JPS6222370A - Nickel-hydrogen alkaline storage battery - Google Patents

Nickel-hydrogen alkaline storage battery

Info

Publication number
JPS6222370A
JPS6222370A JP60161401A JP16140185A JPS6222370A JP S6222370 A JPS6222370 A JP S6222370A JP 60161401 A JP60161401 A JP 60161401A JP 16140185 A JP16140185 A JP 16140185A JP S6222370 A JPS6222370 A JP S6222370A
Authority
JP
Japan
Prior art keywords
nickel
alloy
hydrogen
negative electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60161401A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yanagihara
伸行 柳原
Hiroshi Kawano
川野 博志
Munehisa Ikoma
宗久 生駒
Yoshio Moriwaki
良夫 森脇
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60161401A priority Critical patent/JPS6222370A/en
Publication of JPS6222370A publication Critical patent/JPS6222370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the mechanical intensity, the durability and the high- temperature cycle life of a nickel-hydrogen alkaline storage battery by using an alkaline liquid electrolyte and a negative electrode which consists of a nickel- containing hydrogen0occlusion alloy or a hydride and is partially coated with nickel or nickel alloy. CONSTITUTION:A negative electrode 1 consisting of a metal-coated hydrogen occlusion electrode containing an alloy or a hydride, a positive electrode 2 made of nickel oxide and a separator placed between the electrodes 1 and 2 are immersed in a liquid electrolyte 4. Since a nickel-containing hydrogen absorbing alloy can be homogeneously and closely coated with nickel or a nickel alloy, the nickel-containing hydrogen occlusion alloy only minimally dissolved into a liquid electrolyte during charge and discharge of a battery and there is no possibility that its capacity reduction occurs during a minute short circuit. Consequently, the high-temperature cycle life of the battery can be extended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素を可逆的に吸蔵・放出する合金からなる
水素吸蔵電極を負極とし、酸化ニッケル電極を正極とす
るニッケル−水素蓄電池に関するものて、とくにその負
極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a nickel-hydrogen storage battery in which the negative electrode is a hydrogen storage electrode made of an alloy that reversibly stores and releases hydrogen, and the positive electrode is a nickel oxide electrode. Especially regarding the improvement of the negative electrode.

従来の技術 可逆的に水素を吸蔵・放出する合金(水素吸蔵合金と云
う)を用いる水素吸蔵電極を負極とするアルカリ蓄電池
において、このアルカリ蓄電池の充・放電サイクルによ
って、負極を構成する水素吸蔵合金又は水素化物が細分
化し、電極支持体から脱落したり、膨張や亀裂をおこし
、電池性能の低下がおこる。この現象はとくに開放型ア
ルカリ蓄電池に顕著に現われる。そこで、水素吸蔵合金
粉末の表面に銅(Cu)を被覆する事によって上記の問
題点を解決しようとする試みが提案されている(特開昭
50−111546号)。すなわち、水素吸蔵合金粉末
の表面に銅の無電解メッキを施こす事により、合金自体
を保護すると共に合金自体の機械的強度と電気伝導性の
増大を図っている蓄電池陰極が提案されており、この水
素吸蔵電極を負極とし、セパレータを介して公知のニッ
ケル正極と組合わせてアルカリ蓄電池が考えられている
Conventional technology In an alkaline storage battery whose negative electrode is a hydrogen storage electrode that uses an alloy that reversibly stores and releases hydrogen (referred to as a hydrogen storage alloy), the hydrogen storage alloy constituting the negative electrode is Alternatively, the hydride may become fragmented and fall off the electrode support, causing expansion or cracking, resulting in a decrease in battery performance. This phenomenon is particularly noticeable in open-type alkaline storage batteries. Therefore, an attempt has been proposed to solve the above problems by coating the surface of hydrogen storage alloy powder with copper (Cu) (Japanese Patent Laid-Open No. 111546/1983). In other words, a storage battery cathode has been proposed in which electroless copper plating is applied to the surface of hydrogen-absorbing alloy powder to protect the alloy itself and to increase the mechanical strength and electrical conductivity of the alloy itself. An alkaline storage battery is being considered in which this hydrogen storage electrode is used as a negative electrode and is combined with a known nickel positive electrode via a separator.

