JPS62123099A - Pyrolytic vapor growth method - Google Patents

Pyrolytic vapor growth method

Info

Publication number
JPS62123099A
JPS62123099A JP25968985A JP25968985A JPS62123099A JP S62123099 A JPS62123099 A JP S62123099A JP 25968985 A JP25968985 A JP 25968985A JP 25968985 A JP25968985 A JP 25968985A JP S62123099 A JPS62123099 A JP S62123099A
Authority
JP
Japan
Prior art keywords
growth
diphosphine
inp
pyrolytic vapor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25968985A
Other languages
Japanese (ja)
Other versions
JPH0341438B2 (en
Inventor
Taku Matsumoto
卓 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25968985A priority Critical patent/JPS62123099A/en
Publication of JPS62123099A publication Critical patent/JPS62123099A/en
Publication of JPH0341438B2 publication Critical patent/JPH0341438B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to carry out stable composition control and steep composition change of P, by using diphosphine as a raw material gas for feeding P in carrying out pyrolytic vapor growth of a III-V compound semiconductor crystal using a group V element compound containing P and a group III element compound. CONSTITUTION:For example, triethylindium (C2H5)3In and diphosphine P2H4 are used to grow InP by a pyrolytic vapor-phase growth method. The growth is carried out using a horizontal pyrolytic vapor-phase growth furnace under ordinary pressure. The flow rates of the raw material gases are 3 SCCM for the triethylindium and 6 SCCM for the diphosphine. InP(100) face is used as a substrate and the substrate temperature is about 650 deg.C. As a result, the aimed InP growth layer having good specular property is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は少なくともリン(P)を含有する■族元素化合
物と■族元素化合物とを用いて11I−V族化合物半導
体結晶の熱分解気相成長を行なう方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for thermally decomposing a group 11I-V compound semiconductor crystal in a vapor phase using a group Ⅰ element compound containing at least phosphorus (P) and a group Ⅰ element compound. It is about how to grow.

〔従来の技術〕[Conventional technology]

熱分解気相成長方法は■族元素のアルキル化合物と■族
元素化合物を原料ガスとし、この原料ガスを熱分解して
基板結晶上に成長させている。従って、少なくとも原料
ガスが分解する温度まで基板を加熱しなければならない
In the pyrolysis vapor phase growth method, an alkyl compound of a group Ⅰ element and a compound of a group Ⅰ element are used as raw material gases, and the raw material gases are pyrolyzed and grown on a substrate crystal. Therefore, the substrate must be heated to at least a temperature at which the source gas decomposes.

ところでPを含む■−■族化合物半導体結晶の熱分解気
相成長方法において、Pの供給源として一般にホスフィ
ン(PHt)が用いられている。
By the way, in a method for pyrolytic vapor phase growth of a P-containing group compound semiconductor crystal, phosphine (PHt) is generally used as a P source.

しかし、このPH,は熱分解効率が悪く、GaAsやI
nP等の成長における通常の基板温度である500℃〜
800℃ではなかなか分解されず、結晶中へのPの取り
込まれ率が極めて低くなるという問題点を有していた。
However, this PH has poor thermal decomposition efficiency, and
500℃~ which is the normal substrate temperature for growth of nP etc.
The problem was that it was difficult to decompose at 800°C, and the rate of P incorporation into the crystal was extremely low.

そこで所望の組成の結晶を成長させるには、他の原料ガ
スの供給量に比べて熱分解効率の悪いPH3の供給量は
数十倍から数百倍程度多くする必要があり、すなわち熱
分解効率の悪さをその供給量の絶対量を多くすることで
補っていた。
Therefore, in order to grow crystals with the desired composition, it is necessary to increase the supply amount of PH3, which has poor thermal decomposition efficiency, by several tens to hundreds of times compared to the supply amount of other raw material gases, that is, to increase the thermal decomposition efficiency. This disadvantage was compensated for by increasing the absolute amount of supply.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、PH3の供給量の絶対量を多くすることは熱分
解効率の悪いPH,はその一部しか結晶成長に寄与せず
、他の大部分は無駄になっていることを意味し、組成制
御が難しいという問題点を有していた。
However, increasing the absolute amount of PH3 supplied means that only a part of PH, which has poor thermal decomposition efficiency, contributes to crystal growth, and most of the other part is wasted. The problem was that it was difficult to

