20 degrees or less.

以上のことから、半径方向0/C分布及び粒径分布の制
御性を向上させるためには、原料を炉中心部から炉壁方
向に順次装入し、かつ、炉内装入表面の傾斜角を20度
以下に維持することが必要となるわけである。
From the above, in order to improve the controllability of the radial O/C distribution and particle size distribution, it is necessary to sequentially charge the raw materials from the center of the furnace toward the furnace wall, and to adjust the inclination angle of the surface of the furnace to be charged. It is necessary to maintain the temperature below 20 degrees.

次に、具体的な装入物分布制御アクションの決定方法に
ついて述べる。
Next, a specific method for determining the burden distribution control action will be described.

本発明においては、時々刻々変動する炉内状態を把握す
るために、装入物表面形状すなわち原料表面の堆積角及
び半径方向ガス流分布すなわちガス温度分布やガス組成
分布と、必要に応じて炉内半径方向の荷下がり速度分布
、原料の半径方向粒径分布を計測し、その計測結果を数
式シミュレーションモデルに入力する。そして、推定さ
れた炉内状態すなわち炉内融着帯形状が予め設定された
炉内融着帯形状と差がある場合、その差をなくするよう
に数式シミュレーションモデルを用いて分配シュートに
係わる制御因子、炉頂バンカー内の原料排出に係わる制
御因子、貯槽の原料切り出しに係わる制御因子について
、少なくともそのうちの一つの制御量を決定するもので
、制御は半径方向0/C分布制御と半径方向粒径制御と
に分けられる。
In the present invention, in order to grasp the condition inside the furnace which changes from time to time, we examine the surface shape of the charge, that is, the deposition angle of the raw material surface, the radial gas flow distribution, that is, the gas temperature distribution, the gas composition distribution, and the furnace condition as necessary. The unloading speed distribution in the inner radial direction and the radial particle size distribution of the raw material are measured, and the measurement results are input into the mathematical simulation model. If there is a difference between the estimated furnace state, that is, the shape of the cohesive zone in the furnace, and the preset shape of the cohesive zone in the furnace, a mathematical simulation model is used to control the distribution chute to eliminate the difference. It determines the control amount of at least one of the control factors, control factors related to raw material discharge in the furnace top bunker, and control factors related to raw material cutting out of the storage tank, and the control is based on radial 0/C distribution control and radial particle distribution control. It is divided into diameter control.

本発明の構成を第1図に基づいて説明する。なお、第1
図中第6図と同一番号は同一部分あるいは相当部分を示
し、詳細な説明を省略する。
The configuration of the present invention will be explained based on FIG. In addition, the first
In the figure, the same numbers as in FIG. 6 indicate the same or corresponding parts, and detailed explanation will be omitted.

同図に示した11−18の部分が本発明に係わるハード
及びソフトウェアである。即ち、同図中11は炉頂部に
設置された機械式プロフィルメータで、半径方向に複数
個設置された重錘を炉内装入物表面上に降下させること
によって装入物表面形状を計測するものである。なお、
当該プロフィルメータ11は、装入物表面形状を計測し
得るものであれば、その他の形式のものでも良い。13
はシャフト上部ゾンデを示し、炉内半径方向のガス温度
およびガス組成分布を計測するものである。15は炉頂
バンカー内に設置されたインサート(邪魔物)であり、
17に示した駆動制御装置によって炉頂バンカー6内を
昇降しうるようになっている。16は装入ベルトコンベ
ア2から炉頂バンカー6への原料受は入れを音響や振動
等で検知するセンサーを示し、18は貯槽の原料排出口
に設置された開閉弁及び駆動制御装置を示す。
The parts 11-18 shown in the figure are hardware and software related to the present invention. In other words, 11 in the figure is a mechanical profile meter installed at the top of the furnace, which measures the surface shape of the charge by lowering a plurality of weights installed in the radial direction onto the surface of the charge. It is. In addition,
The profile meter 11 may be of any other type as long as it can measure the surface shape of the charge. 13
shows the sonde above the shaft, which measures the gas temperature and gas composition distribution in the radial direction inside the furnace. 15 is an insert (obstruction) installed in the furnace top bunker,
The inside of the furnace top bunker 6 can be moved up and down by a drive control device shown at 17. Reference numeral 16 indicates a sensor that detects the feeding of raw material from the charging belt conveyor 2 to the furnace top bunker 6 using sound, vibration, etc., and 18 indicates an on-off valve and a drive control device installed at the raw material outlet of the storage tank.

また、同図中12.14は演算器を示し、12には後述
する如くプロフィルメータ11の計測値および装入条件
(分配シュート運転スケジュール等)から炉内装入物分
布を推定する数式シミュレーションモデルおよび炉頂バ
ンカー6からの原料排出状況を推定する数式シミュレー
ションモデルが内蔵され、一方、演rL器14にはシャ
フト上部ゾンデ13の計測値を基に炉内融着帯分布を推
定する数式シミュレーションモデルが内蔵されている。
In addition, 12.14 in the figure indicates a computing unit, and 12 includes a mathematical simulation model for estimating the distribution of the contents in the furnace from the measured values of the profile meter 11 and charging conditions (distribution chute operation schedule, etc.), as will be described later. A mathematical simulation model for estimating the raw material discharge situation from the furnace top bunker 6 is built-in, while the operator L generator 14 has a mathematical simulation model for estimating the cohesive zone distribution in the furnace based on the measured values of the shaft upper sonde 13. Built-in.

次に、本発明における制御の流れについて説明する。Next, the flow of control in the present invention will be explained.

まず、半径方向0/C分布制御についてであるが、各ダ
ンプ後の原料装入完了後、プロフィルメータ11により
装入直後の装入物表面形状を測定し、さらに、次の原料
装入直前に再び装入物表面形状を測定する。この操作を
原料の各ダンプ毎に実施し、これらのデータを基に、演
算器12において原料の堆積角、半径方向の荷下がり速
度分布および0/C分布を算出する。一方、シャフト上
部ゾンデI3は半径方向のガス温度、ガス組成成分を測
定し、これらのデータを基に演算器14において反応伝
熱計算を行い、炉内融着帯形状を算出する。そして、該
高炉について予め経験的に設定された、ガス温度分布、
ガス利用率(CO□/CO+C0z)分布或いは融着帯
形状についてそのズレを求め、そのズレ量に応じてO/
Cを上昇させるべき半径方向部位および低下させるべき
部位とその量を指示する。
First, regarding the radial 0/C distribution control, after the completion of material charging after each dump, the surface shape of the material immediately after charging is measured using the profilometer 11, and then immediately before the next material charging, Measure the surface profile of the charge again. This operation is performed for each dump of raw materials, and based on these data, the arithmetic unit 12 calculates the stacking angle of the raw materials, the unloading speed distribution in the radial direction, and the 0/C distribution. On the other hand, the shaft upper sonde I3 measures the gas temperature and gas composition in the radial direction, and based on these data, the computing unit 14 performs reaction heat transfer calculations to calculate the shape of the cohesive zone in the furnace. Then, the gas temperature distribution, which is empirically set in advance for the blast furnace,
Determine the deviation in the gas utilization rate (CO□/CO+C0z) distribution or cohesive zone shape, and adjust the O/C ratio according to the amount of deviation.
Indicate the radial location where C should be raised, the location where it should be lowered, and the amount thereof.

この指示に基づいて演算112を用い、目的とする07
0分布を得るための分配シュートに係わる制御因子の制
御量の組合わせを算出し、そのうちから装入後の原料の
堆積角が20度以下となる組合わせを選定する。
Based on this instruction, use operation 112 to obtain the target 07
Combinations of controlled variables of control factors related to the distribution chute to obtain a zero distribution are calculated, and combinations are selected from which the stacking angle of the raw material after charging is 20 degrees or less.

なお、演算器12に内蔵する装入物分布推定の数式シミ
ュレーションモデルは、その目的にかなうものであれば
良く、例えば「鉄と鋼、Vol、71.175頁〜18
2頁」などがある。また、演算器14に内蔵する炉内融
着帯分布推定の数式シミュレーションモデルも先に述べ
た目的にかなうものであれば良く、例えば[鉄とm(1
979)S、52Jなどがある。
It should be noted that the mathematical simulation model for estimating the burden distribution built into the calculator 12 may be of any type as long as it meets the purpose; for example, "Tetsu to Hagane, Vol. 71.175-18
2 pages.” Further, the mathematical simulation model for estimating the cohesive zone distribution in the reactor built into the computing unit 14 may be any model as long as it meets the above-mentioned purpose; for example, [iron and m(1
979) S, 52J, etc.

次に半径方向分布制御について説明する。本発明のよう
に、炉中心部から炉壁に向かって原料を装入し、かつ、
装入後の原料の堆積角を20度以下に維持して、堆積斜
面での再分級を防止する装入法においては、半径方向の
070分布とは独立に半径方向の粒径分布も制御できる
Next, radial distribution control will be explained. As in the present invention, raw materials are charged from the center of the furnace toward the furnace wall, and
In a charging method that maintains the stacking angle of raw materials at 20 degrees or less after charging to prevent reclassification on the stacking slope, the radial particle size distribution can also be controlled independently of the radial 070 distribution. .

即ち、分配シュートから炉内に装入される原料は中心部
から順次炉壁部に向かって堆積するため、分配シュート
に供給される原料の粒径の経時変化を制御すれば、炉内
半径方向の粒径分布は070分布と独立に制御できるわ
けである。
In other words, the raw material charged into the furnace from the distribution chute is deposited sequentially from the center toward the furnace wall, so if the change in particle size of the raw material supplied to the distribution chute over time is controlled, it is possible to This means that the particle size distribution of can be controlled independently of the 070 distribution.

ところで、分配シュートに供給する原料の粒径の経時変
化の制御方法としては炉頂バンカー内の原料排出に係わ
る制御因子を制御する方法と、貯槽の原料切り出しに係
わる制御因子を制御する方法とがある。
By the way, as methods for controlling the change over time in the particle size of the raw material supplied to the distribution chute, there are two methods: one is to control the control factors related to the discharge of the raw material into the furnace top bunker, and the other is the method to control the control factors related to the raw material cut-out from the storage tank. be.

まず、炉頂バンカー内の原料排出に係わる制御因子の例
として、炉頂バンカー内のインサートの位置の例を示す
。第4図に示すようにインサートの炉頂バンカー内位置
を高くすると排出原料の粒径の経時変化は均一になり、
また、炉頂バンカー底部に設置すると、排出原料の粒径
は排出初期で小さく、排出末期で大きくなる。
First, an example of the position of the insert in the furnace top bunker will be shown as an example of a control factor related to raw material discharge in the furnace top bunker. As shown in Figure 4, when the position of the insert in the furnace top bunker is raised, the change in particle size of the discharged material over time becomes uniform;
Furthermore, when installed at the bottom of the furnace top bunker, the particle size of the discharged raw material is small at the beginning of discharge and becomes large at the end of discharge.

また、場合によってはインサート位置を更に高くして、
原料中に埋没しないようにしても粒径の経時変化パター
ンを変えることができる。
In some cases, the insert position may be raised even higher,
Even if particles are not buried in the raw material, the pattern of particle size change over time can be changed.

次に、貯槽の原料切り出しに係わる制御因子の例として
、貯槽から装入ベルトコンベアーへの原料切り出しタイ
ミングの制御能がある。即ち、予め装入原料を粒径によ
って別々の貯槽にためておき、たとえば粗粒を先に、細
粒を後に、炉内に装入しようとする場合は装入ベルトコ
ンベアーへの排出タイミングとして粗粒原料の貯槽排出
ゲートを開は粗粒原料の排出完了の後、細粒貯槽の排出
ゲートを開けるようにすれば炉頂バンカー内の下部には
粗粒、上部には細粒が堆積し、所望の順序で粗粒、細粒
原料が炉内に装入されることになる。なお、この時炉頂
バンカー内にはインサートを置き、炉頂バンカーから原
料排出パターンがマスフローとなるように制御すれば当
該制御の効果はより有効となる。
Next, as an example of a control factor related to raw material cutting from the storage tank, there is the ability to control the timing of raw material cutting from the storage tank to the charging belt conveyor. In other words, if the raw materials to be charged are stored in separate storage tanks in advance depending on their particle size, and the coarse particles are to be charged into the furnace first and the fine particles later, the coarse particles are set as the timing for discharge to the charging belt conveyor. If you open the fine grain storage tank discharge gate after the coarse grain raw material has been discharged, coarse grains will accumulate in the lower part of the top bunker and fine grains will accumulate in the upper part. Coarse grain and fine grain raw materials are charged into the furnace in a desired order. At this time, if an insert is placed in the furnace top bunker and the material discharge pattern from the furnace top bunker is controlled to be a mass flow, the effect of the control will be more effective.

以上説明したような方法によって、装入物分布制御アク
ションをとれば、半径方向0/C分布および半径方向粒
径分布を適確かつ独立に制御することができる。
By taking the charge distribution control action using the method described above, the radial O/C distribution and the radial particle size distribution can be appropriately and independently controlled.

なお、第1図中に示していないが、炉頂部にサンプリン
グ或いはその他の方法で堆積装入物の半径方向粒径分布
を実測し得る装置を設ければ、実測データを基に前記半
径方向分布制御を調整できることから該制御をより適確
なものとすることができる。
Although not shown in Fig. 1, if a device is installed at the top of the furnace that can actually measure the radial particle size distribution of the deposited charge by sampling or other methods, the radial distribution can be determined based on the measured data. Since the control can be adjusted, the control can be made more accurate.

(作   用) 本発明は、装入後の原料表面の堆積角が20度を超えな
いようにベルレス式高炉の炉中心部から炉側壁方向に向
かって原料を装入するに際し、前記原料表面の堆積角及
び半径方向ガス流分布と、必要に応じて荷下がり速度分
布、原料の半径方向粒径分布、を計測して当該計測値に
基づいて炉内融1着帯形状を推定し、予め設定した融着
帯形状になるよう、分配シュートの運転方法や炉頂バン
カー内の原料受入れ、切出しのうちの少なくとも一つを
制御するものである為、炉内半径方向の原料粒径分布制
御を容易に行える。
(Function) The present invention provides a method for charging raw materials from the center of the bellless blast furnace toward the furnace side wall so that the angle of accumulation on the surface of the raw materials after charging does not exceed 20 degrees. Measure the deposition angle and radial gas flow distribution, as well as the unloading speed distribution and radial particle size distribution of the raw material if necessary, and estimate the shape of the melting zone in the furnace based on the measured values and set it in advance. This method controls at least one of the distribution chute operating method, raw material receiving and cutting in the furnace top bunker so that the shape of the cohesive zone is achieved, making it easy to control the raw material particle size distribution in the radial direction inside the furnace. can be done.

(実 施 例) 本発明の効果を検証すべく、高炉炉頂部(ベルレス式)
実物大模型を製作し、テストを実施した。
(Example) In order to verify the effects of the present invention, the top of the blast furnace (bellless type)
A full-scale model was created and tested.

その結果を第5図に示す。実験はコークスベース37t
on 、 O/ C4,0で鉱石として焼結鉱を使用し
た。コークス、鉱石を交互に装入し、最後の鉱石を装入
したところで、装入物ストックレベルが実炉のそれに一
致するようにして全装入を完了した。
The results are shown in FIG. The experiment was conducted using coke base 37t.
sinter was used as the ore at O/C4,0. Coke and ore were charged alternately, and when the last ore was charged, all charging was completed so that the charge stock level matched that of the actual furnace.

なお、当該模型では実炉における装入物荷下がり、及び
送風の効果はないもののその他の基本設備は実炉のそれ
と同型のもので、第1図中のシャフト上部ゾンデ13、
演算器14、シール弁5.8を除いた型式になっている
Although this model does not have the effect of unloading the burden or blowing air in the actual reactor, the other basic equipment is the same as that of the actual reactor, including the shaft upper sonde 13 in Fig. 1,
This model does not include the computing unit 14 and the seal valve 5.8.

まず、分配シュートの傾動角度を小さくしながら原料を
炉壁から炉中心部に向かって順次装入し、炉芯流を促進
するO/C分布(第5図の実線)を実現する装入を過去
の実験データを基に経験的に決定した分配シュート運転
スケジュールに従って実施した(第5図の破線)。なお
、この際の分配シュート運転スケジュールを下記第1表
に示す。
First, the raw materials are sequentially charged from the furnace wall toward the furnace center while reducing the tilt angle of the distribution chute to achieve the O/C distribution (solid line in Figure 5) that promotes the furnace core flow. The distribution chute operation schedule was determined empirically based on past experimental data (dashed line in Figure 5). The distribution chute operation schedule at this time is shown in Table 1 below.

次に、本発明に従って分配シュートの傾動角度を大きく
してゆきながら原料を炉中心部から炉壁に向かって順次
装入し、装入物表面傾斜角を20度以下に維持しつつ前
記の炉芯流を促進するO/C分布を実現する装入を行っ
た。このとき、原料の各ダンプ後プロフィルメータ11
を用い装入物表面形状を測定し、それを基に先に述べた
装入物分布推定シミュレーションを行い、分配シュート
の運転スケジュールの調整をその都度実施した。その結
果、目標とするO/C分布を精度良く実現することがで
きた(第5図の一点鎖線)。なお、この際の分配シュー
ト運転スケジュールを下記第2表に示す。
Next, according to the present invention, while increasing the tilting angle of the distribution chute, the raw materials are sequentially charged from the center of the furnace toward the furnace wall, and the inclination angle of the surface of the charged material is maintained at 20 degrees or less. Charging was performed to achieve an O/C distribution that promoted core flow. At this time, the profile meter 11 after each dump of the raw material
The surface shape of the charge was measured using a 3D model, and the above-mentioned simulation for estimating the charge distribution was performed based on the results, and the operation schedule of the distribution chute was adjusted each time. As a result, the targeted O/C distribution could be achieved with high accuracy (dotted chain line in FIG. 5). The distribution chute operation schedule at this time is shown in Table 2 below.

このように本発明の如く、プロフィルメータを用い、装
入物分布推定シミュレーションによるオンライン解析に
基づいて装入物分布側1fflを行うことによって適確
な0/C分布制御が可能となる。
As described above, according to the present invention, by using a profile meter and performing 1ffl on the charge distribution side based on online analysis using a charge distribution estimation simulation, accurate O/C distribution control becomes possible.

第  1  表 第  2  表 なお、前記第1表、及び第2表中「傾動ノツチ」とは、
分配シュート傾動角度を示す指数で、値が大きくなる程
傾動角度は小さくなるものである。
Table 1 Table 2 The term "tilting notch" in Table 1 and Table 2 above refers to the following:
This is an index indicating the distribution chute tilting angle, and the larger the value, the smaller the tilting angle.

また、本実施例では半径方向ガス流分布の計測は含まれ
ていないが、当該半径方向ガス流分布計測値を基にした
炉内融着帯形状の推定については、既に公知例が多数あ
り(「鉄と鋼J  (1979)552等)、これを使
用すればよい。
Furthermore, although this example does not include measurement of the radial gas flow distribution, there are already many known examples of estimating the shape of the cohesive zone in the furnace based on the measured values of the radial gas flow distribution ( ``Tetsu to Hagane J (1979) 552, etc.), you can use this.

(発明の効果) 以上説明したように本発明は、装入後の原料表面の堆積
角が20度を超えないようにベルレス式高炉の炉中心部
から炉側壁方向に向かって原料を装入するに際し、前記
原料表面の堆積角及び半径方向ガス流分布と、必要に応
じて荷下がり速度分布、原料の半径方向粒径分布、を計
測して当該針Mill値に基づいて炉内融着帯形状を推
定し、予め設定した融着帯形状になるよう、分配シュー
トの運転方法や炉頂バンカー内の原料受入れ、切出しの
うちの少なくとも一つを制御するものである為、炉内半
径方向の原料粒径分布制御を容易に行え、亮炉操業の安
定化に大なる効果を有する。
(Effects of the Invention) As explained above, the present invention charges raw materials from the center of the bellless blast furnace toward the furnace side wall so that the deposition angle on the surface of the raw materials after charging does not exceed 20 degrees. At this time, the deposition angle and radial gas flow distribution on the surface of the raw material, as well as the unloading speed distribution and the radial particle size distribution of the raw material are measured as necessary, and the shape of the cohesive zone in the furnace is determined based on the needle Mill value. The method estimates the shape of the cohesive zone and controls at least one of the distribution chute operating method, the receiving and cutting of raw material in the furnace top bunker, so that the raw material in the radial direction inside the furnace is controlled. Particle size distribution can be easily controlled and has a great effect on stabilizing the operation of the light furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るベルレス式装入法の概略説明図、
第2図はコークス層堆積角と鉱石装入後の炉中心部コー
クス層厚増加量との関係図、第3図はコークス層堆積角
と鉱石装入後の炉中心部の鉱石粒径との関係図、第4図
は炉頂バンカー内インサート位置(高さ)と排出粒子の
粒径経時変化パターンとの関係図、第5図は実物大模型
実験によるO/C分布制御結果比較図、第6図は従来の
ベルレス式装入法の概略説明図である。 1は高炉、6は炉頂バンカー、10は分配シュート、1
1はプロフィルメータ、12.14は演算器、13はシ
ャフト上部ヅンデ、15は昇降式インサート、17はイ
ンサート駆動制御装置、18は開閉弁及び駆動制御装置
。 特許出願人 住友金属工業株式会社 ′AS 6囚 第2図 メ 第4図 狐Cス亀羽−戴時間 第3図 フーク入肩11住ネー免(つ 第5゛1
FIG. 1 is a schematic explanatory diagram of the bellless charging method according to the present invention,
Figure 2 shows the relationship between the coke layer deposition angle and the increase in coke layer thickness at the center of the furnace after ore charging, and Figure 3 shows the relationship between the coke layer deposition angle and the ore grain size at the furnace center after ore charging. Figure 4 is a diagram showing the relationship between the insert position (height) in the top bunker and the particle diameter change pattern of discharged particles over time. Figure 5 is a comparison diagram of the O/C distribution control results from a full-scale model experiment. FIG. 6 is a schematic explanatory diagram of the conventional bellless charging method. 1 is the blast furnace, 6 is the furnace top bunker, 10 is the distribution chute, 1
1 is a profile meter, 12 and 14 are computing units, 13 is a shaft upper part, 15 is an elevating insert, 17 is an insert drive control device, and 18 is an on-off valve and a drive control device. Patent Applicant: Sumitomo Metal Industries, Ltd. 'AS

Claims (1)

【特許請求の範囲】[Claims] (1)装入後の原料表面の堆積角が20度を超えないよ
うにベルレス式高炉の炉中心部から炉側壁方向に向かっ
て原料を装入するに際し、前記原料表面の堆積角及び半
径方向ガス流分布と、必要に応じて荷下がり速度分布、
原料の半径方向粒径分布を計測して当該計測値に基づい
て炉内融着帯形状を推定し、この推定した炉内融着帯形
状が予め設定した融着帯形状になるよう、分配シュート
の運転方法や炉頂バンカー内の原料受入れ、切出しのう
ちの少なくとも一つを制御することを特徴とするベルレ
ス式高炉の操業方法。
(1) When charging raw materials from the center of the bellless blast furnace toward the furnace side wall so that the deposition angle on the raw material surface after charging does not exceed 20 degrees, the deposition angle on the raw material surface and the radial direction Gas flow distribution and, if necessary, unloading velocity distribution,
The radial particle size distribution of the raw material is measured, the shape of the cohesive zone in the furnace is estimated based on the measured value, and the distribution chute is set so that the estimated shape of the cohesive zone in the furnace becomes the preset shape of the cohesive zone. A method for operating a bell-less blast furnace, characterized by controlling at least one of the method of operating the furnace, receiving raw material in a furnace top bunker, and cutting out.
JP6808986A 1986-03-26 1986-03-26 Operating method for bell-less type blast furnace Pending JPS62224608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6808986A JPS62224608A (en) 1986-03-26 1986-03-26 Operating method for bell-less type blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6808986A JPS62224608A (en) 1986-03-26 1986-03-26 Operating method for bell-less type blast furnace

Publications (1)

Publication Number Publication Date
JPS62224608A true JPS62224608A (en) 1987-10-02

Family

ID=13363660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6808986A Pending JPS62224608A (en) 1986-03-26 1986-03-26 Operating method for bell-less type blast furnace

Country Status (1)

Country Link
JP (1) JPS62224608A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208463A (en) * 2008-04-21 2008-09-11 Jfe Steel Kk Method for operating blast furnace
JP2012087389A (en) * 2010-10-21 2012-05-10 Sumitomo Metal Ind Ltd Condition-detector in furnace of blast furnace
CN102816879A (en) * 2012-08-03 2012-12-12 燕山大学 Burden distribution method for bucket string-type bell-free blast furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208463A (en) * 2008-04-21 2008-09-11 Jfe Steel Kk Method for operating blast furnace
JP2012087389A (en) * 2010-10-21 2012-05-10 Sumitomo Metal Ind Ltd Condition-detector in furnace of blast furnace
CN102816879A (en) * 2012-08-03 2012-12-12 燕山大学 Burden distribution method for bucket string-type bell-free blast furnace

Similar Documents

Publication Publication Date Title
JP6447614B2 (en) Raw material charging method to blast furnace
CN107614707B (en) To the device of blast furnace charging feedstock
EP0488318B1 (en) Control method of and apparatus for material charging at top of blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
CA1154966A (en) Process for blast furnace operation
JP6601511B2 (en) Blast furnace operation method
JP3787240B2 (en) How to charge the blast furnace center
JPH0811805B2 (en) Belleless blast furnace raw material charging method
JP3787238B2 (en) Charging method into the center of the blast furnace
UA147951U (en) METHOD OF LOADING MACHINE MATERIALS INTO THE DOMAIN FURNACE
JP2797917B2 (en) Blast furnace operation method
JP7436831B2 (en) Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program
JP3978105B2 (en) Raw material charging method for blast furnace
JP3750148B2 (en) Raw material charging method and apparatus for blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JPS62260009A (en) Charging method for pellet-compounded raw material in bell-less type blast furnace
JPH07113108A (en) Operation of blast furnace
JP3787231B2 (en) How to charge the blast furnace center
JP2000178617A (en) Method for charging charging material for activating furnace core part in blast furnace
JP2000204407A (en) Charging of charging material into center part of blast furnace
JPS6041122B2 (en) Blast furnace operation method
JP3787236B2 (en) How to charge the blast furnace center
JPS62270711A (en) Method for charging raw material to bell-less type blast furnace
JP3632290B2 (en) Blast furnace operation method