JPS62216364A - Hetero junction bipolar transistor - Google Patents

Hetero junction bipolar transistor

Info

Publication number
JPS62216364A
JPS62216364A JP5974386A JP5974386A JPS62216364A JP S62216364 A JPS62216364 A JP S62216364A JP 5974386 A JP5974386 A JP 5974386A JP 5974386 A JP5974386 A JP 5974386A JP S62216364 A JPS62216364 A JP S62216364A
Authority
JP
Japan
Prior art keywords
layer
emitter
sic
conductivity type
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5974386A
Other languages
Japanese (ja)
Other versions
JPH0770540B2 (en
Inventor
Masahiko Toki
雅彦 土岐
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5974386A priority Critical patent/JPH0770540B2/en
Publication of JPS62216364A publication Critical patent/JPS62216364A/en
Publication of JPH0770540B2 publication Critical patent/JPH0770540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a hetero junction bipolar transistor suitable for a high speed and high power element by forming a collector and a base layer of semiconductor layers, forming a beta-silicon carbide layer having larger forbidden band width than the semiconductor layer thereon, and using the layer as an emitter. CONSTITUTION:The other conductivity type semiconductor layer 2 and one conductivity type beta-silicon carbide layer 3 are sequentially grown on one conductivity type semiconductor layer 1, the layer 1 is used as a collector region, the layer 2 is used as a base region and the layer 3 is used as an emitter region. In order to form a wide gap emitter layer, beta-SiC of the same crystal as Si is used. SiC crystal growth generally requires high temperature growth to be difficult, but single crystal SiC is vapor grown at approx. 1,000 deg.C under reduced pressure of approx. 200Pa. The Hall easiness of the single crystal SiC has the same as Si or larger, rectification ratio of SiC/Si hetero junctions is large, and a diffusing current mainly flows to a junction. Thus, a high speed bipolar transistor adapted to a VLSI having high emitter efficiency is obtained.

Description

【発明の詳細な説明】 〔概要〕 珪素(Si)等の在来の半導体層でコレクタ層とベース
層を形成し、その」二に該半導体層より禁制帯幅(ギヤ
ツブ)の大きい(89= 2.2 eV)  β−炭化
珪素(β−3iC、または3C−3iC)層を形成し、
この層をエミッタとしたワイドギャップエミッタのへテ
ロ接合バイポーラトランジスタ(HBT)を提起し、高
速、高電力用素子として用いる。
[Detailed Description of the Invention] [Summary] A collector layer and a base layer are formed with a conventional semiconductor layer such as silicon (Si), and secondly, a material having a forbidden band width (gear) larger than that of the semiconductor layer (89= 2.2 eV) forming a β-silicon carbide (β-3iC or 3C-3iC) layer,
A wide-gap emitter heterojunction bipolar transistor (HBT) using this layer as an emitter is proposed and used as a high-speed, high-power device.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体性能指標の高いβ−3iCをワイドギャ
ップエミッタとして用いたHBTに関する。
The present invention relates to an HBT using β-3iC, which has a high semiconductor performance index, as a wide gap emitter.

次期高速バイポーラ大規模集積回路(VLSI)用素子
としてIIBTが検討されている。
IIBT is being considered as a device for next-generation high-speed bipolar large-scale integrated circuits (VLSI).

1)8Tは通常のホモ接合バイポーラトランジスタに比
べ、エミッタを高濃度にドープしなくてもエミッタ注入
効率を十分大きくできる。
1) Compared to ordinary homojunction bipolar transistors, 8T can sufficiently increase emitter injection efficiency without doping the emitter to a high concentration.

通常のHBTは混晶半導体を用い、各層の混晶比を変え
ることにより、ギャップを制御して形成しているが、在
来の珪素(Si)素子のエミッタをワイドギャップの物
質で形成したワイドギャップエミッタトランジスタがあ
る。
Normal HBTs use a mixed crystal semiconductor and are formed by controlling the gap by changing the mix crystal ratio of each layer. There is a gap emitter transistor.

ワイドギャップエミッタの主な利点は、エミッタ注入効
率を」二げ、ベース抵抗を下げることができることであ
る。
The main advantages of wide-gap emitters are that they can increase emitter injection efficiency and lower base resistance.

〔従来の技術と発明が解決しようとする問題点〕従来の
ワイトギャソプエミノタの物質として、例えばアルミニ
ウムガリウム砒素(八IGaAs)、ガリウム砒素(G
aAs)等を用いた。
[Prior art and problems to be solved by the invention] Conventional materials such as aluminum gallium arsenide (GaAs) and gallium arsenide (G
aAs) etc. were used.

この場合の問題点は、ワイドギヤツブエミッタ物質の最
高使用温度が31より低(、従って大電力用トランジス
タには適さなかった。
The problem in this case was that the maximum operating temperature of the wide gear tube emitter material was lower than 31°C (therefore, it was not suitable for high power transistors).

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記問題点の解決は、一導電型半導体層(1)上に、他
導電型半導体層(2)、一導電型β−炭化珪素層(3)
を順次成長してなり、一導電型半導体層(1)をコレク
タ領域、他導電型半導体層(2)をベース領域、一導電
型β−炭化珪素層(3)をエミッタ領域とする本発明に
よるIIBTにより達成される。
The solution to the above problem is to form a semiconductor layer of one conductivity type (1), a semiconductor layer of another conductivity type (2), and a β-silicon carbide layer of one conductivity type (3).
According to the present invention, the semiconductor layer (1) of one conductivity type is used as a collector region, the semiconductor layer (2) of another conductivity type is used as a base region, and the β-silicon carbide layer (3) of one conductivity type is used as an emitter region. Achieved by IIBT.

〔作用〕[Effect]

本発明はワイトギャソプエミソタ層としてβ−5iCを
用い、素子特性を改善する。
The present invention improves device characteristics by using β-5iC as a Wight Gassop emitter layer.

SiCは六方晶系等のα−3iCと、立方晶系のβ−S
iCと力くあるが、lノイi゛ギャップ上ミッタ層形成
にはSiと同一品系のβ−5iCを用いる。
SiC consists of hexagonal system α-3iC and cubic system β-S.
Although it is strongly referred to as iC, β-5iC, which is the same product as Si, is used to form the transmitter layer above the lnoi gap.

SiCの結晶成長は、一般に高温成長を必要とし困難で
あるが、本発明者により単結晶SiCをl0f)0°C
程度で、約200Paの減圧下で気相成長する技術を開
発した。
Crystal growth of SiC generally requires high-temperature growth and is difficult, but the inventor has developed single-crystal SiC at
We have developed a technology for vapor phase growth under reduced pressure of approximately 200 Pa.

また、本発明者により単結晶SiCのボール(Ilal
l)易動度はSiと同程度、あるいはそれ以」二の値を
もち、また、SiC/Siヘテロ接合の整流比が大きく
、拡散電流は主として接合を流れることを実験的に確か
めた。
In addition, the inventor has also developed a single crystal SiC ball (Ilal
l) It has been experimentally confirmed that the mobility is on the same level as, or even higher than, that of Si, and that the rectification ratio of the SiC/Si heterojunction is large, and that the diffusion current mainly flows through the junction.

これらの結果より、単結晶β−5iCエミツタバイポー
ラトランジスタは高いエミッタ効率をもぢ、換言すれば
低ベース抵抗をもら、ν1、Si用の高速バイポーラト
ランジスタとして適していることが分かった。
From these results, it was found that the single crystal β-5iC emitter bipolar transistor has high emitter efficiency, in other words, low base resistance, and is suitable as a high speed bipolar transistor for ν1, Si.

第5図はSiCワイドエミッタハイポーラトランジスタ
のエネルギハンド構造図である。
FIG. 5 is a diagram showing the energy hand structure of a SiC wide emitter hyperpolar transistor.

