JPS62213253A - Crystal growth - Google Patents

Crystal growth

Info

Publication number
JPS62213253A
JPS62213253A JP5731486A JP5731486A JPS62213253A JP S62213253 A JPS62213253 A JP S62213253A JP 5731486 A JP5731486 A JP 5731486A JP 5731486 A JP5731486 A JP 5731486A JP S62213253 A JPS62213253 A JP S62213253A
Authority
JP
Japan
Prior art keywords
substrate
gas
crystal
supplied
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5731486A
Other languages
Japanese (ja)
Inventor
Chisato Tomiyama
冨山 千里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5731486A priority Critical patent/JPS62213253A/en
Publication of JPS62213253A publication Critical patent/JPS62213253A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate keeping the temperature of a substrate for crystal growth low and reduce the damages of the substrate by a method wherein an organic metal material gas containing some of the elements of which semiconductor is composed and a halogen compound material gas containing the other elements are supplied into a reaction tube alternately with evacuation processes between the respective supply operations. CONSTITUTION:If a reaction tube is evacuated and, at the same time, a substrate S for crystal growth is heate to the temperature of about 400 deg.C and a gas A composed of trimethyl indium and hydrogen is supplied, trimethyl indium is physically adsorbed by the surface of the substrate S as shown by mark (a). Then, after the residual gas is eliminated completely by evacuation, if a gas B composed of phosphorus trichloride and hydrogen is supplied, phosphorus trichloride reacts with the adsorbed trimethyl indium and makes InP crystal of one molecule layer grown on the substrate surface and, at the same time, methyl chloride is produced as reaction product D. Then the residual gas and the reaction product D and eliminated completely by evacuation. This cycle of one molecule layer growth is repeated until the thickness of the crystal C reaches a required value.

Description

【発明の詳細な説明】 〔概要〕 有機金属化学気相成長法による分子層結晶成長において
、 有機金属以外の原料ガスにハロゲン化合物を使用するこ
とにより、 成長時における被成長基板の低温化を可能にしたもので
ある。
[Detailed Description of the Invention] [Summary] In molecular layer crystal growth using metal-organic chemical vapor deposition, by using a halogen compound as a raw material gas other than organometallic, it is possible to lower the temperature of the growth substrate during growth. This is what I did.

〔産業上の利用分野〕[Industrial application field]

本発明は、結晶成長方法に係り、特に、有機金属化学気
相成長法による分子層結晶成長の方法に関す。
The present invention relates to a crystal growth method, and particularly to a method for molecular layer crystal growth by metalorganic chemical vapor deposition.

化合物半導体例えばインジウム燐(InP)やガリウム
砒素(GaAs)などの結晶成長において、厚さ制御の
容易な方法として、有機金属化学気相成長(MOCVD
)法が知られている。
Metal-organic chemical vapor deposition (MOCVD) is an easy method for controlling the thickness of compound semiconductors such as indium phosphide (InP) and gallium arsenide (GaAs).
) law is known.

また、MOCVD法により更に厚さ精度を向上させる方
法に、1分子層毎の成長をさせる分子層結晶成長(分子
層エピタキシー)技術がある。
Further, as a method for further improving thickness accuracy using the MOCVD method, there is a molecular layer crystal growth (molecular layer epitaxy) technique in which growth is performed one molecular layer at a time.

そして化合物半導体は、一般に高温に対して弱いので、
上記結晶成長の際には、成長温度即ち被成長基板の加熱
温度を出来るだけ低(することが望まれている。
Compound semiconductors are generally sensitive to high temperatures, so
During the crystal growth described above, it is desirable to keep the growth temperature, that is, the heating temperature of the growth substrate as low as possible.

〔従来の技術〕[Conventional technology]

通常のMOCVD法は、被成長基板を反応管の中に配置
して所定の温度に加熱し、そこへ、原料ガスとなる有機
金属例えばトリメチルインジウム((CH3) 3 I
n)やトリメチルガリウム((CHコ)3Ga)などの
ガスおよび水素化合物ガス例えばフォスフイン(PH3
)やアルシン(AsH3)などをキャリアガスとなる水
5(Hz)と共に混合して供給し、被成長基板の熱によ
り反応させてその上に結晶を成長させる方法である。
In the usual MOCVD method, a substrate to be grown is placed in a reaction tube and heated to a predetermined temperature, and an organic metal, such as trimethylindium ((CH3) 3 I
n), trimethylgallium ((CH)Ga), and hydrogen compound gases such as phosphine (PH3
), arsine (AsH3), etc. are mixed and supplied together with water (5 Hz) serving as a carrier gas, and a crystal is grown on the substrate by reacting with the heat of the substrate.

この際被成長基板の温度には、原料ガスを十分に分解さ
せる温度が選定される。そして一方の原料ガスである水
素化合物は熱的に安定であるため、上記温度は、被成長
基板に予め素子などが形成されている場合その素子にダ
メージを与えかねない程度に高い温度になる。またこの
温度を低めに設定すると、原料ガスの利用効率が下がっ
て実用の範囲を逸脱する。
At this time, the temperature of the growth substrate is selected to be such that the source gas is sufficiently decomposed. Since the hydrogen compound, which is one of the raw material gases, is thermally stable, the above-mentioned temperature is high enough to damage the device if it has been formed on the growth substrate in advance. Furthermore, if this temperature is set to a low value, the utilization efficiency of the raw material gas decreases and goes beyond the practical range.

これに対して、MOCVD法による分子層エピタキシー
は、供給するガスを 上記有機金圧ガス+キャリアガス
と上記水素化合物ガス+キャリアガスとに分け、排気操
作を間に挿入して交互に供給する方法である。
On the other hand, in molecular layer epitaxy using the MOCVD method, the gas to be supplied is divided into the above-mentioned organic gold pressure gas + carrier gas and the above-mentioned hydrogen compound gas + carrier gas, and an evacuation operation is inserted in between to supply the gases alternately. It is.

即ち、第1図の説明図(a)〜Td)に示す如く、反応
管内を排気した後一方のガスAを供給(図(a)図示)
して被成長基板S表面に物理的に吸着させ、残留ガスを
排気(図(b)図示)して−掃した後、他方のガスBを
供給(図(C)図示)して1分子層の結晶Cを成長させ
、余分なガスと共に反応生成物りを排気(図(d)図示
)してからガスAの流入に戻ることを繰り返す方法であ
る。なお図においてはキャリアガスの記載を省略しであ
る。
That is, as shown in explanatory diagrams (a) to Td) in FIG. 1, one gas A is supplied after exhausting the inside of the reaction tube (as shown in diagram (a)).
After the residual gas is exhausted (as shown in Figure (B)) and swept away, the other gas B is supplied (as shown in Figure (C)) to form a single molecular layer. This is a method of growing crystal C, exhausting the reaction product along with excess gas (as shown in Figure (d)), and then returning to the inflow of gas A, which is repeated. Note that the illustration of the carrier gas is omitted in the figure.

例として成長結晶CがInPの場合、ガスAは例えばト
リメチルインジウム+水素、ガスBは例えばフォスフイ
ン+水棄、反応生成物りはその場合メタン(CH4)、
である。
For example, when the growing crystal C is InP, gas A is trimethylindium + hydrogen, gas B is phosphine + water, and the reaction product is methane (CH4),
It is.

この場合の基板Sの温度は、基板S表面において個々の
原子が安定な格子点に定着するのに必要なエネルギーを
供給するだけで良いので、原料ガスの分解温度までに高
くしなくとも良い。
In this case, the temperature of the substrate S does not need to be raised to the decomposition temperature of the source gas because it is sufficient to supply only the energy necessary for individual atoms to be fixed at stable lattice points on the surface of the substrate S.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記従来の分子層エピタキシーにおいては
、原料ガスに反応性の低い水素化合物を使用しているの
で、基板Sの温度には例えば550℃程度を必要とし、
この温度は、基板Sにとって望ましい程度に低い温度で
あるとは言い難い。
However, in the conventional molecular layer epitaxy described above, since a hydrogen compound with low reactivity is used as the source gas, the temperature of the substrate S needs to be, for example, about 550°C.
It is hard to say that this temperature is low enough for the substrate S to be desired.

また使用される水素化合物は、一般に毒性が強く取扱い
に特別の注意が必要である。
Furthermore, the hydrogen compounds used are generally highly toxic and require special care in handling.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、化合物あるいは混晶半導体のMOCVD
法において、該半導体を組成する一部の元素を含有する
有機全屈原料ガスと残部の元素を含有するハロゲン化合
物原料ガスとを、間にそれぞれ排気操作を行って交互に
反応管内に供給し、被成長基板に1分子層毎の成長を行
うようにした本発明の結晶成長方法によって解決される
The above problem is caused by MOCVD of compound or mixed crystal semiconductors.
In the method, an organic total reflux raw material gas containing some of the elements constituting the semiconductor and a halogen compound raw material gas containing the remaining elements are alternately supplied into a reaction tube by performing an evacuation operation in between, This problem is solved by the crystal growth method of the present invention in which growth is performed one molecular layer at a time on a growth target substrate.

〔作用〕[Effect]

MOCVD法による分子層エピタキシーにおいて、有機
金属以外の原料ガスに上記ノ10ゲン化合物を使用する
ことは、本発明者が被成長基板の温度を低くするために
得た新しい知見である。
In molecular layer epitaxy by the MOCVD method, the use of the above-mentioned compound as a raw material gas other than an organometallic material is a new finding obtained by the present inventor in order to lower the temperature of the substrate to be grown.

即ち、一般にハロゲン化合物は同類の水素化合物より反
応性が高い。
That is, halogen compounds are generally more reactive than similar hydrogen compounds.

このため有機金属ガスと水素化合物を混合して反応管に
流入させる通常のMOCVD法には、水素化合物の代わ
りにハロゲン化合物を使用することが出来ない、それは
被成長基板に達する前に気相中で反応が進むからである
For this reason, it is not possible to use a halogen compound instead of a hydrogen compound in the usual MOCVD method, in which an organometallic gas and a hydrogen compound are mixed and flowed into a reaction tube. This is because the reaction progresses.

しかしながら上記分子層エピタキシーでは、先に述べた
ように有機金属ガスと水素化合物とが混合されることが
ないので、水素化合物の代わりにハロゲン化合物をイ克
用することが可能である。
However, in the above-mentioned molecular layer epitaxy, since the organometallic gas and the hydrogen compound are not mixed as described above, it is possible to use a halogen compound instead of the hydrogen compound.

そして、被成長基板表面において個々の原子が安定な格
子点に定着するのに必要なエネルギーは、ハロゲン化合
物の方が水素化合物より遥かに小さい。
The energy required for individual atoms to settle at stable lattice points on the surface of the growth substrate is much smaller for halogen compounds than for hydrogen compounds.

このことから、成長時における被成長基板の温度を従来
より低くすることが可能である。
From this, it is possible to lower the temperature of the growth substrate during growth than in the past.

また、水素化合物の代わりに使用するハロゲン化合物は
、毒性が低いので取扱いにおいて従来より安全である。
Further, the halogen compound used in place of the hydrogen compound has low toxicity and is therefore safer to handle than before.

なお上記原料ガスの交互供給の回数を選択することによ
り、回数に応じた厚さの成長が得られることは言うまで
もない。
It goes without saying that by selecting the number of times the raw material gas is alternately supplied, the thickness can be grown in accordance with the number of times.

(実施例〕 以下実施例として第1図に示す成長結晶CがInPの場
合を述べる。
(Example) As an example, a case where the grown crystal C shown in FIG. 1 is InP will be described below.

先ず反応管内を排気すると共に被成長基板Sを約400
℃に加熱する。
First, the inside of the reaction tube is evacuated and the growth substrate S is
Heat to ℃.

次いで第1図(a)に示す如くトリメチルインジウム+
水素でなるガスAを供給する。さすれば基板S表面にa
で示す如くトリメチルインジウムが物理的に吸着される
。なおトリメチルインジウムは常温で固体であるが加熱
溶融して水素でバブリングすることによりガスAが得ら
れる。
Then, as shown in FIG. 1(a), trimethylindium +
Gas A consisting of hydrogen is supplied. Then, a on the surface of the substrate S.
As shown, trimethylindium is physically adsorbed. Although trimethylindium is solid at room temperature, gas A can be obtained by heating and melting it and bubbling it with hydrogen.

次いで第1図中)に示す如く排気して残留ガスを一掃す
る。
Then, as shown in FIG. 1), the gas is evacuated to wipe out residual gas.

次いで第1図(C1に示す如く3塩化燐(PCl3)+
水素でなるガスBを供給する。さすれば3塩化燐は上記
吸着されたトリメチルインジウムと反応して基板S表面
に1分子層のInP結晶Cを成長させ同時に反応生成物
りとして塩化メチル(CH3C1)を生成する。
Then, as shown in Figure 1 (C1), phosphorus trichloride (PCl3) +
Gas B consisting of hydrogen is supplied. Then, phosphorus trichloride reacts with the adsorbed trimethylindium to grow a single molecular layer of InP crystal C on the surface of the substrate S, and at the same time generate methyl chloride (CH3C1) as a reaction product.

次いで第1図(d)に示す如く排気して残留ガスおよび
反応生成物りを一掃する。
Then, as shown in FIG. 1(d), the system is evacuated to remove residual gas and reaction products.

次いで第1図(alに戻り、この1分子層毎成長のサイ
クルを結晶Cが所望の厚さになるまで繰り返して成長を
完了する。
Next, returning to FIG. 1 (al), this cycle of growing one molecular layer at a time is repeated until the crystal C reaches a desired thickness to complete the growth.