発明が解決しようとする問題点 前記、銅を被覆した合金を負極に用いると、無焼結及び
焼結電極いずれにおいても、電極自体の機械的強度と導
電性は良くなシ、電池性能は向上すると考えられる。し
かし、ニッケル−水素アルカリ蓄電池の電解液は20〜
30%のKOH溶液を用いているために、放電末期、あ
るいは過放電領域に入ると銅が酸化されてCu 20と
なり逆に充電状態において溶解析出する。この現象をく
シかえずことによって、セパレータ内に銅(Cu)が析
出して、短絡現象の原因となる。とくに高温サイクル寿
命においては顕著に現れる。酸化水銀(Hq/Hg(1
)標準電極に対して一〇、4vよシ貴な電位、すなわち
酸化電位にするとCu20−CuO2−となって溶解す
る。充電時にはまたCuまで還元されるのでCuが析出
する。したがって、水素吸蔵合金を被覆している金属に
よって高温度でのサイクル寿命に大きな影響を及ぼす事
が判明した。これに対して貴金属、ニッケル及びそれら
の合金は耐アルカリ性に強く、高温度におけるサイクル
寿命も長いが貴金属(銀、金、白金など)は高価なので
、コストの点から採用困難である。したがって、Niお
よびNi基合金が無電解メッキの容易性などの点からも
最適な金属と云える。Coは無電解メッキが可能である
がCuと同様な性質を有している。しかしNi−Co基
合金にすれば耐食性も出て来るので利用可能となる。
Problems to be Solved by the Invention As mentioned above, if a copper-coated alloy is used for the negative electrode, the mechanical strength and conductivity of the electrode itself will be poor in both unsintered and sintered electrodes, but the battery performance will improve. It is thought that then. However, the electrolyte of nickel-hydrogen alkaline storage batteries is 20~
Since a 30% KOH solution is used, at the end of discharge or in the overdischarge region, copper is oxidized and becomes Cu 20, which is dissolved and deposited in the charged state. By not changing this phenomenon, copper (Cu) is deposited within the separator, causing a short circuit phenomenon. This is especially noticeable during high-temperature cycle life. Mercury oxide (Hq/Hg(1
) When the potential is 10.4 V higher than the standard electrode, that is, the oxidation potential, it becomes Cu20-CuO2- and dissolves. During charging, it is reduced to Cu again, so Cu is deposited. Therefore, it has been found that the metal coating the hydrogen storage alloy has a significant effect on the cycle life at high temperatures. On the other hand, noble metals, nickel, and alloys thereof have strong alkali resistance and a long cycle life at high temperatures, but noble metals (silver, gold, platinum, etc.) are expensive, so it is difficult to employ them from the viewpoint of cost. Therefore, Ni and Ni-based alloys can be said to be the most suitable metals from the viewpoint of ease of electroless plating. Although Co can be electrolessly plated, it has properties similar to Cu. However, if a Ni-Co-based alloy is used, it will have corrosion resistance and can be used.

問題点を解決するための手段 本発明は酸化ニッケル正極と、水素を可逆的に吸蔵・放
出する少なくともニッケルを含む水素吸蔵合金又は水素
化物からなる負極と、アルカリ電解液を備え、前記負極
がニッケル又はニッケル基合金のいずれかによって部分
的に被覆され、水素を吸蔵・放出しうる電気化学的特性
を保持した水素吸蔵合金又は水素化物からなるニッケル
・水素アルカリ蓄電池である。
Means for Solving the Problems The present invention comprises a nickel oxide positive electrode, a negative electrode made of a hydrogen storage alloy or hydride containing at least nickel that reversibly stores and releases hydrogen, and an alkaline electrolyte, wherein the negative electrode is made of nickel. or a nickel-hydrogen alkaline storage battery made of a hydrogen storage alloy or hydride that is partially coated with either a nickel-based alloy and retains electrochemical properties capable of storing and releasing hydrogen.

さらに本発明は前記負極において、ニッケル又はニッケ
ル基合金によって部分的に被覆した水素吸蔵合金、又は
水素化物粒子と結着剤を含有したペースト型電極、およ
びニッケル又はニッケル基合金によって部分的に被覆し
た水素吸蔵合金又は水素化物粒子単独かあるいはこれに
粘結剤を配し、860〜1,000 ’Cの温度で焼結
した焼結型電極を負極に用いたニッケル−水素アルカリ
蓄電池である。
Furthermore, in the negative electrode, the present invention provides a hydrogen storage alloy partially coated with nickel or a nickel-based alloy, or a paste-type electrode containing hydride particles and a binder, and a hydrogen storage alloy partially coated with nickel or a nickel-based alloy. This is a nickel-hydrogen alkaline storage battery using a sintered electrode made of hydrogen storage alloy or hydride particles alone or with a binder arranged thereon and sintered at a temperature of 860 to 1,000'C as the negative electrode.