図において、Ec、EV、EFはそれぞれ伝導帯の下端
、価電子帯の上端、フェルミ準位を示し、黒丸で示され
る電子と白丸で示される正孔の流れを矢印で表す。
In the figure, Ec, EV, and EF indicate the lower end of the conduction band, the upper end of the valence band, and the Fermi level, respectively, and the flow of electrons indicated by black circles and holes indicated by white circles are indicated by arrows.

エミッタ領域がワイドギャップであるため生ずる障壁に
より、正孔のエミッタへの注入が起こり難い様子を模式
的に矢印で示している。
The arrows schematically show how holes are difficult to be injected into the emitter due to the barrier caused by the wide gap in the emitter region.

その結果、−・−スミ流を低下さ−U“、エミッタの注
入効率が増加する。
As a result, the emitter injection efficiency is increased by reducing the smear flow.

つぎに、参考のためにβ−3iCの電気的緒特性を、S
i1ガリウム砒素(GaAs)と比較してつぎに示す。
Next, for reference, the electrical characteristics of β-3iC are shown in S
A comparison with i1 gallium arsenide (GaAs) is shown below.

いま、 飽和電子速度: νs (cm s−’)破壊電界強度
:EC(シcm−’) 誘電率 熱伝導率  :λ (’Wcm−’°C−1)ジョンソ
ン指標(高周波大電力指標) :  ZJ (V” s−”) キース指標(小型化指標) :  ZK(W s−’°C−1) (ここに、ジョンソン指標ZJ 、キース指標Zうは半
導体性能指標で、上記の元を有する)とすると、つぎの
ようになる。
Now, Saturated electron velocity: νs (cm s-') Breakdown electric field strength: EC (cm-') Dielectric constant thermal conductivity: λ ('Wcm-'°C-1) Johnson index (high frequency high power index): ZJ (V"s-") Keith index (miniaturization index): ZK (W s-'°C-1) (Here, Johnson index ZJ, Keith index Z is a semiconductor performance index, which has the above element ), it becomes as follows.

特性    Si    GaAs   β−5il:
lXlO72XiO72XlO’ Ec     2X]0’   3XIO55X]06
ε     12    1)    9.7λ   
  1.5    0.5   5.OZJ    3
.2X10”  1.9X10”8.0XIO”ZK6
.7X10’  3.2X1073.1X10”」1表
に示されるように、β−5iCはSi 、 GaAsよ
り、zl、Z、ともに1〜3桁優れていることが分かる
Characteristics Si GaAs β-5il:
lXlO72XiO72XlO' Ec 2X]0' 3XIO55X]06
ε 12 1) 9.7λ
1.5 0.5 5. OZJ 3
.. 2X10” 1.9X10”8.0XIO”ZK6
.. 7X10'3.2X1073.1X10''1 As shown in Table 1, it can be seen that β-5iC is superior to Si and GaAs in both zl and Z by 1 to 3 orders of magnitude.

〔実施例〕 第1図は本発明の一実施例によるβ−3iCワイドギヤ
ソブエミソタバイボーラトランジスタの構造を示す断面
図である。
[Embodiment] FIG. 1 is a sectional view showing the structure of a β-3iC wide-gear semi-stable bipolar transistor according to an embodiment of the present invention.

図はnpn)ランジスタの例をを示す。The figure shows an example of an npn) transistor.

図において、4はn型珪素(n−5i)基板で、ここに
深さ 1μmのn゛型コレクタコンタクト領域5をイオ
ン注入により形成する。
In the figure, reference numeral 4 denotes an n-type silicon (n-5i) substrate, on which an n-type collector contact region 5 with a depth of 1 μm is formed by ion implantation.

イオン注入条件は、砒素イオン(As”)を用い、エネ
ルギ120KeV、  lj−ズ量1017cm−2で
ある。
The ion implantation conditions were as follows: arsenic ions (As'') were used, the energy was 120 KeV, and the lj-phase amount was 1017 cm-2.