この結晶成長では、基板Sの温度が約400℃で足りて
従来の約550℃に比し極めて低く、基板Sにダメージ
を与える恐れが低減する。また従来使用したフォスフイ
ンの如き水素化合物を使用しないので、原料ガスの取扱
いにおいてより安全である。
In this crystal growth, the temperature of the substrate S is sufficient to be about 400° C., which is much lower than the conventional temperature of about 550° C., and the possibility of damaging the substrate S is reduced. Furthermore, since a hydrogen compound such as phosphine, which is conventionally used, is not used, it is safer to handle the raw material gas.

上記実施例ではInPの結晶成長を示したが、他の化合
物半導体例えばGaAsなどや混晶半導体例えばインジ
ウムガリウム砒素燐(InGaAs P )などの結晶
成長の場合であっても、本発明が有効であることは容易
に類推可能である。
Although the above example shows the crystal growth of InP, the present invention is also effective in the case of crystal growth of other compound semiconductors such as GaAs or mixed crystal semiconductors such as indium gallium arsenide phosphide (InGaAs P ). This can be easily inferred.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、MOCVD
法による分子層エピタキシーにおいて、成長時における
被成長基板の低温化を可能にして、例えば予め素子など
が形成されている被成長基板にダメージを与える恐れを
低減させる効果がある。
As explained above, according to the configuration of the present invention, MOCVD
In molecular layer epitaxy by the method, it is possible to lower the temperature of the growth substrate during growth, which has the effect of reducing the risk of damaging the growth substrate on which elements and the like have been formed in advance, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分子層エピタキシーの説明図(a)〜(d)、
である。 図において、 A、Bは原料を含むガス、 Cは成長結晶、 Dは反応生成物、
Figure 1 is an explanatory diagram of molecular layer epitaxy (a) to (d),
It is. In the figure, A and B are gases containing raw materials, C is a growing crystal, D is a reaction product,

Claims (1)

【特許請求の範囲】[Claims] 化合物あるいは混晶半導体の有機金属化学気相成長法に
おいて、該半導体を組成する一部の元素を含有する有機
金属原料ガスと残部の元素を含有するハロゲン化合物原
料ガスとを、間にそれぞれ排気操作を行って交互に反応
管内に供給し、被成長基板に1分子層毎の成長を行うよ
うにしたことを特徴とする結晶成長方法。
In the organometallic chemical vapor deposition method of a compound or mixed crystal semiconductor, an organometallic raw material gas containing some of the elements constituting the semiconductor and a halogen compound raw material gas containing the remaining elements are pumped in between, respectively. 1. A crystal growth method characterized in that the crystals are alternately supplied into a reaction tube to grow one molecular layer at a time on a substrate to be grown.
JP5731486A 1986-03-14 1986-03-14 Crystal growth Pending JPS62213253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5731486A JPS62213253A (en) 1986-03-14 1986-03-14 Crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5731486A JPS62213253A (en) 1986-03-14 1986-03-14 Crystal growth

Publications (1)

Publication Number Publication Date
JPS62213253A true JPS62213253A (en) 1987-09-19

Family

ID=13052105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5731486A Pending JPS62213253A (en) 1986-03-14 1986-03-14 Crystal growth

Country Status (1)

Country Link
JP (1) JPS62213253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212814A (en) * 1988-06-30 1990-01-17 Fujitsu Ltd Crystal growth method of compound semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212814A (en) * 1988-06-30 1990-01-17 Fujitsu Ltd Crystal growth method of compound semiconductor

Similar Documents

Publication Publication Date Title
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JPS62213253A (en) Crystal growth
JP2528912B2 (en) Semiconductor growth equipment
CA1313343C (en) Metal organic vapor phase epitaxial growth of group iii-v semiconductor materials
JP2736655B2 (en) Compound semiconductor crystal growth method
JPS593099A (en) Growth method of compound semiconductor crystal
JPH01313927A (en) Compound-semiconductor crystal growth method
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP2700210B2 (en) Vapor phase epitaxial growth of compound semiconductors
JPH01206618A (en) Organic metal vapor growth method
JPS639742B2 (en)
JPH01290222A (en) Semiconductor vapor growth method
JPS60136220A (en) Semiconductor manufacturing equipment
JPH04130625A (en) Vapor phase crystal growth apparatus
JPH02102522A (en) Manufacture of arsenic containing crystalline thin film
JPS62123099A (en) Pyrolytic vapor growth method
JPS62119919A (en) Device for crystal growth of compound semiconductor
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JPH0369879B2 (en)
JPS62190834A (en) Vapor growth apparatus
JPS63119521A (en) Apparatus for vapor phase growth of organic metal
JPS6081092A (en) Vapor growth method for thin film of compound semiconductor
JPH02263796A (en) Vapor hetero epitaxial growth method for silicon carbide
Han Vapor Phase epitaxial growth and etching of gallium-arsenide: Thermodynamic and kinetic study.
JPH02297924A (en) Metal organic vapor growth method for compound semiconductor