一方、ダッチュミンら(J、 P、D+Jchcmin
 et al)はPH3を分解炉を通してから気相成長
管に供給すると、分解炉中で予備分解されたPH3によ
って結晶中のPの比率が増加することをジャーナル・オ
ブ・クリスタルグロース(J、Crystal Gro
wth55 64 1981)に報告している。
On the other hand, Dachcmin et al. (J, P, D + Jchcmin
et al) reported in the Journal of Crystal Growth that when PH3 is supplied to a vapor growth tube after passing through a decomposition furnace, the proportion of P in the crystal increases due to the PH3 pre-decomposed in the decomposition furnace.
wth55 64 1981).

しかしながら、この方法では分解炉で予備分解されたP
が分解炉と成長反応管の間及び成長反応管壁に付着し、
また付着したPが再蒸発することによって安定した組成
制御及び急峻な組成変化が出来ないという問題点を有し
ていた。
However, in this method, the P pre-decomposed in the decomposition furnace
adheres to the space between the decomposition furnace and the growth reaction tube and to the growth reaction tube wall.
Further, there was a problem in that stable composition control and steep composition changes were not possible due to the re-evaporation of the deposited P.

そこで本発明は上記問題点を解決し、Pの安定した組成
制御及び急峻な組成変化の可能な熱分解気相成長方法を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a pyrolytic vapor phase growth method that allows stable composition control of P and rapid composition changes.

〔問題点を解決するための手段〕 本発明は少なくともリン(P)を含有する■族元素化合
物と■族元素化合物とを用いて■−■族化合物半導体結
晶の熱分解気相成長を行なうにあたり、リン供給原料ガ
スとしてジホスフィン(P2H4)を用いることを特徴
としている。
[Means for Solving the Problems] The present invention provides methods for performing pyrolytic vapor phase growth of a ■-■ group compound semiconductor crystal using a group-■ element compound containing at least phosphorus (P) and a group-■ element compound. , is characterized by using diphosphine (P2H4) as the phosphorus feedstock gas.

〔作用〕[Effect]

ジホスフィンはボスフィンと比べて不安定な物質であり
、熱分解気+11成長炉内で、G a AsやInP等
の成長における通常の基板温度である500℃〜800
℃で容易に分解され、高い熱分解効率を示す。
Diphosphine is an unstable substance compared to bosphine, and it is heated in a pyrolysis gas +11 growth furnace at 500°C to 800°C, which is the normal substrate temperature for growing GaAs, InP, etc.
It is easily decomposed at ℃ and exhibits high thermal decomposition efficiency.

また、基板温度を400℃以下に設定すると、ホスフィ
ンはほとんど分解されなくなり、分解炉を用いないで成
長することは出来なかった。しがし、ジホスフィンを用
いることによって分解炉なしで成長することが可能であ
り、このことは熱に弱い構造を有する層上べの成長(例
えば超格子構造を用いた埋込みレーザ、急峻なヘテロ界
面を有する電界効果トランジスタの電極層の選択成長等
)を考えた場合に極めて有効である。
Further, when the substrate temperature was set to 400° C. or lower, phosphine was hardly decomposed and growth could not be performed without using a decomposition furnace. However, by using diphosphine, it is possible to grow without a decomposition furnace, which means that the growth of layers with heat-sensitive structures (e.g., embedded lasers using superlattice structures, steep heterointerfaces, etc.) is possible. This is extremely effective when considering selective growth of electrode layers of field-effect transistors with

また、ジホスフィンは融点−99℃、沸点51.7℃と
室温で液体であり、通常の有機金属原料と同様な取扱い
が可能である。
Further, diphosphine is a liquid at room temperature with a melting point of -99°C and a boiling point of 51.7°C, and can be handled in the same manner as ordinary organic metal raw materials.