この上に、一導電型半導体層として厚さ1μm、抵抗率
1Ωcmのn−5i層lを成長する(コレクタ領域)。
On top of this, an n-5i layer l having a thickness of 1 μm and a resistivity of 1 Ωcm is grown as a semiconductor layer of one conductivity type (collector region).

nSi層】の表面に、他導電型半導体層としてイオン注
入により厚さ1000人のn型珪素(p−3i)層2を
形成する(ベース領域)。
On the surface of the nSi layer, an n-type silicon (p-3i) layer 2 with a thickness of 1000 nm is formed as a semiconductor layer of another conductivity type by ion implantation (base region).

イオン注入条件は、硼素イオン(B゛)を用い1.1ネ
ルギ40 KeV、  l−ズ量1013cm−2であ
る。
The ion implantation conditions are as follows: boron ions (B') are used, 1.1 energy is 40 KeV, and the l-ise amount is 1013 cm-2.

つぎに、p−Si層2の」二に厚さ4000人の二酸化
珪素(SiOz)層6を被着し、エミツタ窓7を開口す
る。
Next, a silicon dioxide (SiOz) layer 6 with a thickness of 4,000 wafers is deposited on the top of the p-Si layer 2, and an emitter window 7 is opened.

つぎに1.減圧化学気相成長(LPGVD)法により、
基板全面に厚さ2000人のβ−3iC層を成長し、イ
オン注入により、β−3iC層にl・−プしてn型にす
る。
Next 1. By low pressure chemical vapor deposition (LPGVD) method,
A β-3iC layer with a thickness of 2000 μm is grown over the entire surface of the substrate, and the β-3iC layer is made into an n-type by ion implantation.

つぎに、通常のりソグラフイによりパターニングしてエ
ミツタ窓7を覆って一導電型β SiC層としてn型β
−3iC層3を形成する(1ミツタ領域)・ β−3iCのCVD条件は、ソースガスとして三塩化シ
ラン(SiHCh)とプロパン(Cs He )、キャ
リアガスとして水素(1)□)を用い、これらを200
Pδに減圧し、1000℃で熱分解して行う。
Next, the emitter window 7 is patterned by ordinary glue lithography to form a one-conductivity type β SiC layer and an n-type β SiC layer.
Forming the -3iC layer 3 (1 Mitsuta region) - CVD conditions for β-3iC include using silane trichloride (SiHCh) and propane (Cs He ) as the source gas and hydrogen (1)□) as the carrier gas. 200
The pressure is reduced to Pδ and thermal decomposition is carried out at 1000°C.

イオン注入条件は、As’を用い、エネルギ120Ke
V 、  ドーズ量I Q 16 c m −2である
The ion implantation conditions were As' and an energy of 120Ke.
V and the dose IQ 16 cm −2.

最後に、エミッタコンタク1一層として、多結晶珪素(
ポリSi) Nをβ−3iC層3を覆って成長し、パタ
ーニングしてポリSi層8を形成する。
Finally, as the emitter contact 1 layer, polycrystalline silicon (
Poly-Si)N is grown over the β-3iC layer 3 and patterned to form a poly-Si layer 8.

つぎに、本発明人によるβ−5iCの特性の測定結果を
第2〜4図に示す。
Next, the measurement results of the characteristics of β-5iC by the present inventor are shown in FIGS. 2 to 4.

以下に記載のアニールはいずれもドライ窒素中で30分
行う。
All annealing described below is performed in dry nitrogen for 30 minutes.

第2図はドーズ量をパラメータとしてβ−5iCの抵抗
率とアニール温度の関係図である。
FIG. 2 is a diagram showing the relationship between the resistivity and annealing temperature of β-5iC using the dose as a parameter.

同一ドーズ量に対してアニール温度が高いほど抵抗率は
減少し、結晶性は悪くなる。
The higher the annealing temperature is for the same dose, the lower the resistivity and the worse the crystallinity.