作  用 ニッケル又はニッケル基合金(たとえばNi−Co、N
1−Co−B、N1−Fe−P など)を無電解メッキ
法などで表面を被覆した少なくともニッケルを含む水素
吸蔵合金粉末又は水素化物粉末を負極に用いたアルカリ
蓄電池は、高温サイクル寿命の伸長が可能となる。その
理由は、ニッケルを含む水素吸蔵合金(水素化物)であ
るために同種類のニッケル、ニッケル基合金による表面
被覆(メッキ処理)が均一に、密着性よく円滑に進むと
共に、電池を構成した時に充・放電のくシかえしによる
電解液中への溶解も非常に少なくなシ、微少短絡による
容量低下もなくなるからである。しかも、電極自体の機
械的強度も保持しているために、さらに長寿命化が期待
できる。
Function Nickel or nickel-based alloys (e.g. Ni-Co, N
Alkaline storage batteries that use a hydrogen storage alloy powder or hydride powder containing at least nickel, whose surface is coated with nickel (such as 1-Co-B, N1-Fe-P, etc.) by electroless plating, have a longer high-temperature cycle life. becomes possible. The reason for this is that since it is a hydrogen storage alloy (hydride) containing nickel, the surface coating (plating treatment) with the same type of nickel or nickel-based alloy proceeds uniformly and smoothly with good adhesion, and when the battery is constructed. This is because dissolution into the electrolyte due to recombination during charging and discharging is extremely small, and there is no reduction in capacity due to minute short circuits. Moreover, since the electrode itself maintains its mechanical strength, it can be expected to have a longer lifespan.

一方、この電極体を高温で焼結して焼結型電極を構成す
るとニッケル粒子間の結合力が強く、またニッケルを含
む水素吸蔵合金であるために、被覆金属との密着性もよ
く、長期のサイクル寿命において十分耐えるだけの強度
を保持する作用を有している。
On the other hand, if this electrode body is sintered at high temperature to form a sintered electrode, the bonding force between the nickel particles will be strong, and since it is a hydrogen storage alloy containing nickel, it will have good adhesion with the coating metal and will last for a long time. It has the effect of maintaining sufficient strength to withstand the cycle life of .

実施例1 以下、本発明の詳細を実施例で説明する。Example 1 Hereinafter, the details of the present invention will be explained with reference to Examples.

市販のMm (ミツシュメタル;重量比でLa:60.
 Ce : 25. Nd : 7.  Prその他8
)、Ni(純度99チ以上)、Co(純度99%以上)
の各試料を一定の組成比に秤量し、水冷銅るつぼ内に入
れ、アーク溶解炉によって加熱させ、MmNi5Co□
合金を製造した。この合金を粉砕機で400メツシユ以
下で細かく粉砕し、負極合金試料とした。つぎに、この
合金試料の一部を水素化した試料も合わせて作った。こ
れらの試料の表面にニッケル、ニッケル基合金(Ni−
Co−P系)を無電解メッキし、ニッケルおよびニッケ
ル基合金の被覆膜を部分的に形成させる。その時の無電
解メッキの条件はつぎの通りである。
Commercially available Mm (Mitushmetal; weight ratio La: 60.
Ce: 25. Nd: 7. PrOther 8
), Ni (purity of 99% or more), Co (purity of 99% or more)
Each sample was weighed to a certain composition ratio, placed in a water-cooled copper crucible, and heated in an arc melting furnace to form MmNi5Co□
An alloy was produced. This alloy was finely ground to 400 mesh or less using a grinder to obtain a negative electrode alloy sample. Next, a partially hydrogenated sample of this alloy sample was also made. Nickel and nickel-based alloys (Ni-
Electroless plating of Co--P based alloy is applied to partially form a coating film of nickel and nickel-based alloy. The conditions for electroless plating at that time were as follows.