〔実施例〕〔Example〕

実施例1 本発明の実施例1として、トリエチルインジウム((C
2)(S)3 I n )とジホスフィ7(P2H4)
を用いて、熱分解気相成長法によりInPの成長を行っ
た。成長は横型熱分解気相成長炉を用い、常圧にて行っ
た。原料ガス流量はトリエチルインジウム33CCM、
ジホスフィン63CCMとした。
Example 1 As Example 1 of the present invention, triethylindium ((C
2) (S)3 I n ) and diphosphy7 (P2H4)
InP was grown using the pyrolysis vapor phase growth method. The growth was carried out at normal pressure using a horizontal pyrolysis vapor phase growth furnace. The raw material gas flow rate is triethyl indium 33CCM,
It was set as diphosphine 63CCM.

基板はI n P (100)面を用い、基板温度は6
50℃とした。
The substrate used was an I n P (100) plane, and the substrate temperature was 6
The temperature was 50°C.

その結果、鏡面性の良好なInP成長層が得られた。As a result, an InP growth layer with good specularity was obtained.

ここで(P元素の供給量)/(In元素の供給量)は4
であり、ジホスフィンの分解効率がボスフィンと比べて
高いことがわかる。
Here, (supply amount of P element)/(supply amount of In element) is 4
It can be seen that the decomposition efficiency of diphosphine is higher than that of bosphine.

本実施例ではInPの結晶成長について述べたが、本発
明による熱分解気相成長方法ではInGaP、InGa
AsP、InGaAsP等の混晶半導体結晶の成長にも
実施することが可能である。
In this example, the crystal growth of InP was described, but in the pyrolytic vapor phase growth method according to the present invention, InGaP, InGa
It is also possible to carry out the growth of mixed crystal semiconductor crystals such as AsP and InGaAsP.

実施例2 本発明の実施例2として、トリエチルインジウム((C
2H51h I n )とジホスフィ7(P2H4)を
用いて熱分解気相成長法によりInpの低温成長を行な
った。成長は横型熱分解気相成長炉を用い、70Tor
rの減圧下にて行った。原料ガス流量はトリエチルイン
ジウム33CCM、ジホスフィン30SCCMとした。
Example 2 As Example 2 of the present invention, triethylindium ((C
Inp was grown at low temperature by pyrolysis vapor phase growth using 2H51h I n ) and diphosphine 7 (P2H4). Growth was performed using a horizontal pyrolysis vapor phase growth furnace at 70 Torr.
The test was carried out under reduced pressure of r. The raw material gas flow rates were 33 CCM of triethyl indium and 30 SCCM of diphosphine.

基板ハI n P (IQQ)面を用い、基板温度は4
00℃とした。
The substrate has an I n P (IQQ) surface, and the substrate temperature is 4
The temperature was 00°C.

その結果、鏡面性の良好なInP成長層が得られた。As a result, an InP growth layer with good specularity was obtained.

基板温度400℃では、ホスフィンを用いた場合、分解
炉を用いないで成長を行なうことは出来ず、ジホスフィ
ンを用いることによって可能となった。
At a substrate temperature of 400° C., growth could not be performed without using a decomposition furnace when phosphine was used, but it became possible by using diphosphine.

ここで(P元素の供給ff1)/(In元素の供給量)
は20であり、実施例1のジホスフィンの分解効率より
は低下しているが、基板温度400 tでも成長は可能
であった。
Here, (supply of P element ff1)/(supply amount of In element)
was 20, which was lower than the diphosphine decomposition efficiency of Example 1, but growth was possible even at a substrate temperature of 400 t.