第3図はアニール温度をパラメータとしてβ−5iCの
ホール易動度とキャリア濃度の関係図である。
FIG. 3 is a diagram showing the relationship between hole mobility and carrier concentration of β-5iC using annealing temperature as a parameter.

アニール温度が1000℃において、キャリア濃度が1
017cm−3で、ボール易動度は約450 cm2V
−’s−’と高い値が得られた。
When the annealing temperature is 1000℃, the carrier concentration is 1
017 cm-3, the ball mobility is about 450 cm2V
A high value of -'s-' was obtained.

図中、破線でSi単結晶の場合を示す。In the figure, the broken line indicates the case of Si single crystal.

第4図はAsのドーズ量をパラメータとしてβ−5iC
のホール易動度とアニール温度の関係図である。
Figure 4 shows β-5iC using the As dose as a parameter.
FIG. 2 is a diagram showing the relationship between hole mobility and annealing temperature.

同一ドーズ量に対してアニール温度が高いほどボール易
動度は減少し、結晶性は悪くなる。
The higher the annealing temperature is for the same dose, the lower the ball mobility and the worse the crystallinity.

以上第2〜4図に示される特性のβ−5iCが得られた
ことにより、これをワイドギャップエミッタとして用い
たバイポーラトランジスタはつぎのような特徴をもつ。
Since β-5iC having the characteristics shown in FIGS. 2 to 4 has been obtained, a bipolar transistor using this as a wide gap emitter has the following characteristics.

(1)ワイドギャップエミッタの作用により、へ−スミ
流を低下さ・lることが可能。
(1) Due to the action of the wide gap emitter, it is possible to reduce the Hesmi flow.

(高入力抵抗のトランジスタが得られる)(1−1)従
って、トランジスタのファンイン、ファンアウトを大き
くできる。
(A transistor with high input resistance can be obtained) (1-1) Therefore, the fan-in and fan-out of the transistor can be increased.

(1−2)また、ベース電流の低下によりアルミニウム
(AI)配線中を流れる電流密度を低減できる。
(1-2) Furthermore, the current density flowing through the aluminum (AI) wiring can be reduced by lowering the base current.

従って、A1層を薄くでき、基板表面の段差が小さくな
るため、層間絶縁層に対する要求が緩和され、高集積化
に適する。
Therefore, the A1 layer can be made thinner and the step difference on the substrate surface can be reduced, so that the requirements for the interlayer insulating layer are relaxed and it is suitable for high integration.

(1−3)ベース電極数、形状の制限が緩和される。(1-3) Restrictions on the number and shape of base electrodes are relaxed.

(2)エミツタ層のβ−5iCは、ベース層上に低温C
VD法で成長され、かつワイドギヤツブエミッタである
ため比較的低濃度で形成できるため、ベース層を薄く形
成でき、その分だけトランジスタ作用にあずかるベース
内に注入された小数キャリア(第1図の例では電子)の
輸送効率が改善できる。
(2) The β-5iC of the emitter layer is a low-temperature C on the base layer.
Since it is grown by the VD method and is a wide gear emitter, it can be formed with a relatively low concentration. Therefore, the base layer can be formed thinly, and the minority carriers injected into the base that participate in the transistor action (as shown in Figure 1) can be formed thinly. For example, the transport efficiency of electrons can be improved.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したようにβ−5iCは、(1)  β
−5iCのキャリアの易動度はSiと同程度、またはそ
れ以上の値をもつ。
As explained in detail above, β-5iC is (1) β
The mobility of −5iC carriers is comparable to or higher than that of Si.

(2)  β−3iC/Si接合の整流比は大きく、リ
ーク電流が小さい。
(2) The β-3iC/Si junction has a large rectification ratio and a small leakage current.

という性質を有し、ワイドギャップエミッタとして実用
上十分使用できることが分かった。
It was found that it has the following properties and can be used practically as a wide gap emitter.