このものは−見、合金粒子の表面に均質な金属被覆膜を
形成しているが、まだ多くの穴9割れ目が存在している
。この穴2割れ目があるために部分的な被覆膜を形成し
ていることになる。この穴。
In this case, a homogeneous metal coating film was formed on the surface of the alloy particles, but there were still many holes and cracks. Due to the presence of these two holes, a partial coating film is formed. This hole.

割れ目を通して水素の吸蔵・放出が行なわれているもの
と考えられる。
It is thought that hydrogen is absorbed and released through the cracks.

従来例との比較のために、同じ水素吸蔵合金粉末を用い
て、同様に銅の無電解メッキを施した電極を作った。こ
の時の無電解メッキの条件はつぎの通シである。
For comparison with the conventional example, an electrode was made using the same hydrogen storage alloy powder and electrolessly plated with copper in the same manner. The conditions for electroless plating at this time are as follows.

この様にして製造した2種の合金粉末、すなわちニッケ
ル被覆形成を施した粉末(、)と銅被覆形成を施した粉
末(b)にポリビニルアルコールのような結着剤をよく
混練して電極支持体(穴開き板;別名パンチングメタル
)の両側に塗着し、加圧、乾燥後リードを取り付けて負
極とし、公知の酸化ニッケル正極とをセパレータを介し
て構成し、アルカリ性電解液を入れてアルカリ蓄電池と
した。この蓄電池の構成を第1図に示す。金属被覆した
合金又は水素化物を含む水素吸蔵電極からなる負極1、
酸化ニッケルからなる正極29両極の間にセパレータ3
が配され電解液4の中に浸されている。
The two types of alloy powders produced in this way, namely the powder with nickel coating (2) and the powder with copper coating (b), are thoroughly kneaded with a binder such as polyvinyl alcohol to support the electrode. It is applied to both sides of the body (perforated plate; also known as punching metal), pressurized, dried, and then a lead is attached to form a negative electrode.A well-known nickel oxide positive electrode is connected via a separator, and an alkaline electrolyte is added to make the alkaline electrode. It was used as a storage battery. The configuration of this storage battery is shown in FIG. a negative electrode 1 consisting of a metal-coated alloy or hydrogen storage electrode containing a hydride;
A separator 3 is placed between the positive electrode 29 and both electrodes made of nickel oxide.
is arranged and immersed in the electrolytic solution 4.

6は電槽、6は蓋、7は注液口、8と9は負極と正極の
リード端子である。
6 is a battery container, 6 is a lid, 7 is a liquid inlet, and 8 and 9 are negative and positive electrode lead terminals.

実施例1における負極の大きさは40 w X 50箇
、厚さ1.2fiとした。負極容量の比較を行なうため
に、正極容量は負極容量より大きくし、負極律則で容量
規制を行なった。充電・放電電流はともに400 mA
とした。また充電時間は放電時間の約1.3倍とし、終
止電圧は1.Ovとした。
The size of the negative electrode in Example 1 was 40 w x 50 pieces, and the thickness was 1.2 fi. In order to compare the negative electrode capacity, the positive electrode capacity was made larger than the negative electrode capacity, and the capacity was regulated using the negative electrode rule. Both charging and discharging currents are 400 mA
And so. The charging time is approximately 1.3 times the discharging time, and the final voltage is 1.3 times the discharging time. It was Ov.

a粉末°を用いた本発明の蓄電池をAとし、b粉末を用
また従来の蓄電池をBとして45℃の温度でサイクル寿
命試験を行なった。第2図に本発明の蓄電池Aと従来型
蓄電池Bのサイクル寿命特性の比較を示す。但し、60
サイクル毎に一度過放電状態(※印で示す)まで電位を
持って行き、やや過酷な条件に取り入れた試験結果であ
る。加速試験も含めて、実用の場合には過放電特性も重
要な因子であるので、との様な試験においてサイクル寿
命の比較を行なった。
A cycle life test was carried out at a temperature of 45°C, with A being a storage battery of the present invention using A powder and B being a conventional storage battery using B powder. FIG. 2 shows a comparison of the cycle life characteristics of storage battery A of the present invention and conventional storage battery B. However, 60
These are test results in which the potential was brought to an overdischarge state (indicated by *) once every cycle, and the battery was subjected to somewhat harsh conditions. Since overdischarge characteristics are also an important factor in practical use, including accelerated tests, cycle life was compared in tests such as .