本実施例ではInPの結晶成長について述べたが、本発
明による熱分解気相成長方法ではTnGaP、InGa
AsP、InGaAsP等の混晶半導体結晶の成長にお
いても、ホスフィンを用いた場合よりも成長温度を低温
化することが可能である。
In this example, crystal growth of InP was described, but in the pyrolytic vapor phase growth method according to the present invention, TnGaP, InGa
Even in the growth of mixed semiconductor crystals such as AsP and InGaAsP, the growth temperature can be lowered than when phosphine is used.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明の熱分解気相成長方法はリン元素供給
原料としてジホスフィンを用いることによって、従来の
ホスフィンを用いた場合と比べて熱分解効率を高くする
ことが可能である。また、従来法と比べて分解炉なしで
成長温度を低温化することが可能で、熱に弱い構造を有
する成長に極めて有益である。
As described above, by using diphosphine as the phosphorus element feedstock, the pyrolysis vapor phase growth method of the present invention can increase the pyrolysis efficiency compared to the case where conventional phosphine is used. Furthermore, compared to conventional methods, it is possible to lower the growth temperature without using a decomposition furnace, which is extremely useful for growing structures that are sensitive to heat.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくともリン(P)を含有するV族元素化合物
とIII族元素化合物とを用いてIII−V族化合物半導体結
晶の熱分解気相成長を行なうにあたり、リン供給原料ガ
スとしてジホスフィン(P_2H_4)を用いることを
特徴とする熱分解気相成長方法。
(1) Diphosphine (P_2H_4) is used as the phosphorus source gas when performing pyrolytic vapor phase growth of III-V group compound semiconductor crystal using a group V element compound and a group III element compound containing at least phosphorus (P). A pyrolytic vapor phase growth method characterized by using.
JP25968985A 1985-11-21 1985-11-21 Pyrolytic vapor growth method Granted JPS62123099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25968985A JPS62123099A (en) 1985-11-21 1985-11-21 Pyrolytic vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25968985A JPS62123099A (en) 1985-11-21 1985-11-21 Pyrolytic vapor growth method

Publications (2)

Publication Number Publication Date
JPS62123099A true JPS62123099A (en) 1987-06-04
JPH0341438B2 JPH0341438B2 (en) 1991-06-24

Family

ID=17337550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25968985A Granted JPS62123099A (en) 1985-11-21 1985-11-21 Pyrolytic vapor growth method

Country Status (1)

Country Link
JP (1) JPS62123099A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120676A (en) * 1990-03-23 1992-06-09 Cvd Incorporated Use of phosphine and arsine compounds in chemical vapor deposition and chemical doping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120676A (en) * 1990-03-23 1992-06-09 Cvd Incorporated Use of phosphine and arsine compounds in chemical vapor deposition and chemical doping

Also Published As

Publication number Publication date
JPH0341438B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
Moss Adducts in the growth of III–V compounds
JPS62123099A (en) Pyrolytic vapor growth method
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JPH0754802B2 (en) Vapor growth method of GaAs thin film
JPH0431396A (en) Growth of semiconductor crystal
JP3406504B2 (en) Semiconductor manufacturing method
JP2879224B2 (en) Metalorganic vapor phase epitaxy
JPH0243332B2 (en)
JP2661155B2 (en) Vapor phase epitaxial growth method
JPH0536397B2 (en)
JPS6131393A (en) Vapor phase growth device
JPS62213253A (en) Crystal growth
JP2952831B2 (en) Method for manufacturing semiconductor device
KR840008531A (en) Tetramethyltin additive source for metal organic chemical vapor deposition (MOCVD) growth epitaxial semiconductor layers
JPS63227007A (en) Vapor growth method
JPS60245214A (en) Vapor growth of compound semiconductor crystal
JPS61202422A (en) Vapor growth method for compound semiconductor
JP2700210B2 (en) Vapor phase epitaxial growth of compound semiconductors
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPS61229320A (en) Vapor growth device
JPH0451520B2 (en)
JPH01197398A (en) Method for vapor growth
JPH0697656B2 (en) Vapor phase epitaxial growth method
JPS61220420A (en) Vapor growth apparatus
JPH0369879B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees