JPH07113108A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH07113108A
JPH07113108A JP25697093A JP25697093A JPH07113108A JP H07113108 A JPH07113108 A JP H07113108A JP 25697093 A JP25697093 A JP 25697093A JP 25697093 A JP25697093 A JP 25697093A JP H07113108 A JPH07113108 A JP H07113108A
Authority
JP
Japan
Prior art keywords
charging
charge
blast furnace
shape
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25697093A
Other languages
Japanese (ja)
Inventor
Yasuhei Nouchi
泰平 野内
Takeshi Sato
健 佐藤
Shoji Miyagawa
昌治 宮川
Kanji Takeda
幹治 武田
Hiroshi Itaya
宏 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25697093A priority Critical patent/JPH07113108A/en
Publication of JPH07113108A publication Critical patent/JPH07113108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To optimize the layer thickness of charged material in a blast furnace and improve the stability of an operation and productivity by estimating the piled shape of charged material based on the calculated value of a surface gradient and setting a charging pattern so that the shape becomes the optimum shape. CONSTITUTION:The charging material is charged from a bell-less charging device at the furnace top of the blast furnace, according to the preset charging pattern of a swing chute. The piled shape of the charged material obtd. by one swing of the swing chute is calculated and estimated. At that time, the highest point of the new piled shape is defined to be on a dropping locus of the charged material from a distributing chute and the surface gradient is calculated by using the expression of the function dZ/dr of the position (r) in the radial direction of the blast furnace and the height Z of the piled surface. The estimated shapes by this method are calculated for each gradient of the swing chute and totalized to estimate the piled shape corresponding to the charging sequence of the one cycle. Successively, the charging pattern is set so that this estimated piled shape corresponds to the aimed piled shape, and charge of the charging material is executed according to this pattern.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉操業方法に関す
るものであり、より詳しくは高炉に装入する装入物の物
理的性状、高炉操業条件及び装入条件等から、予め炉頂
における装入物層の堆積面形状や層厚分布を的確に推定
することにより、層厚分布を適正に保持することのでき
る高炉操業法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace. The present invention relates to a blast furnace operating method capable of appropriately maintaining the layer thickness distribution by accurately estimating the deposition surface shape and layer thickness distribution of the inlet layer.

【0002】[0002]

【従来の技術】高炉炉頂における装入物分布は、主とし
て以下の事項によって決定される。 (1) 出銑量に対する装入コークス量の比(コークス比) (2) 鉱石装入量に対するコークス装入量の比 (3) コークス/鉱石の粒径分布 (4) 装入位置(ストックライン) (5) 装入シーケンス(C↓C↓O↓O↓等) (6) 装入装置の操作状況、換言すれば、装入装置がベル
レス装置である場合は、旋回シュートの傾動角や旋回回
数であり(一般に、ベルレス高炉操業での装入パターン
は、例えばC−1112223344679 、O−111222334455のよ
うに表し、この例の場合には1チャージのコークスと鉱
石とをそれぞれ分配シュートの13旋回と12旋回により装
入し、分配シュートの傾動角は上記の一連の数字により
示されるとおりに変化する。すなわち、装入パターンと
は装入物の量、装入位置、装入順を規定するものであ
る。)、装入装置がベル装置でムーバブルアーマーが設
けられている場合はアーマーノッチの選択である。
2. Description of the Related Art The charge distribution at the top of a blast furnace is mainly determined by the following items. (1) Ratio of the amount of coke charged to the amount of tapped iron (coke ratio) (2) Ratio of the amount of coke charged to the amount of ore charged (3) Particle size distribution of coke / ore (4) Position of charging (stock line ) (5) Charging sequence (C ↓ C ↓ O ↓ O ↓, etc.) (6) Operation status of the charging device, in other words, when the charging device is a bellless device, the tilt angle and turning of the turning chute (Generally, the charging pattern in the bellless blast furnace operation is represented as, for example, C-1112223344679, O-111222334455, and in the case of this example, one charge of coke and ore is divided into 13 turns of the distribution chute, respectively. Charging by 12 turns, the tilt angle of the distribution chute changes as shown by the above series of numbers, that is, the charging pattern defines the amount, position and order of charging. The charging device is a bell device and is a movable armor. If it is provided a selection of armor notch.

【0003】そしてかかる装入物分布は、高炉のシャフ
ト部においては、還元ガスの通気抵抗を決定するととも
に、その利用効率、熱交換効率を左右する。また、炉下
部においては、鉱石の軟化溶融現象に伴い、その軟化溶
融帯の形状を決める。したがって、高炉炉頂の装入物分
布の制御は、高炉操業の安定性、生産性を決定する最重
要事項である。
The distribution of the charge determines the ventilation resistance of the reducing gas in the shaft portion of the blast furnace, and affects the utilization efficiency and heat exchange efficiency of the reducing gas. Further, in the lower part of the furnace, the shape of the softening / melting zone is determined according to the softening / melting phenomenon of the ore. Therefore, the control of the charge distribution at the top of the blast furnace is the most important factor that determines the stability and productivity of the blast furnace operation.

【0004】そのため、最適な装入物分布を得べく上記
した操業条件を変更した場合に、炉頂での装入物の堆積
分布状況ないしは層厚分布の変化を的確に把握し、しか
も、それを事前に予測することを可能にすることが高炉
操業上、極めて重要となる。特に、上記した操業条件の
内、(1) 〜(3) は生産計画や原料事情からくる制約によ
って操業中に大きく変更することができないため、(4)
〜(6) の変更による装入物分布の変化を事前に予測する
ことを可能にする技術が望まれていた。そして、昨今の
経済事情から低コスト化を図る高炉操業においては、特
に(3) の大幅な計画変更、すなわち小塊コークスや小塊
焼結鉱を多量に使用する場合があり、かかる場合にも十
分に対応できる技術がより強く望まれていた。
Therefore, when the above-mentioned operating conditions are changed in order to obtain the optimum charge distribution, it is possible to accurately grasp the change in the load distribution or the layer thickness distribution of the charge on the furnace top, and It is extremely important for blast furnace operation to be able to predict in advance. In particular, of the above operating conditions, (1) to (3) cannot be changed significantly during operation due to constraints from the production plan and raw material circumstances, so (4)
There was a demand for a technology that makes it possible to predict in advance the changes in the distribution of charges due to changes in (6). In the blast furnace operation for cost reduction due to recent economic circumstances, in particular, there is a case where a large plan change of (3), that is, a large amount of small lump coke or small sinter sinter is used. There has been a strong demand for a technology that can respond sufficiently.

【0005】そのような技術の一例は、特公昭59−1096
3 号公報に開示されている。この技術は図3に示すよう
に、炉半径方向で、炉壁側A、炉中心側Bに対応する2
つの安息角で規定される直線により堆積形状を表現する
ことを基本とし、新規の装入による原料堆積形状を旧堆
積面上に、しかもその最高点を装入物の分配シュート1
からの落下軌跡上辺2、下辺3の間の主流4に一致さ
せ、新堆積面7と旧堆積面5との間の容積が装入物の所
定容積になるよう、旧堆積面5から中間の堆積面8,
9,10を経た装入物の山6になる新堆積面7の位置を計
算し、この計算を装入パターンの分配シュートの傾動角
順に進め、一巡の装入シーケンスに対応する装入物の高
炉半径方向の堆積分布を推定し、これに基づく装入パタ
ーンにより分配シュートの傾動角θを変化させて装入物
を装入して操業することを特徴とする高炉操業方法であ
る。
An example of such technology is disclosed in Japanese Examined Patent Publication No. 59-1096.
It is disclosed in Japanese Patent No. 3 publication. This technique corresponds to the furnace wall side A and the furnace center side B in the furnace radial direction as shown in FIG.
Based on the expression of the deposit shape by a straight line defined by two repose angles, the raw material deposit shape by the new charging is on the old stacking surface, and the highest point is the distribution chute 1 of the charging material.
The fall trajectory from is matched with the main stream 4 between the upper side 2 and the lower side 3 so that the volume between the new deposition surface 7 and the old deposition surface 5 becomes the predetermined volume of the charge, Deposition surface 8,
The position of the new deposition surface 7 which becomes the pile 6 of the charged material after 9 and 10 is calculated, this calculation is advanced in the order of the tilt angle of the distribution chute of the charging pattern, and the charged material corresponding to one cycle of the charging sequence is calculated. This is a blast furnace operating method characterized by estimating the deposition distribution in the radial direction of the blast furnace, changing the tilt angle θ of the distribution chute according to the charging pattern based on this, and charging and operating the charge.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
法では、次のような問題点が残されていた。 (1) 堆積面頂上部は、炉半径方向断面における直線の交
点としてしか表現できず、次に装入された装入物が旧堆
積面頂上部を乗り越え、炉中心あるいは炉壁へ流れ込む
量については正確に記述することができない(すなわ
ち、炉中心あるいは炉壁へ流れ込む量を正確に記述する
ためには、図4に示すような、堆積面頂上部を実炉の形
状を模した曲線で表現する必要があった。)。 (2) 特に、小塊コークス、焼結鉱を使用した場合の装入
シミュレーションを行った場合には、シミュレーション
結果が実際の堆積面形状と大きく相違した(特に炉壁部
で)。 (3) 炉中心部の装入物の堆積面形状の縦断面がV字型と
なり、実炉での堆積面形状の縦断面形状であるU字型と
ならない。
However, the above-mentioned method has the following problems. (1) The top of the stacking surface can be expressed only as the intersection of straight lines in the furnace radial cross section, and the amount of the next charged material surpasses the top of the old stacking surface and flows into the furnace center or furnace wall. Cannot be accurately described (that is, in order to accurately describe the amount flowing into the center or wall of the furnace, the top of the deposition surface is represented by a curve simulating the shape of an actual furnace, as shown in FIG. I had to do that.). (2) Especially, when the charging simulation using small coke and sinter was carried out, the simulation results were significantly different from the actual deposition surface shape (especially at the furnace wall). (3) The vertical cross section of the deposit surface shape of the charge at the center of the furnace is V-shaped, not the U-shaped vertical cross section of the actual furnace surface.

【0007】その結果として、 (1) 中心部での装入物の層厚分布やそれから演繹的に求
められる通気抵抗が実操業と相違した。 (2) 中心流主体の操業を指向して、壁際に小塊コーク
ス、焼結鉱を多量堆積させた操業の場合、装入物の層厚
分布のシミュレーション計算値と実際の堆積面形状と大
きく相違した。すなわち、小塊コークス、焼結鉱を多量
使用するような操業条件の場合には、実操業の予測シス
テムとして機能しない部分があった。
As a result, (1) the layer thickness distribution of the charge in the central part and the aeration resistance obtained a priori from it differed from the actual operation. (2) In the case of an operation in which a large amount of small lump coke and sinter are deposited on the wall, aiming at the operation mainly in the central flow, the simulation calculation value of the layer thickness distribution of the charge and the actual deposition surface shape are large. It was different. That is, in the case of operating conditions in which a large amount of small lump coke and sinter are used, there is a portion that does not function as a prediction system for actual operation.

【0008】この発明は、上記問題点を解決し、(1) 装
入物の炉中心あるいは炉壁へ流れ込む挙動の正確な記
述、(2) 特に、小塊コークス、焼結鉱を使用した場合の
装入物の炉中心あるいは炉壁へ流れ込む挙動の正確な記
述、(3) さらに、炉中心部の装入物の堆積面形状の正確
な記述(U字型となる)を可能にして、 コークス/鉱石の粒度、又は(a) 装入位置、(b) 装入
シーケンス(C↓C↓O↓O↓等)もしくは(c) ベルレ
ス装入装置の旋回シュートの傾動角や旋回回数を変更し
た場合の炉頂での装入物の堆積面分布ないしは層厚分布
をより正確に推定し、それに基づく高炉操業をする方法
を提案することを目的とする。
The present invention solves the above problems, and (1) an accurate description of the behavior of the charged material flowing into the furnace center or the furnace wall, (2) especially when small coke or sinter is used Accurate description of the behavior of the flow of the charged material into the furnace center or the furnace wall, (3) Furthermore, it is possible to accurately describe the deposition surface shape of the charged material in the furnace center part (it becomes U-shaped), Change the grain size of coke / ore, or (a) charging position, (b) charging sequence (C ↓ C ↓ O ↓ O ↓, etc.) or (c) tilt angle and number of times of turning chute of bellless charging device The purpose is to propose a method for more accurately estimating the deposition surface distribution or layer thickness distribution of the charge at the top of the furnace and operating the blast furnace based on it.

【0009】[0009]

【課題を解決するための手段】そのための手段として、
この発明は、ベルレス装入装置を有する高炉の操業にお
いて、出銑量に対する装入コークス量の比、鉱石装入量
に対するコークス装入量の比及び装入位置の所定条件下
で、予め設定した旋回シュートの装入パターンに従って
装入物を高炉炉頂から装入するに当たり、旋回シュート
の1旋回による装入物の堆積形状の計算推定を、旧堆積
面上に、かつ新堆積形状の最高点を分配シュートからの
装入物の落下軌跡上とし、さらに新堆積表面と旧堆積表
面との間の容積を装入物の装入容積に釣り合わせる条件
により、新堆積形状の縦断面における表面勾配が、高炉
半径方向の位置により規定する下記(1)ないし(5)
式を満足すべき形状として行い、かかる推定した新堆積
形状を各装入物に対応する装入パターンの中の旋回シュ
ートの傾動角ごとにそれぞれ求め、それらをあわせて一
巡の装入シークエンスに対応した装入物の高炉半径方向
にわたる堆積形状を推定し、これを定常状態になるまで
ループ状に繰り返して該設定装入パターンで操業したと
きの装入物の高炉半径方向の堆積分布を推定したのち、
この推定堆積形状が目標とする堆積形状に一致する、各
装入物に対応する装入パターンを設定して、そのパター
ンに従って装入物を装入して操業することを特徴とす
る。 記
[Means for Solving the Problems]
The present invention, in the operation of a blast furnace having a bellless charging device, the ratio of the charging coke amount to the tapping amount, the ratio of the coke charging amount to the ore charging amount, and the charging position are preset under predetermined conditions. When charging the charge from the top of the blast furnace according to the charge pattern of the swirl chute, the calculation of the deposit shape of the charge by one swirl of the swirl chute is performed on the old deposit surface and the maximum point of the new deposit shape. On the trajectory of the charge from the distribution chute, and by adjusting the volume between the new and old deposition surfaces to the charge volume of the charge, the surface gradient in the longitudinal section of the new deposition shape However, the following (1) to (5) specified by the radial position of the blast furnace
The calculated new accumulation shape is calculated for each tilt angle of the turning chute in the charging pattern corresponding to each charging, and these are combined for a single charging sequence. The deposition shape of the charged charge in the radial direction of the blast furnace was estimated, and this was repeated in a loop until the steady state was reached, and the deposition distribution of the charge in the radial direction of the blast furnace was estimated when operating in the set charging pattern. Later,
It is characterized in that a charging pattern corresponding to each charging, in which the estimated deposition shape matches the target deposition shape, is set, and the charging operation is performed according to the pattern. Record

【数2】 ここで、 r :高炉炉頂の装入位置における炉中心からの半径方
向位置(m) r1 :(1)式と(2)式の交点位置の半径(m) z :rの関数であり、高炉炉頂半径方向rの位置で
の、基準装入位置からの堆積面の高さ(m) gb :装入物の種類(鉱石かコークスか)、また、装入
物粒径によって固有に決まる定数(−) kb :装入物の種類(鉱石かコークスか)、また、装入
物粒径によって固有に決まる定数(−) r2 :(2)式と(3)式の交点位置の半径(m) Θb,MAX :装入物の種類(鉱石かコークスか)、また装
入物粒径によって固有に決まる堆積勾配の最大値(−) rf :分配シュートからの落下軌跡に一致する堆積面の
最高点位置での半径(m) θb,0 :装入物の種類(鉱石かコークスか)、また装入
物粒径によって固有に決まる値で、堆積面の最高点位置
から離れた場所で取りうる勾配 fb,c :堆積面の最高点近傍の中心側勾配の立ち上がり
を決める係数で装入物の種類(鉱石かコークスか)、ま
た、装入物粒径によって固有に決まる値 fb,w :堆積面の最高点近傍の壁側勾配の立ち上がりを
決める係数で装入物の種類(鉱石かコークスか)、ま
た、装入物粒径によって固有に決まる値 r3 :(4)式と(5)式の交点位置の半径(m) R :高炉炉頂の装入位置における炉中心から炉壁まで
の半径(m)
[Equation 2] Here, r is a radial position (m) from the center of the furnace at the charging position of the blast furnace top (m) r 1 : is a function of the radius (m) z: r at the intersection position of the expressions (1) and (2) , Height of the deposition surface from the standard charging position at the position of the top of the blast furnace in the radial direction r (m) g b : Type of charging (whether ore or coke), and peculiar depending on the particle size of charging Constant (-) k b : Kind of the charge (whether ore or coke), or a constant uniquely determined by the particle size of the charge (-) r 2 : The intersection of the equations (2) and (3) Radius of position (m) Θ b, MAX : Maximum value of deposition gradient (–) r f : Fall trajectory from distribution chute that is uniquely determined by the type of charge (ore or coke) and the particle size of charge radius at the highest point of the deposition surface that matches the (m) theta b, 0: the type of charge (or ore or coke), also uniquely by charge particle diameter A round value, the gradient f b which can be taken away from the highest point of the deposition surface, c: the type of charge by a factor that determines the rise of the center side slope of the highest point near the deposition surface (or the ore or coke) , And a value that is uniquely determined by the particle size of the charge f b, w : a coefficient that determines the rise of the wall-side slope near the highest point of the deposition surface, the type of charge (whether ore or coke), and the charge A value uniquely determined by the particle size r 3 : Radius (m) at the intersection of equations (4) and (5) R: Radius (m) from the center of the blast furnace to the furnace wall at the charging position