従来型蓄電池Bは100サイクル目よシ容量低下が大き
くなり、200サイクル目ではo、sAh。
In conventional storage battery B, the capacity decrease becomes larger at the 100th cycle, and at the 200th cycle, the capacity decreases to o, sAh.

26%程の容量低下を起こしている。これに対して本発
明の蓄電池Aは200サイクル目において・も0.15
Ah、7.5%程の容量低下にとどまっており、Bの約
3倍以上の耐久性を持っている。
The capacity has decreased by about 26%. On the other hand, in the storage battery A of the present invention, at the 200th cycle, the value was 0.15.
Ah, the capacity drop is only about 7.5%, and the durability is more than three times that of B.

200サイクル目で電極を調べた所、電池Bの電極は膨
張が大きく、銅の被覆膜が少しふやけて、密着性が悪く
なっており、電極自体の抵抗が大きくなっている。この
現象は電子顕微鏡による観察で明らかであった。これに
対して、電池Aの電極は、膨張も少なく、合金とニッケ
ルの被覆膜との密着性もよく、顕微鏡観察によっても膜
のふくれも少ない。また電池Bの電極では、電解液中へ
の銅の溶解と、セパレータ内への銅析出現象があり、微
少短絡現象も見られた。電池Aの電極ではこれらの現象
は見られなかった。ここでは水素吸蔵合金についてのべ
たが、水素化した合金についても同様な試験を行なった
が、殆ど同じ傾向を示した。
When the electrodes were examined at the 200th cycle, it was found that the electrodes of battery B had expanded significantly, the copper coating had slightly softened, the adhesion had deteriorated, and the resistance of the electrode itself had increased. This phenomenon was clearly observed by electron microscopy. On the other hand, the electrode of battery A has little expansion, good adhesion between the alloy and the nickel coating film, and even microscopic observation shows that the film does not bulge. Further, in the electrode of battery B, dissolution of copper into the electrolyte and precipitation of copper into the separator were observed, and a slight short circuit phenomenon was also observed. These phenomena were not observed in the electrode of battery A. Although we have discussed hydrogen storage alloys here, similar tests were conducted on hydrogenated alloys, and almost the same trends were shown.

実施例2 実施例1と同じ組成の水素吸蔵合金(水素化物)を用い
て焼結・型電極を作り比較した。すなわち、ニッケルに
よって部分的に被覆した水素吸蔵合金を粘結剤と共に発
泡状メタル内に充てんし、加圧・乾燥した後、960℃
の温度で焼結した焼結型電極を負極とし、実施例1で用
いたのと同じニッケル−水素アルカリ蓄電池を構成し、
実施例1と同じ試験条件でサイクル寿命試験を行なった
。従来型電池の電極は実施例1で作った銅被覆合金粉末
(b)を用いて同様な焼結型電極を作った。
Example 2 A sintered molded electrode was made using a hydrogen storage alloy (hydride) having the same composition as in Example 1 and compared. That is, a hydrogen storage alloy partially coated with nickel is filled into a foamed metal together with a binder, and after being pressurized and dried, it is heated to 960°C.
A sintered type electrode sintered at a temperature of is used as a negative electrode to constitute the same nickel-hydrogen alkaline storage battery as used in Example 1,
A cycle life test was conducted under the same test conditions as in Example 1. For the electrode of a conventional battery, a similar sintered electrode was made using the copper-coated alloy powder (b) made in Example 1.

第3図に本発明の蓄電池A′と従来型蓄電池B′のサイ
クル寿命特性の比較を示す。
FIG. 3 shows a comparison of the cycle life characteristics of the storage battery A' of the present invention and the conventional storage battery B'.

従来型蓄電池B′は200サイクル目より容量低下が大
きくなり、400サイクル目では0 、5Ah 。
For conventional storage battery B', the capacity decrease becomes larger from the 200th cycle, and at the 400th cycle, the capacity decreases to 0.5Ah.

25チ程の容量低下を起こしている。これに対して本願
型蓄電池Aは400サイクル目においても0.2Ah、
10%程の容量低下にとどまっている。
The capacity has decreased by about 25 inches. On the other hand, the storage battery A according to the present application has 0.2Ah even at the 400th cycle.
The capacity drop remains at about 10%.

約2.6倍の耐久性を持っている。焼結型電極は、前者
のペース型電極と比較して耐久性において優れているが
、AとB、AI とB′電池の比較においては同じ傾向
を示す。
It has about 2.6 times the durability. The sintered electrode is superior in durability compared to the former pace-type electrode, but comparisons of batteries A and B, and AI and B' show the same tendency.

A′とB′電池の容量において差が認められるのは、実
施例1で述べた理由と殆ど同じである。
The difference in capacity between batteries A' and B' is observed for almost the same reason as stated in Example 1.

すなわち、電極自体の膨張の差異、電解液への銅の溶解
Φ析出の差異によるものである。この様に本発明の電池
では高温サイクル寿命、耐久性、過放電特性に強い事が
わかる。
That is, this is due to differences in the expansion of the electrodes themselves and differences in the dissolution and Φ precipitation of copper in the electrolyte. Thus, it can be seen that the battery of the present invention has a high temperature cycle life, durability, and strong overdischarge characteristics.

無電解メッキの場合は合金よシも水素化物化しておく方
が表面が活性となシ、メッキしゃすい。
In the case of electroless plating, it is better to hydride the alloy as well as the surface to make it more active and easier to plate.

したがって水素化物化した合金を無電解メッキする方が
好ましい。
Therefore, it is preferable to electrolessly plate the hydride alloy.

実施例では焼結温度を960℃としたが、850〜10
00℃が最適である。850℃以下では焼結する時の強
度が弱く大きな効果が出ない。逆に1ooo℃以上では
過焼結して表面積を小さくし容量を著しく、小さくする
ので、850〜1000℃が最適である。また他の焼結
方法としてホットプレスする事によって、加圧と焼結を
同時に行なう事が出来る。その場合表面積、多孔度がや
や小さくなるが、機械的強度は増大する。
In the example, the sintering temperature was 960°C, but it was set at 850-10°C.
00°C is optimal. If the temperature is below 850°C, the strength during sintering will be weak and no great effect will be produced. On the other hand, if it exceeds 100°C, it will oversinter, reducing the surface area and significantly reducing the capacity, so 850 to 1000°C is optimal. Another sintering method is hot pressing, which allows pressing and sintering to be performed at the same time. In that case, the surface area and porosity will become slightly smaller, but the mechanical strength will increase.

水素吸蔵合金又は水素化物の表面に被覆するニッケル及
びニッケル基合金の量は全体の6〜30wt%が好まし
い。5wt%以下では被覆膜の形成が均質に密着できな
く、大きな穴(ピンホール)がある状態なので効果が少
ない。また、30wt%以上になると単位容積当りの容
量が小さくなると共に、粒径が大きくなシ合金の充てん
密度(容量)が減少し、電気容量が小さくなる。実用的
な面から6〜30wt%がよいと云える。
The amount of nickel and nickel-based alloy coated on the surface of the hydrogen storage alloy or hydride is preferably 6 to 30 wt% of the total amount. If it is less than 5 wt%, the coating film cannot be uniformly adhered, and there are large holes (pinholes), resulting in little effect. Moreover, when it becomes 30 wt% or more, the capacity per unit volume becomes small, and the packing density (capacity) of the Si alloy having a large particle size decreases, and the electric capacity becomes small. From a practical standpoint, it can be said that 6 to 30 wt% is good.

水素吸蔵合金としてはMrrhN i a Co 3を
用いて述べたが他の希土類−ニッケル系でも同じである
Although MrrhNiaCo3 has been described as the hydrogen storage alloy, the same applies to other rare earth-nickel based alloys.

また、T 12 N iのようなチタン−ニッケル系で
もよい。最初の出発物質として水素吸蔵合金を用いても
、水素化物を用いてもよい。中でもニッケルを含有する
水素吸蔵合金が最も効果が大きい。
Alternatively, a titanium-nickel type material such as T12Ni may be used. A hydrogen storage alloy or a hydride may be used as the initial starting material. Among them, hydrogen storage alloys containing nickel are the most effective.

また、実施例1で作った合金粉末を用いて単2サイズの
密閉型アルカリ蓄電池を作って46℃における容量試験
を行なった。
Furthermore, a AA size sealed alkaline storage battery was made using the alloy powder made in Example 1, and a capacity test was conducted at 46°C.