さらに、本発明のワイトギャソプエミソタバイボーラト
ランジスタは、β−3iCの最高使用温度が約500℃
と高いため、トランジスタの使用温度はSiのそれによ
ってきまり、従来のワイドギャップエミッタハイポーラ
トランジスタに比し、高電力用として適している。
Furthermore, the WightGasop emisotabibolar transistor of the present invention has a maximum operating temperature of β-3iC of approximately 500°C.
Therefore, the operating temperature of the transistor is determined by that of Si, making it more suitable for high power applications than conventional wide-gap emitter hyperpolar transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるβ−5iCワイドギャ
ソプエミソタハイボーラトランジスタの構造を示す断面
図、 第2図はドーズ量をパラメータとしてβ−5iCの抵抗
率とアニール温度の関係図、 第3図はアニール温度をパラメータとしてβ−3iCの
ホール(llall)易動度とキャリア濃度の関係図・ 第4図はAsのドーズ量をパラメータとしてβ−SiC
のホール易動度とアニール温度の関係図、第5図はSi
Cワイドギャソプエミノタバイボーラトランジスタのエ
ネルギバンド構造図である。 図において、 ■は一導電型半導体層でn−Si層 (コレクタ領域)、 2は他導電型半導体層でp−Si層 (ベース領域)、 3は一導電型β−3iC層でn型β−SiC層(エミッ
タ領域)、 4はn−5i基板、 5はn1型コレクタコンタクト領域、 6はSi02層、 7はエミツタ窓、 8ばポリSi層 μ」 奪
FIG. 1 is a cross-sectional view showing the structure of a β-5iC wide gas pemi-sota high-bolar transistor according to an embodiment of the present invention. FIG. 2 is a relationship between the resistivity and annealing temperature of β-5iC using the dose as a parameter. , Figure 3 shows the relationship between the hole mobility and carrier concentration of β-3iC using the annealing temperature as a parameter. Figure 4 shows the relationship between β-3iC hole mobility and carrier concentration using the annealing temperature as a parameter. Figure 4 shows the relationship between β-SiC using the As dose as a parameter.
Figure 5 shows the relationship between hole mobility and annealing temperature for Si.
FIG. 2 is an energy band structure diagram of a C-wide gasopueminotabybolar transistor. In the figure, 1 is a semiconductor layer of one conductivity type, which is an n-Si layer (collector region), 2 is a semiconductor layer of another conductivity type, which is a p-Si layer (base region), and 3 is a β-3iC layer of one conductivity type, which is an n-type β layer. -SiC layer (emitter region), 4 is n-5i substrate, 5 is n1 type collector contact region, 6 is Si02 layer, 7 is emitter window, 8 is poly-Si layer μ''

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体層(1)上に、他導電型半導体層(2)
、一導電型β−炭化珪素層(3)を順次成長してなり、
一導電型半導体層(1)をコレクタ領域、他導電型半導
体層(2)をベース領域、一導電型β−炭化珪素層(3
)をエミッタ領域とすることを特徴とするヘテロ接合バ
イポーラトランジスタ。
On one conductivity type semiconductor layer (1), another conductivity type semiconductor layer (2)
, one conductivity type β-silicon carbide layer (3) is grown sequentially,
One conductivity type semiconductor layer (1) is the collector region, the other conductivity type semiconductor layer (2) is the base region, and the one conductivity type β-silicon carbide layer (3) is the collector region.
) as an emitter region.
JP5974386A 1986-03-18 1986-03-18 Heterojunction bipolar transistor Expired - Fee Related JPH0770540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5974386A JPH0770540B2 (en) 1986-03-18 1986-03-18 Heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5974386A JPH0770540B2 (en) 1986-03-18 1986-03-18 Heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JPS62216364A true JPS62216364A (en) 1987-09-22
JPH0770540B2 JPH0770540B2 (en) 1995-07-31