【0010】[0010]

【作用】発明者らは、前記問題点を解決する新しい堆積
形状の推定方法を得べく、16.5分の1縮尺の高炉模型を
用いて、(1) コークス/鉱石粒径を変更した実験、(2)
装入位置を変更した実験、(5) 装入シーケンス(C↓C
↓O↓O↓等)を変更した実験、(6) 旋回シュートの傾
動角や旋回回数を変更した実験、等の広範な実験を行っ
た。その際に使用した高炉模型の模式図を図5に示す。
この高炉模型は、実機の一連の設備を忠実に再現したも
のであり、装入ベルトコンベアー11により運ばれてきた
装入物は先ずレシービングシュート12に投入され、切替
えシュート13により炉頂バンカー14に装入される。炉頂
バンカー14内の圧力を高炉内と同じくした後、装入物は
垂直シュート15を通じて旋回シュート1上に落下し、旋
回シュート上を滑り落ちた後、旧堆積面7上に落下す
る。
In order to obtain a new method for estimating the deposition shape that solves the above-mentioned problems, the inventors have used a blast furnace model with a scale of 16.5 (1) an experiment in which the coke / ore grain size was changed, 2)
Experiment with changing charging position, (5) Charging sequence (C ↓ C
↓ O ↓ O ↓, etc.) was changed, and (6) Experiments in which the tilt angle of the turning chute and the number of turns were changed were conducted. A schematic diagram of the blast furnace model used at that time is shown in FIG.
This blast furnace model is a faithful reproduction of a series of equipment of the actual machine, the charge conveyed by the charging belt conveyor 11 is first put into the receiving chute 12, and the changeover chute 13 to the furnace top bunker 14. Charged. After making the pressure in the bunker 14 at the top of the furnace equal to that in the blast furnace, the charge drops through the vertical chute 15 onto the orbiting chute 1, slides down on the orbiting chute, and then drops onto the old deposition surface 7.

【0011】このような実験より、以下の知見を得た。 装入原料の堆積形状は図4に示したような形状にな
り、直線によっては表現できない。 高炉内においては、落下してくる装入物は頂上部に堆
積した原料を削り取り、運び出す。しかし堆積角がそれ
によって小さくなると、原料の流出速度が遅くなり、逆
に堆積を始める。原料の落下中はこの2つの現象が同時
に起こり、その平衡が堆積形状を決定している。 頂点からの距離をr、その位置での堆積面の高さをz
とすると堆積高さの時間的な変化は(6),(7) 式で表せ
る。
The following findings were obtained from such an experiment. The deposition shape of the charging raw material is as shown in FIG. 4, and cannot be represented by a straight line. In the blast furnace, the falling charge scrapes off the raw material deposited on the top and carries it out. However, when the deposition angle becomes smaller by this, the outflow rate of the raw material becomes slower, and conversely the deposition starts. These two phenomena occur at the same time during the fall of the raw material, and their equilibrium determines the deposition shape. The distance from the apex is r, and the height of the deposition surface at that position is z
Then, the temporal change of deposition height can be expressed by Eqs. (6) and (7).

【数3】 [Equation 3]

【0012】[0012]

【数4】 [Equation 4]

【0013】上記(8),(9) 式を用いて近似すると、(6),
(7) 式から(10)式を得る。さらに、堆積面高さの成長速
度をcとし、定常状態を仮定すると(10)式から(11)式を
得る。
Approximating using the above equations (8) and (9), (6),
Equation (10) is obtained from equation (7). Furthermore, assuming that the growth rate of the height of the deposition surface is c and a steady state is assumed, equation (10) is obtained from equation (11).

【数5】 [Equation 5]

【0014】(11)式の一般解は(12)式で与えられ、境界
条件(13)式を代入して最終的に(14)式を得る。
The general solution of the equation (11) is given by the equation (12), and the boundary condition (13) is substituted to finally obtain the equation (14).

【数6】 [Equation 6]

【0015】つまり堆積原料の各半径位置での傾斜は(1
4)式で表現される。なお(14)式において、指数関数部分
を展開し、高次関数(たとえば2次関数または3次関
数)で近似することも可能である。 (14)式において、θ0 は装入物の種類(鉱石かコーク
スか)、また、装入物粒径によって固有に決まる値で、
堆積面の最高点位置から離れた場所で取りうる勾配と一
致する。 また、fは堆積面の最高点近傍の勾配の立ち上がりを
決める係数で、装入物の種類(鉱石かコークスか)、ま
た、装入物粒径、さらに堆積が堆積面の最高点の壁側か
中心側かによって決まる固有の係数となる。 また、装入物の堆積形状の勾配は、装入物の種類(鉱
石かコークスか)、また、装入物粒径によって固有に決
まる最大値以上の値は取りえない。
That is, the inclination of the deposited raw material at each radial position is (1
It is expressed by the formula 4). In the equation (14), the exponential function part can be expanded and approximated by a higher-order function (for example, a quadratic function or a cubic function). In equation (14), θ 0 is a value uniquely determined by the type of charge (whether ore or coke) and the particle size of the charge.
It matches the slope that can be taken away from the highest point of the deposition surface. In addition, f is a coefficient that determines the rise of the slope near the highest point of the deposition surface, the type of charge (whether ore or coke), the particle size of the charge, and the deposition is on the wall side of the highest point of the deposition surface. It is a unique coefficient determined by whether it is on the central side or the center side. Further, the gradient of the deposit shape of the charge cannot be more than the maximum value that is uniquely determined by the type of the charge (ore or coke) and the particle size of the charge.

【0016】壁際、又中心での装入物の堆積は、上記
の式においてβ=Oの特殊な場合として同様に計算さ
れ、
Deposition of the charge near the wall, or at the center, is similarly calculated in the above equation as a special case of β = 0.

【数7】 となる。 (15)式における係数g,kは、装入物の種類(鉱石か
コークスか)、また装入物粒径によって固有に決まり、
r=0近辺(すなわち、炉の最中心部)、r=R近辺
(すなわち、最炉壁部)で装入物の種類(鉱石かコーク
スか)が同じなら、同じ値となる。
[Equation 7] Becomes Coefficients g and k in equation (15) are uniquely determined by the type of charge (whether ore or coke) and the particle size of the charge,
If the type of charge (ore or coke) is the same near r = 0 (that is, the center of the furnace) and r = R (that is, the furnace wall), the values are the same.

【0017】鉱石及びコークスについて、旋回シュー
トの傾動角を変えたそれぞれの高炉半径方向にわたる堆
積形状及び堆積形状から計算される傾斜角(tan θ)は
図6に示すとおりであって、傾斜角は、領域Dでは(14)
式で表される細い実線,その他の領域では(10)式の直線
あるいは安息角で一定値の直線(細い破線)で示され
る。 10.すなわち、原料の堆積面形状は炉半径方向で5つに
分割される領域において規定される装入物の堆積形状の
勾配によって表現される。
For ores and cokes, the deposit shape and the tilt angle (tan θ) calculated from the deposit shape over the radial direction of the blast furnace with the tilt angle of the swirling chute changed are shown in FIG. 6, and the tilt angle is , In area D (14)
In the other areas, the thin solid line is expressed by the straight line in Eq. (10) or the straight line with a constant angle of repose (thin broken line). 10. That is, the shape of the deposition surface of the raw material is expressed by the gradient of the deposition shape of the charge defined in the area divided into five in the furnace radial direction.

【0018】以上説明したとおり、この発明によれば、
原料堆積形状を上記したように5つの、指数関数、2次
関数及び直線を用いて高精度に表現できるようになっ
た。すなわち、この指数関数と2次曲線、直線の組合わ
せによって形成される装入物堆積面形状を旧堆積面上
に、しかもその最高点を装入物の分配シュートからの落
下軌跡に一致させ、かつ新堆積面と旧堆積面との間の容
積が装入物の装入容積になるように計算設定し、このよ
うに計算設定した新堆積面を各装入物に対応する装入パ
ターンの旋回シュートの傾動角に従って順に求め、それ
らをあわせて一巡の装入シークエンスに対応する装入物
の高炉半径方向の堆積面を推定し、これをループ状に定
常状態になるまで繰り返して該設定装入パターンで操業
したときの装入物の高炉半径方向の堆積分布を推定し、
次に、この推定堆積分布と目標とする堆積分布とが一致
するように、各装入物に対応する装入パターンを、例え
ば試行錯誤的に見出し、そのパターンに従って装入物を
装入して操業することにより、装入物の分布を短時間で
最適状態に到達せしめると同時に、この最適分布状態を
維持することができるようになり、燃料比の低減が可能
となった。また操業の安定を保ちながら、小径の鉱石や
コークスの多量使用が可能となったのである。
As described above, according to the present invention,
As described above, the raw material deposition shape can be expressed with high precision using the five exponential functions, the quadratic functions, and the straight lines. That is, the shape of the charge deposit surface formed by the combination of this exponential function, the quadratic curve, and the straight line is set on the old deposit surface, and the highest point is made to coincide with the trajectory of the drop of the charge from the distribution chute. In addition, the volume between the new deposition surface and the old deposition surface is calculated and set so as to be the charging volume of the charging material, and the new deposition surface calculated and set in this way is used as the charging pattern for each charging material. It is determined in order according to the tilt angle of the swirling chute, and together with them, the deposition surface in the radial direction of the blast furnace of the charge corresponding to the charging sequence of one round is estimated, and this is repeated in a loop until the steady state is reached. Estimate the deposit distribution in the radial direction of the blast furnace when operating in the charging pattern,
Next, the charging pattern corresponding to each charging is found, for example, by trial and error so that this estimated distribution and the target distribution of distribution match, and charging is performed according to the pattern. By operating, the distribution of the charge can be reached to the optimum state in a short time, and at the same time, the optimum distribution state can be maintained and the fuel ratio can be reduced. Moreover, it became possible to use a large amount of small-sized ore and coke while maintaining stable operation.

【0019】[0019]

【実施例】【Example】

(実施例1)図1に、この発明に従う高炉操業法による
4500m3の高炉の堆積形状推定結果を実測値と併せて示
す。また、図2に従来モデルによる高炉の堆積形状推定
結果を実測値と併せて示す。なお、いずれの場合も鉱石
装入量を131.5t、その内小塊鉱石25t 、コークス装入量
を29.5 t、その内小塊コークス3t とし、旋回シュート
の傾動パターンは鉱石:223367789-10-11-11-12 コーク
ス:111222334567-10-13とした場合について示した。。
図1から明らかなように、この発明に従う推定は従来例
に比して堆積形状を正確に予測でき、ひいては好ましい
高炉操業が達成できた。
(Embodiment 1) FIG. 1 shows a blast furnace operating method according to the present invention.
The results of estimation of the deposition shape of the 4500 m 3 blast furnace are shown together with the measured values. Further, FIG. 2 shows the estimation result of the deposition shape of the blast furnace by the conventional model together with the measured value. In each case, the ore charge was 131.5t, the small ore of which was 25t, the coke charge was 29.5t, and the small coke of the same was 3t, and the tilting pattern of the turning chute was ore: 223367789-10-11. -11-12 Coke: 111222334567-10-13 is shown. .
As is clear from FIG. 1, the estimation according to the present invention was able to accurately predict the deposition shape as compared with the conventional example, and consequently a preferable blast furnace operation could be achieved.

【0020】(実施例2)図7に、従来法からこの発明
の方法に変化させて高炉操業を実施した30日間の、溶
銑1tあたりの小塊焼結鉱使用量,ガス利用率(ηco
及び減風頻度の変化を示す。基本操業条件を変えること
なしに、この発明の方法を適用した分布調整のみで減風
頻度の減少,燃料比低減,ηco上昇が可能となり、さら
に小塊鉱石使用量増加も可能となり、省エネ,省コスト
に格段の効果をもたらした。
(Embodiment 2) FIG. 7 shows the amount of small lump sinter used per ton of hot metal and the gas utilization rate (η co for 30 days when the blast furnace operation was carried out by changing the conventional method to the method of the present invention. )
And changes in the frequency of wind reduction. Without changing the basic operating conditions, it is possible to reduce the frequency of wind reduction, reduce the fuel ratio, increase η co, and increase the amount of small ore used without changing the distribution adjustment using the method of the present invention. It has a great effect on cost saving.

【0021】[0021]

【発明の効果】この発明によれば、原料堆積面形状を指
数関数と2次関数、直線の3つの関数の組み合わせによ
り表現することしたため、原料の堆積形状を高精度に推
定することができる様になった。また、装入物の高炉半
径方向の堆積分布を推定し、原料層の境界面形状を計算
することにより、炉内のガス流れを精度良く推定できる
ようになった。この予測を基に目的とするガス流分布を
実現する装入パターンを決定し操業することにより、装
入物の分布を短時間で最適状態に到達せしめると同時
に、この最適分布状態を維持することができるようにな
った。具体的には特に炉中心部と炉壁部での原料層厚分
布推定精度が向上したため、ガス流分布予測精度が向上
し、目標とするガス流分布への装入パターンによる調整
がより容易となり、燃料比の低減が可能となった。ま
た、堆積面頂上より炉壁側の堆積形状推定精度が向上し
たため、小径原料が中心部へ流れ込まない最大量を正確
に計算でき、操業の安定を保ちながら、小径の鉱石やコ
ークスの多量使用が可能となった。
According to the present invention, since the shape of the raw material deposition surface is represented by the combination of the three functions of the exponential function, the quadratic function and the straight line, the raw material deposition shape can be estimated with high accuracy. Became. Also, by estimating the deposition distribution of the charge in the radial direction of the blast furnace and calculating the boundary surface shape of the raw material layer, it has become possible to accurately estimate the gas flow in the furnace. By determining and operating the charging pattern that achieves the desired gas flow distribution based on this prediction, the distribution of the charging material can be reached to the optimum state in a short time while maintaining this optimum distribution state. Is now possible. Specifically, since the accuracy of estimating the raw material layer thickness distribution in the center of the furnace and the wall of the furnace has been improved, the accuracy of gas flow distribution prediction is improved, making it easier to adjust the target gas flow distribution by the charging pattern. It became possible to reduce the fuel ratio. In addition, since the accuracy of estimating the shape of the deposit on the furnace wall side from the top of the deposit surface has been improved, the maximum amount of small-diameter raw material that does not flow into the center can be calculated accurately, and large amounts of small-diameter ore and coke can be used while maintaining stable operation. It has become possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従う堆積形状の指数関数と2次関
数、及び原料の安息角により規定される直線の3つの関
数の組み合わせによる高炉内装入物の堆積形状の予測断
面を、サウンディングによる実測値と比較した示すグラ
フである。
FIG. 1 is a measured cross section of a predicted cross section of a deposit shape of a blast furnace interior according to a combination of an exponential function and a quadratic function of the deposit shape according to the present invention and a straight line defined by the angle of repose of a raw material. It is a graph shown in comparison with.

【図2】従来法に従い原料の安息角により規定される3
つの直線の組み合わせによる高炉内装入物の堆積形状の
予測断面を、サウディングによる実測値と比較した示す
グラフである。
FIG. 2 is defined by the angle of repose of the raw material according to the conventional method 3
It is a graph which shows the predicted cross section of the deposition shape of the blast furnace interior deposit by the combination of two straight lines, and compared with the measured value by sounding.

【図3】従来法に従い2本の直線で近似した、高炉炉頂
に装入された装入物層堆積状態の説明図である。
FIG. 3 is an explanatory view of a state of deposition of a charge layer charged on the blast furnace top, which is approximated by two straight lines according to the conventional method.

【図4】実際の装入物の堆積状態の説明図である。FIG. 4 is an explanatory view of an actual deposition state of a charging material.

【図5】ベルレス高炉の1/16.5縮尺模型の模式図であ
る。
FIG. 5 is a schematic view of a 1 / 16.5 scale model of the bellless blast furnace.

【図6】模型実験で原料種と旋回シュート傾動角を変化
させたときの堆積形状と、堆積形状から計算される各半
径位置での傾斜角を示すグラフである。
FIG. 6 is a graph showing a deposition shape when a raw material species and a swirling chute tilt angle are changed in a model experiment, and an inclination angle at each radial position calculated from the deposition shape.

【図7】この発明に従い、装入物の堆積分布を推定し、
その結果を基に分布調整を行ったときの高炉の溶銑1t
あたり小塊焼結鉱使用量,ガス利用率,減風頻度の変化
を示すグラフである。
FIG. 7: In accordance with the present invention, the deposition distribution of the charge is estimated,
1t of hot metal in the blast furnace when the distribution was adjusted based on the results
6 is a graph showing changes in the amount of small sinter ore used, gas utilization rate, and wind reduction frequency.

【符号の説明】[Explanation of symbols]

θ 傾動角 A 炉壁側 B 炉内の中心 1 炉頂装入装置 2 落下軌跡上辺 3 落下軌跡下辺 4 落下装入物流の主流 5 旧装入面 6 装入物の山 7 新装入面 8,9,10:中間で形成される装入面 11 装入ベルトコンベアー 12 レシービングシュート 13 切替えシュート 14 炉頂バンカー 15 垂直シュート θ Tilt angle A Furnace wall side B Center of the furnace 1 Top loading device 2 Fall trajectory upper side 3 Fall trajectory lower side 4 Main stream of drop charging logistics 5 Old loading surface 6 Piles of loading 7 New loading surface 8 , 9, 10: Charging surface formed in the middle 11 Charging belt conveyor 12 Receiving chute 13 Switching chute 14 Top bunker 15 Vertical chute

フロントページの続き (72)発明者 宮川 昌治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 武田 幹治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 板谷 宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内Front page continuation (72) Inventor Shoji Miyakawa 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Technical Research Division, Kawasaki Steel Corporation (72) Inventor Mikiharu Takeda 1 Kawasaki-cho, Chuo-ku, Chiba Prefecture Kawasaki Steel (72) Inventor Hiroshi Itaya, Kawasaki, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベルレス装入装置を有する高炉の操業に
おいて、出銑量に対する装入コークス量の比、鉱石装入
量に対するコークス装入量の比及び装入位置の所定条件
下で、予め設定した旋回シュートの装入パターンに従っ
て装入物を高炉炉頂から装入するに当たり、 旋回シュートの1旋回による装入物の堆積形状の計算推
定を、旧堆積面上に、かつ新堆積形状の最高点を分配シ
ュートからの装入物の落下軌跡上とし、さらに新堆積表
面と旧堆積表面との間の容積を装入物の装入容積に釣り
合わせる条件により、新堆積形状の縦断面における表面
勾配が、高炉半径方向の位置により規定する下記(1)
ないし(5)式を満足すべき形状として行い、かかる推
定した新堆積形状を各装入物に対応する装入パターンの
中の旋回シュートの傾動角ごとにそれぞれ求め、それら
をあわせて一巡の装入シークエンスに対応した装入物の
高炉半径方向にわたる堆積形状を推定し、これを定常状
態になるまでループ状に繰り返して該設定装入パターン
で操業したときの装入物の高炉半径方向の堆積分布を推
定したのち、 この推定堆積形状が目標とする堆積形状に一致する、各
装入物に対応する装入パターンを設定して、そのパター
ンに従って装入物を装入して操業することを特徴とする
高炉操業方法。 記 【数1】 ここで、 r :高炉炉頂の装入位置における炉中心からの半径方
向位置(m) r1 :(1)式と(2)式の交点位置の半径(m) z :rの関数であり、高炉炉頂半径方向rの位置で
の、基準装入位置からの堆積面の高さ(m) gb :装入物の種類(鉱石かコークスか)、また、装入
物粒径によって固有に決まる定数(−) kb :装入物の種類(鉱石かコークスか)、また、装入
物粒径によって固有に決まる定数(−) r2 :(2)式と(3)式の交点位置の半径(m) Θb,MAX :装入物の種類(鉱石かコークスか)、また装
入物粒径によって固有に決まる堆積勾配の最大値(−) rf :分配シュートからの落下軌跡に一致する堆積面の
最高点位置での半径(m) θb,0 :装入物の種類(鉱石かコークスか)、また装入
物粒径によって固有に決まる値で、堆積面の最高点位置
から離れた場所で取りうる勾配 fb,c :堆積面の最高点近傍の中心側勾配の立ち上がり
を決める係数で装入物の種類(鉱石かコークスか)、ま
た、装入物粒径によって固有に決まる値 fb,w :堆積面の最高点近傍の壁側勾配の立ち上がりを
決める係数で装入物の種類(鉱石かコークスか)、ま
た、装入物粒径によって固有に決まる値 r3 :(4)式と(5)式の交点位置の半径(m) R :高炉炉頂の装入位置における炉中心から炉壁まで
の半径(m)
1. In the operation of a blast furnace having a bellless charging device, the ratio of the charging coke amount to the tapping amount, the ratio of the coke charging amount to the ore charging amount, and the charging position are preset under predetermined conditions. When charging the charge from the top of the blast furnace according to the charging pattern of the swirling chute, the calculation of the deposition shape of the charging by one swirling of the swirling chute is performed on the old deposition surface and the new deposition shape is estimated. The point is on the falling trajectory of the charging material from the distribution chute, and the surface in the vertical cross section of the new deposition shape is set by the condition that the volume between the new deposition surface and the old deposition surface is balanced with the charging volume of the charging material. The gradient is defined by the position in the radial direction of the blast furnace (1) below.
Or (5) is performed as a satisfying shape, the estimated new pile shape is obtained for each tilt angle of the turning chute in the charging pattern corresponding to each charging, and these are combined for one round of loading. Estimate the deposition shape of the charge corresponding to the input sequence in the radial direction of the blast furnace, repeat this in a loop until it reaches a steady state, and deposit the charge in the radial direction of the blast furnace when operating with the set charging pattern. After estimating the distribution, set the charging pattern corresponding to each charging that this estimated deposition shape matches the target deposition shape, and load the charging material according to that pattern to operate. Characteristic blast furnace operation method. Note [Equation 1] Here, r is a radial position (m) from the center of the furnace at the charging position of the blast furnace top (m) r 1 : is a function of the radius (m) z: r at the intersection position of the expressions (1) and (2) , Height of the deposition surface from the standard charging position at the position of the top of the blast furnace in the radial direction r (m) g b : Type of charging (whether ore or coke), and peculiar depending on the particle size of charging Constant (-) k b : Kind of the charge (whether ore or coke), or a constant uniquely determined by the particle size of the charge (-) r 2 : The intersection of the equations (2) and (3) Radius of position (m) Θ b, MAX : Maximum value of deposition gradient (–) r f : Fall trajectory from distribution chute that is uniquely determined by the type of charge (ore or coke) and the particle size of charge radius at the highest point of the deposition surface that matches the (m) theta b, 0: the type of charge (or ore or coke), also uniquely by charge particle diameter A round value, the gradient f b which can be taken away from the highest point of the deposition surface, c: the type of charge by a factor that determines the rise of the center side slope of the highest point near the deposition surface (or the ore or coke) , And a value that is uniquely determined by the particle size of the charge f b, w : a coefficient that determines the rise of the wall-side slope near the highest point of the deposition surface, the type of charge (whether ore or coke), and the charge A value uniquely determined by the particle size r 3 : Radius (m) at the intersection of equations (4) and (5) R: Radius (m) from the center of the blast furnace to the furnace wall at the charging position
JP25697093A 1993-10-14 1993-10-14 Operation of blast furnace Pending JPH07113108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25697093A JPH07113108A (en) 1993-10-14 1993-10-14 Operation of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25697093A JPH07113108A (en) 1993-10-14 1993-10-14 Operation of blast furnace

Publications (1)

Publication Number Publication Date
JPH07113108A true JPH07113108A (en) 1995-05-02

Family

ID=17299906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25697093A Pending JPH07113108A (en) 1993-10-14 1993-10-14 Operation of blast furnace

Country Status (1)

Country Link
JP (1) JPH07113108A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150583A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Method for measuring layer thickness distribution of charged material in blast furnace, and apparatus for measuring layer thickness distribution using the same
JP2010255092A (en) * 2009-03-31 2010-11-11 Kobe Steel Ltd Method for deriving operational condition in blast furnace, and apparatus for deriving operational condition in blast furnace using the method
JP2020015937A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Method for predicting distribution of charge in blast furnace, program and computer storage medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150583A (en) * 2008-12-24 2010-07-08 Kobe Steel Ltd Method for measuring layer thickness distribution of charged material in blast furnace, and apparatus for measuring layer thickness distribution using the same
JP2010255092A (en) * 2009-03-31 2010-11-11 Kobe Steel Ltd Method for deriving operational condition in blast furnace, and apparatus for deriving operational condition in blast furnace using the method
JP2020015937A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Method for predicting distribution of charge in blast furnace, program and computer storage medium

Similar Documents

Publication Publication Date Title
JPH07113108A (en) Operation of blast furnace
US4466825A (en) Process for blast furnace operation
JPH0860212A (en) Method for supporting distribution control of charged material in bell-less blast furnace
JP2797917B2 (en) Blast furnace operation method
JP2001049312A (en) Method for charging raw material in bell-less blast furnace
JPS62224608A (en) Operating method for bell-less type blast furnace
JP3608485B2 (en) Raw material charging method in bell-less blast furnace
JPH0811805B2 (en) Belleless blast furnace raw material charging method
JP3995380B2 (en) Raw material charging method to blast furnace
JP2000008105A (en) Control of distribution of charged material from furnace top of blast furnace
JPS6156212A (en) Method for operating blast furnace
JPH02250909A (en) Method for charging raw material in blast furnace
JP2725529B2 (en) Charge distribution control method in blast furnace
JP3978105B2 (en) Raw material charging method for blast furnace
JPH11269513A (en) Charging of charging material into center part of blast furnace
SU981371A1 (en) Method for conducting blast furnace smelting
JP2023057594A (en) Blast furnace operation method, charging method control device, and charging method control program
JPH09111321A (en) Method for controlling distribution of charging material from furnace top of blast furnace
JPS62218507A (en) Raw material charging method for bell-less blast furnace
CN115232899A (en) Method for accurately controlling material distribution amount of specific area in multi-ring material distribution process of blast furnace
JPH051311A (en) Method for charging raw material in bell-less blast furnace
JPH08246011A (en) Method for charging raw material of blast furnace and device therefor
JPH05279715A (en) Method for charging raw material in bell-less blast furnace
JPH01259109A (en) Method for charging raw material in bell type blast furnace
JP2001172706A (en) Method for charging raw material in bell type blast furnace