本発明の蓄電池では初期2.0Ahの容量を示し、充・
放電20oサイクル後も2.0Ahの容量を示 ′した
。これに対し、従来型蓄電池では初期に2.OAhの容
量を示したが、充拳放電2o00サイクル後では1.e
Ahの容量に低下した。充・放電流はいずれも0.20
相当の400 mAとした。負極容量は正極容量より大
きくし、正極律則になるように容量を規制して行なった
。本発明の蓄電池では200サイクルの充・放電を行な
っても正極律則であるが、従来型蓄電池では負極律則で
容量が低下している。電池内で微少短絡を発生しており
、負極の容量が低下している。
The storage battery of the present invention has an initial capacity of 2.0Ah, and
Even after 20o discharge cycles, it still showed a capacity of 2.0Ah. In contrast, with conventional storage batteries, 2. The capacity of OAh was shown, but after 2000 cycles of charging and discharging, it was 1. e
The capacity decreased to Ah. Both charging and discharging currents are 0.20
It was set to a corresponding 400 mA. The negative electrode capacity was made larger than the positive electrode capacity, and the capacity was regulated to comply with the positive electrode rule. In the storage battery of the present invention, even after 200 cycles of charging and discharging, the capacity is reduced according to the positive electrode rule, but in the conventional storage battery, the capacity decreases due to the negative electrode rule. A slight short circuit has occurred within the battery, reducing the capacity of the negative electrode.

この様に、本発明では開放型蓄電池でも、密閉型蓄電池
においても高温サイクル寿命が優れている。
In this manner, the present invention provides excellent high-temperature cycle life for both open storage batteries and sealed storage batteries.

発明の効果 以上のように本発明によれば、機械的強度、耐久性があ
り、しかも高温サイクル寿命にすぐれ、過放電時の容量
低下の少ないニッケル−水素アルカリ蓄電池が得られる
Effects of the Invention As described above, according to the present invention, a nickel-hydrogen alkaline storage battery can be obtained which has mechanical strength and durability, has excellent high-temperature cycle life, and exhibits little capacity loss during overdischarge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における水素吸蔵合金を負極と
するニッケル−水素アルカリ蓄電池の構成を示す断面略
図、第2図はペースト型水素吸蔵電極を負極とするニッ
ケル−水素アルカリ蓄電池のサイクル寿命を従来型蓄電
池と比較した図、第3図は焼結型水素吸蔵電極を負極と
するニッケル−水素アルカリ蓄電池のサイクル寿命を従
来型蓄電池と比較した図である。 1・・・・・・負極、2・・・・・・正極、3・・・・
・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ぺ 派  V解ζ4鴨く
Fig. 1 is a schematic cross-sectional view showing the structure of a nickel-hydrogen alkaline storage battery using a hydrogen storage alloy as a negative electrode according to an embodiment of the present invention, and Fig. 2 shows the cycle life of a nickel-hydrogen alkaline storage battery using a paste-type hydrogen storage electrode as a negative electrode. FIG. 3 is a diagram comparing the cycle life of a nickel-hydrogen alkaline storage battery with a sintered hydrogen storage electrode as a negative electrode with that of a conventional storage battery. 1...Negative electrode, 2...Positive electrode, 3...
...Separator. Name of agent Patent attorney Toshio Nakao and 1 other person V solution ζ4 Kamoku

Claims (4)

【特許請求の範囲】[Claims] (1)酸化ニッケル正極と、水素を可逆的に吸蔵・放出
する少なくともニッケルを含む水素吸蔵合金又は水素化
物からなる負極と、アルカリ電解液を備え、前記負極が
ニッケル又はニッケル基合金のいずれかによって部分的
に被覆され、水素を吸蔵・放出しうる電気化学的特性を
保持する水素吸蔵合金又は水素化物からなることを特徴
とするニッケル−水素アルカリ蓄電池。
(1) A nickel oxide positive electrode, a negative electrode made of a hydrogen storage alloy or hydride containing at least nickel that reversibly absorbs and releases hydrogen, and an alkaline electrolyte, wherein the negative electrode is made of either nickel or a nickel-based alloy. A nickel-hydrogen alkaline storage battery comprising a partially coated hydrogen storage alloy or hydride that maintains electrochemical properties capable of absorbing and desorbing hydrogen.
(2)負極が、ニッケル又はニッケル基合金によって部
分的に被覆した水素吸蔵合金又は水素化物粒子と結着剤
を含有したペースト型電極である特許請求の範囲第1項
記載のニッケル−水素アルカリ蓄電池。
(2) The nickel-hydrogen alkaline storage battery according to claim 1, wherein the negative electrode is a paste-type electrode containing hydrogen storage alloy or hydride particles partially coated with nickel or a nickel-based alloy and a binder. .
(3)負極が、ニッケル又はニッケル基合金によって部
分的に被覆した水素吸蔵合金又は水素化物粒子単独か、
あるいはこれに粘結剤を配し、850〜1,000℃の
温度で焼結したことを特徴とする特許請求の範囲第1項
記載のニッケル−水素アルカリ蓄電池。
(3) Whether the negative electrode is a hydrogen storage alloy partially coated with nickel or a nickel-based alloy or hydride particles alone;
Alternatively, the nickel-hydrogen alkaline storage battery according to claim 1, wherein a binder is applied thereto and sintered at a temperature of 850 to 1,000°C.
(4)負極の、ニッケル又はニッケル基合金のいずれか
によって部分的に被覆された金属部分が全体の水素吸蔵
合金又は水素化物に対して5〜30wt%であることを
特徴とする特許請求の範囲第1項記載のニッケル−水素
アルカリ蓄電池。
(4) Claims characterized in that the metal portion of the negative electrode partially coated with either nickel or nickel-based alloy is 5 to 30 wt% based on the entire hydrogen storage alloy or hydride. The nickel-hydrogen alkaline storage battery according to item 1.
JP60161401A 1985-07-22 1985-07-22 Nickel-hydrogen alkaline storage battery Pending JPS6222370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60161401A JPS6222370A (en) 1985-07-22 1985-07-22 Nickel-hydrogen alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60161401A JPS6222370A (en) 1985-07-22 1985-07-22 Nickel-hydrogen alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS6222370A true JPS6222370A (en) 1987-01-30

Family

ID=15734389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60161401A Pending JPS6222370A (en) 1985-07-22 1985-07-22 Nickel-hydrogen alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6222370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279369A (en) * 1988-09-14 1990-03-19 Sanyo Electric Co Ltd Hydrogen storage alloy electrode
CN1060697C (en) * 1995-02-24 2001-01-17 北京有色金属研究总院 Composition and method for chemical copper plating of rare-earth containing nickle-based hydrogen storage alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119063A (en) * 1984-07-05 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS61168866A (en) * 1985-01-19 1986-07-30 Sharp Corp Hydrogen occlusion electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119063A (en) * 1984-07-05 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS61168866A (en) * 1985-01-19 1986-07-30 Sharp Corp Hydrogen occlusion electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0279369A (en) * 1988-09-14 1990-03-19 Sanyo Electric Co Ltd Hydrogen storage alloy electrode
CN1060697C (en) * 1995-02-24 2001-01-17 北京有色金属研究总院 Composition and method for chemical copper plating of rare-earth containing nickle-based hydrogen storage alloy

Similar Documents

Publication Publication Date Title
JP2680669B2 (en) Hydrogen storage alloy electrode for alkaline storage battery
US5776626A (en) Hydrogen-occluding alloy and hydrogen-occluding alloy electrode
JPH0479474B2 (en)
JP2666249B2 (en) Hydrogen storage alloy for alkaline storage batteries
JPS6222370A (en) Nickel-hydrogen alkaline storage battery
JP2558624B2 (en) Nickel-hydrogen alkaline storage battery
JP4423412B2 (en) Alkaline secondary battery negative electrode and alkaline secondary battery
JPH05101821A (en) Manufacture of hydrogen storage alloy electrode
JP3410308B2 (en) Hydrogen storage alloy and nickel-hydrogen battery electrode using the same
JPH0815078B2 (en) Method for manufacturing hydrogen storage electrode
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JP3432847B2 (en) Hydrogen storage alloy electrode
JPH0675398B2 (en) Sealed alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3454780B2 (en) Alkaline storage battery
JP3272012B2 (en) Hydrogen storage alloy
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JP2558624C (en)
JP3268013B2 (en) Hydrogen storage alloy electrode
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JP2929716B2 (en) Hydrogen storage alloy electrode
JPH04167365A (en) Hydrogen storage electrode
JPH05211063A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH1025528A (en) Hydrogen storage alloy
JPS63175342A (en) Manufacture of hydrogen absorption electrode