Family

ID=13122013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5974386A Expired - Fee Related JPH0770540B2 (en) 1986-03-18 1986-03-18 Heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JPH0770540B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143261A (en) * 1987-11-27 1989-06-05 Nec Corp Semiconductor device
EP0390522A2 (en) * 1989-03-29 1990-10-03 Canon Kabushiki Kaisha Bipolar transistor and photoelectric conversion apparatus using the same
US5247192A (en) * 1991-09-30 1993-09-21 Rohm Co., Ltd. Heterojunction bipolar transistor
US5536952A (en) * 1992-03-24 1996-07-16 Sumitomo Electric Industries, Ltd. Heterojunction bipolar transistor
US5668396A (en) * 1992-11-27 1997-09-16 Nec Corporation Bipolar transistor having thin intrinsic base with low base resistance and method for fabricating the same
US5777363A (en) * 1993-11-29 1998-07-07 Texas Instruments Incorporated Semiconductor device with composite drift region
JP2009054931A (en) * 2007-08-29 2009-03-12 Hitachi Ltd Bipolar element and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143261A (en) * 1987-11-27 1989-06-05 Nec Corp Semiconductor device
EP0390522A2 (en) * 1989-03-29 1990-10-03 Canon Kabushiki Kaisha Bipolar transistor and photoelectric conversion apparatus using the same
US5708281A (en) * 1989-03-29 1998-01-13 Canon Kabushiki Kaisha Semiconductor device and photoelectric conversion apparatus using the same
US5247192A (en) * 1991-09-30 1993-09-21 Rohm Co., Ltd. Heterojunction bipolar transistor
US5536952A (en) * 1992-03-24 1996-07-16 Sumitomo Electric Industries, Ltd. Heterojunction bipolar transistor
US5624853A (en) * 1992-03-24 1997-04-29 Sumitomo Electric Industries, Ltd. Method for forming heterojunction bipolar transistors
US5668396A (en) * 1992-11-27 1997-09-16 Nec Corporation Bipolar transistor having thin intrinsic base with low base resistance and method for fabricating the same
US5777363A (en) * 1993-11-29 1998-07-07 Texas Instruments Incorporated Semiconductor device with composite drift region
JP2009054931A (en) * 2007-08-29 2009-03-12 Hitachi Ltd Bipolar element and its manufacturing method

Also Published As

Publication number Publication date
JPH0770540B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US4945394A (en) Bipolar junction transistor on silicon carbide
Matsushita et al. A silicon heterojunction transistor
EP0562549B1 (en) Heterojunction bipolar transistor containing silicon carbide
JPS62216364A (en) Hetero junction bipolar transistor
Hirayama et al. Heterojunction bipolar transistor fabrication using Si1− x Ge x selective epitaxial growth by gas source silicon molecular beam epitaxy
Kondo et al. Ultra-low-power and high-speed SiGe base bipolar transistors for wireless telecommunication systems
Symons et al. Silicon heterojunction bipolar transistors with amorphous and microcrystalline emitters
WO1987000692A1 (en) Semiconductor device
JPS62188373A (en) Thin film transistor
Wang et al. Amorphous-Si emitter heterojunction UHF power transistors for handy transmitter
Rosencher Device application: work to date
US4811070A (en) Heterojunction bipolar transistor with inversion layer base
JP4045893B2 (en) Vertical junction field effect transistor
JPS63202962A (en) Bipolar transistor and manufacture thereof
JP3339508B2 (en) Semiconductor device
Kondo et al. Characterization of Si layers deposited on (100) Si substrates by plasma CVD and its application to Si HBTs
Liou et al. Theoretical prediction of the performance of Si and SiC bipolar transistors operating at high temperatures
Tang et al. SiGe heterojunction bipolar transistors with thin alpha-Si emitters
JPH0556849B2 (en)
Kondo et al. Analysis of emitter efficiency enhancement induced by residual stress for in situ phosphorus-doped polysilicon emitter transistors
Sugiura et al. MOS Integrated circuits fabricated on multilayer heteroepitaxial silicon-insulator structures for applications to 3-D integrated circuits
JPH01296664A (en) Heterojunction type device
JPS62159460A (en) Silicon semiconductor device
Kroemer Heterojunction devices
JPH05275440A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees