JP2736655B2 - Compound semiconductor crystal growth method - Google Patents

Compound semiconductor crystal growth method

Info

Publication number
JP2736655B2
JP2736655B2 JP63160695A JP16069588A JP2736655B2 JP 2736655 B2 JP2736655 B2 JP 2736655B2 JP 63160695 A JP63160695 A JP 63160695A JP 16069588 A JP16069588 A JP 16069588A JP 2736655 B2 JP2736655 B2 JP 2736655B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
crystal
semiconductor crystal
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63160695A
Other languages
Japanese (ja)
Other versions
JPH0212814A (en
Inventor
芳樹 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63160695A priority Critical patent/JP2736655B2/en
Publication of JPH0212814A publication Critical patent/JPH0212814A/en
Application granted granted Critical
Publication of JP2736655B2 publication Critical patent/JP2736655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔概要〕 III−V族化合物半導体のうちのIII族元素にInが含ま
れている化合物半導体結晶を成長させる方法の改良に関
し、 Inを含む化合物半導体結晶を成長させる際、気相中で
の原料ガスの濃度に変化を生じても、結晶膜の成長速
度、組成、均一性に悪影響がなく、しかも、膜厚に関し
て原子層オーダーの制御が可能である化合物半導体結晶
成長方法を提供することを目的とし、 気相中ではInの原料であるトリメチルインジウムが熱
分解してIn原子にならない程度の温度を維持できるよう
に基板を加熱し、該基板の表面にトリメチルインジウム
及び隣や砒素などV族元素を含む水素化合物を交互に供
給してInを含む化合物半導体結晶を成長させる工程が含
まれてなるよう構成する。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to an improvement in a method of growing a compound semiconductor crystal in which a group III element of a group III-V compound semiconductor contains In. Even if the concentration of the source gas in the gas phase changes, the growth rate, composition, and uniformity of the crystal film are not adversely affected, and the thickness of the compound semiconductor crystal can be controlled on the order of the atomic layer. In order to provide a method, in a gas phase, a substrate is heated such that trimethylindium, which is a source material of In, is not thermally decomposed into In atoms, and trimethylindium and trimethylindium are formed on the surface of the substrate. The method includes a step of alternately supplying a hydrogen compound containing a group V element such as arsenic next to or to grow a compound semiconductor crystal containing In.

〔産業上の利用分野〕[Industrial applications]

本発明は、III−V族化合物半導体のうちのIII族元素
にInが含まれている化合物半導体結晶を成長させる方法
の改良に関する。
The present invention relates to an improvement in a method for growing a compound semiconductor crystal in which a group III element of a group III-V compound semiconductor contains In.

現在、光通信用として長波長帯域に発振波長をもつ半
導体レーザや性能を向上させる為に量子井戸構造を備え
た半導体レーザが注目されている。
At present, semiconductor lasers having an oscillation wavelength in a long wavelength band and semiconductor lasers having a quantum well structure for improving performance are attracting attention for optical communication.

これらの半導体デバイスを作成するには、InP,InGaA
s,InGaP,InGaAsPなどInを含む化合物半導体結晶の成長
技術が重要である。
To create these semiconductor devices, InP, InGaA
The growth technology of compound semiconductor crystals containing In such as s, InGaP, and InGaAsP is important.

前記半導体デバイスを再現性良く、しかも、多量に製
造する為には、Inの原料に関する濃度の変化、或いは、
反応室中に於ける原料ガスの消費に起因する原料ガスの
濃度や組成の変化などに依り、成長する化合物半導体結
晶膜の組成や均一性などが影響を受けないような結晶成
長技術を開発する必要がある。
Good reproducibility of the semiconductor device, and, in order to produce a large amount, the change in the concentration of In material, or
Develop crystal growth technology that does not affect the composition or uniformity of the growing compound semiconductor crystal film due to changes in the concentration or composition of the source gas due to the consumption of the source gas in the reaction chamber. There is a need.

〔従来の技術〕[Conventional technology]

従来、Inを含む化合物半導体結晶を成長させる場合、
Inの原料としては有機金属化合物であるトリメチルイン
ジウム(In(CH33:TMI)を、また、V族元素を含む原
料としてはアルシン(AsH3)やホスフィン(PH3)など
の水素化物を用い、これらを混合して反応室に送入し、
基板表面或いはその近傍に於ける気相中で熱分解させる
などの化学反応を利用して結晶膜を堆積させるOMVPE(o
rganometallics vapor phase epitaxy)法が主に実
施されている。
Conventionally, when growing a compound semiconductor crystal containing In,
As a raw material of In, trimethylindium (In (CH 3 ) 3 : TMI) which is an organometallic compound, and as a raw material containing a group V element, a hydride such as arsine (AsH 3 ) or phosphine (PH 3 ) is used. Used, mixed and sent to the reaction chamber,
OMVPE (o) is used to deposit a crystalline film using a chemical reaction such as thermal decomposition in the gas phase on or near the substrate surface.
(rganometallics vapor phase epitaxy) method is mainly implemented.

第5図はIn(CH3とPH3とを原料ガスにし、前記OM
VPE法を実施してInPの結晶を成長させた場合のIn(C
H3流量依存性を表す線図であり、横軸にはIn(C
H3流量を、縦軸には成長膜厚をそれぞれ採ってあ
る。尚、In(CH3の流量は〔ml/分〕で、そして、成
長膜厚は〔Å/分〕でそれぞれ表してある。
FIG. 5 shows In (CH 3 ) 3 and PH 3 as source gases, and the OM
In (C) when InP crystal is grown by VPE
H 3 ) FIG. 3 is a diagram showing the flow rate dependence, with the horizontal axis representing In (C
H 3 ) The three flow rates are taken, and the vertical axis is the growth film thickness. The flow rate of In (CH 3 ) 3 is represented by [ml / min], and the growth film thickness is represented by [Å / min].

このデータを得た際の条件は、 雰囲気温度:600〔℃〕 In(CH3の蒸気圧:1〔Torr〕 In(CH3のバブラ温度:13.5〔℃〕 PH3のモル分率(m.f.):4.8×10-2 反応室内の全圧力:15〔Torr〕 図から判るように、In(CH3の流量が変化するに
つれてInP結晶の成長膜厚も変化している。
Conditions for obtaining this data were as follows: atmosphere temperature: 600 [° C.] In (CH 3 ) 3 vapor pressure: 1 [Torr] In (CH 3 ) 3 bubbler temperature: 13.5 [° C.] PH 3 mole fraction Rate (mf): 4.8 × 10 -2 Total pressure in the reaction chamber: 15 [Torr] As can be seen from the figure, as the flow rate of In (CH 3 ) 3 changes, the growth thickness of the InP crystal also changes.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

然しながら、OMVPE法では、結晶膜の成長速度が、In
の原料であるIn(CH3の流量、即ち、濃度に比例す
る為、 (1) In(CH3の容器に於ける温度変化、また、
この容器を通過する水素(H2)などのキャリヤ・ガスの
流量変化、更には、その容器中のIn(CH3の残量変
化に伴う蒸発量の変化などに依り、反応室中に供給され
るIn(CH3の濃度が変化すること、 (2) 反応室中で結晶膜が堆積されるにつれてIn(CH
3が消費されること、 などが原因となって結晶成長速度の再現性や同一基板内
或いは各基板間での膜厚の均一性が良くない旨の問題が
ある。
However, in the OMVPE method, the growth rate of the crystal film is
Since it is proportional to the flow rate of In (CH 3 ) 3 , which is the raw material of In (CH 3 ) 3 , the temperature change in the container of In (CH 3 ) 3 ,
The change in the flow rate of the carrier gas such as hydrogen (H 2 ) passing through this vessel and the change in the amount of evaporation due to the change in the remaining amount of In (CH 3 ) 3 in the vessel cause the reaction chamber to contain The concentration of the supplied In (CH 3 ) 3 changes; (2) In (CH 3 ) 3 as the crystal film is deposited in the reaction chamber.
3 ) There is a problem that the reproducibility of the crystal growth rate and the uniformity of the film thickness within the same substrate or between the substrates are not good due to consumption of 3 , etc.

本発明は、Inを含む化合物半導体結晶を成長させる
際、気相中での原料ガスの濃度に変化を生じても、結晶
膜の成長速度、組成、均一性に悪影響がなく、しかも、
膜厚に関して原子層オーダーの制御が可能である化合物
半導体結晶成長方法を提供しようとする。
The present invention, when growing a compound semiconductor crystal containing In, even if the concentration of the source gas in the gas phase changes, there is no adverse effect on the growth rate, composition, uniformity of the crystal film, and,
It is an object of the present invention to provide a compound semiconductor crystal growth method capable of controlling the film thickness on the order of an atomic layer.

〔課題を解決するための手段〕[Means for solving the problem]

前記した従来技術に於いては、約600〔℃〕以上の高
温にした基板上にIn(CH3及びPH3などを同時に供給
するようにしている。従って、In(CH3及びPH3は、
それぞれ該基板上或いはその近傍の気相中で熱分解を起
こし、特に、In(CH3の場合には、基板表面にIn原
子の状態で供給されている。
In the above-mentioned prior art, In (CH 3 ) 3 and PH 3 are simultaneously supplied onto a substrate heated to about 600 ° C. or higher. Therefore, In (CH 3 ) 3 and PH 3 are
Thermal decomposition occurs in the gas phase on or in the vicinity of the substrate. In particular, In (CH 3 ) 3 is supplied to the substrate surface in the form of In atoms.

MBE(molecular beam epitaxy)法の研究からも明
らかなことであるが、In原子の基板結晶への被着確率は
略1であり、従って、結晶の成長速度はIn(CH3
導入量に比例して決定される。この為、前記したよう
に、特に、In(CH3の濃度変化が起こると、膜厚や
組成の変動、或いは、均一性の低下などが発生するので
ある。
It is clear from MBE (molecular beam epitaxy) research that the probability of In atoms adhering to the substrate crystal is approximately 1, and therefore, the growth rate of the crystal depends on the amount of In (CH 3 ) 3 introduced. Is determined in proportion to For this reason, as described above, in particular, when the concentration of In (CH 3 ) 3 changes, a change in film thickness or composition, a decrease in uniformity, or the like occurs.

そこで、本発明では、基板表面近傍に於ける気相中の
温度をIn(CH3がIn原子にまでは分解しない程度の
温度、従って、基板温度を約300乃至400〔℃〕とし、従
来技術に比較すると約200乃至300〔℃〕も低い温度に維
持するものである。即ち、このような温度に於いては、
In(CH3の熱分解は起こらないか、或いは、分解が
起こってもIn(CH3(x=1或いは2)の形のよう
な中間的な分解までしか進行せず、In原子は発生しない
ようにするものである。
Therefore, in the present invention, the temperature in the gas phase near the substrate surface is set to a temperature at which In (CH 3 ) 3 does not decompose into In atoms, and accordingly, the substrate temperature is set to approximately 300 to 400 [° C.] The temperature is maintained at about 200 to 300 [° C.] lower than that of the prior art. That is, at such a temperature,
The thermal decomposition of In (CH 3 ) 3 does not occur, or even if the decomposition occurs, it progresses only to an intermediate decomposition such as the form of In (CH 3 ) x (x = 1 or 2). Atoms are not generated.

このように、In原料を分子種の形で基板表面に供給す
ると、その基板表面に吸着されるInの分子種は、そこに
在るPと化学的に結合したもののみが留まり、Pと結合
できなかったものは再蒸発する。従って、基板表面に吸
着されるIn分子種は、せいぜい単分子層であり、それ以
上は吸着されない。その結果、In(CH3の濃度が変
化しても、余分に供給された分は結晶成長に寄与しない
のである。
As described above, when the In source is supplied to the substrate surface in the form of molecular species, only those chemically bonded to P existing there remain as the molecular species of In adsorbed on the substrate surface, and are bonded to P. What could not be re-evaporated. Therefore, the In molecular species adsorbed on the substrate surface is at most a monomolecular layer, and is not adsorbed any more. As a result, even if the concentration of In (CH 3 ) 3 changes, the extra supply does not contribute to the crystal growth.

この後、気相中からInの分子種を充分にパージしてか
ら、PH3など、V族元素を含むガスを供給すると、基板
表面に於ける前記した第一層目のIn或いはIn分子種と反
応が進んで原子層オーダーの結晶膜が得られるのであ
る。
Thereafter, after sufficiently purging the molecular species of In from the gas phase, a gas containing a group V element such as PH 3 is supplied, and then the above-mentioned In or In molecular species of the first layer on the substrate surface is formed. The reaction proceeds to obtain a crystal film on the order of an atomic layer.

前記したように、基板表面を最高温にし、そして、基
板表面近傍のガス温度は上昇させないようにする為に
は、基板を載置したサセプタを誘導加熱したり、裏面か
ら輻射加熱したり、赤外線ランプを照射するなどの加熱
方式を採用して実現させることができる。また、前記説
明では、InPを採り上げたが、Inを含む他の二元以上のI
II−V族化合物半導体の場合についても同様に実施する
ことができる。
As described above, in order to keep the substrate surface at the highest temperature, and to prevent the gas temperature near the substrate surface from rising, the susceptor on which the substrate is placed is induction-heated, radiantly heated from the back surface, infrared rays It can be realized by employing a heating method such as irradiation with a lamp. In the above description, InP is taken, but other two or more I
The same can be applied to the case of II-V compound semiconductors.

前記したようなことから、本発明に依る化合物半導体
結晶成長方法では、気相中ではInの原料であるトリメチ
ルインジウムが熱分解してIn原子にならない程度の温度
を維持できるように基板を加熱し、該基板の表面にトリ
メチルインジウム及び隣や砒素などV族元素を含む水素
化合物を交互に供給してInを含む化合物半導体結晶を成
長させる工程が含まれる。
From the above, in the compound semiconductor crystal growth method according to the present invention, the substrate is heated in the gas phase so that trimethylindium, which is a source material of In, is thermally decomposed to a temperature that does not become In atoms. Growing a compound semiconductor crystal containing In by alternately supplying trimethylindium and a hydrogen compound containing a group V element such as arsenic or trimethylindium to the surface of the substrate.

〔作用〕[Action]

前記手段を採ることに依り、気相中のIn(CH3
濃度変化が起こっても、基板上に成長するInを含む化合
物半導体結晶膜の組成や成長率は全く影響を受けず、均
一性が高い膜を原子的スケールで再現性良く成長させる
ことができ、大量のウエハについてエピタキシャル成長
を行う場合、ウエハ間の膜厚のバラツキを一原子層以下
に抑制することが可能である。
By adopting the above-described means, even if the concentration of In (CH 3 ) 3 in the gas phase changes, the composition and growth rate of the compound semiconductor crystal film containing In grown on the substrate are not affected at all. A film with high uniformity can be grown with good reproducibility on an atomic scale, and when epitaxial growth is performed on a large number of wafers, it is possible to suppress variations in film thickness between wafers to one atomic layer or less.

〔実施例〕〔Example〕

第1図は本発明を実施する気相エピタキシャル成長装
置の一例を解説する為の要部説明図を表している。
FIG. 1 is an explanatory view of a main part for explaining an example of a vapor phase epitaxial growth apparatus embodying the present invention.

図に於いて、1はウエハ装着用操作杆、2は準備室、
3はゲート・バルブ、4は反応室、5はカーボン・サセ
プタ、6は輻射加熱用ヒータ、7はターボ分子ポンプ、
8は排気口、9はフィルタ、10はロータリ・ポンプ、11
はマニホールド・バルブ、12はマスフロー・コントロー
ラ(MFC)、13はトリメチルインジウム源、14はホスフ
ィン源、15はキャリヤ・ガスであるH2送入管、16はウエ
ハをそれぞれ示している。
In the figure, 1 is an operation rod for mounting a wafer, 2 is a preparation room,
3 is a gate valve, 4 is a reaction chamber, 5 is a carbon susceptor, 6 is a heater for radiation heating, 7 is a turbo molecular pump,
8 is an exhaust port, 9 is a filter, 10 is a rotary pump, 11
The manifold valve, 12 is a mass flow controller (MFC), 13 is trimethylindium source 14 is a phosphine source, 15 denotes H 2 inlet tube is carrier gas, 16 a wafer, respectively.

本発明では、In(CH3とV族元素を含むガス(図
示の気相エピタキシャル成長装置ではPH3)とをウエハ1
6上に交互に供給しなければならないので、そのガス切
り替えにはマニホールド・バルブ11を用い、ベント(Ve
nt)/ラン(run)方式で行う。そのようにして表面に
ガスが供給されるウエハ16は、厚さが350〔μm〕程度
であって、カーボン製のサセプタ5に形成された深さが
0.3〔mm〕程度の矩形の凹所に載置される。そのサセプ
タ5は、裏面側からヒータ6に依って輻射加熱されるよ
うになっていて、ウエハ16が300〜400〔℃〕に加熱さ
れ、しかも、その近傍の気相中に於ける温度は低く維持
されてIn原子の発生が防止されるようになっている。
In the present invention, In (CH 3 ) 3 and a gas containing a group V element (PH 3 in the illustrated vapor phase epitaxial growth apparatus) are supplied to the wafer 1.
Since the gas must be supplied alternately on the top, the gas is switched using the manifold valve 11 and the vent (Ve
nt) / run method. The wafer 16 to which the gas is supplied to the surface in this manner has a thickness of about 350 [μm] and a depth formed on the carbon susceptor 5.
It is placed in a rectangular recess of about 0.3 [mm]. The susceptor 5 is radiatively heated by the heater 6 from the back side, so that the wafer 16 is heated to 300 to 400 ° C., and the temperature in the gas phase near the wafer 16 is low. It is maintained so that generation of In atoms is prevented.

第2図は本発明一実施例に於けるガスの供給に関する
タイミング・チャートであり、t時間を表している。
FIG. 2 is a timing chart relating to gas supply in one embodiment of the present invention, and shows time t.

ここでは、まず、10〔%〕PH3+H2を流量500〔sccm〕
として10〔秒〕間に亙って流し、次に、H2を流量500〔s
ccm〕として3〔秒〕間に亙って流すことでパージを行
い、次に、TMI+H2を流量500〔sccm〕として5〔秒〕間
に亙って流し、次に、H2を流量500〔sccm〕として3
〔秒〕間に亙って流すことでパージを行って1サイクル
が終了する。各ガスは500〔sccm〕の等流量にしてある
から、反応室4内には常に何れかのガスが500〔sccm〕
だけ流れていることになる。
Here, first, 10 [%] PH 3 + H 2 is supplied at a flow rate of 500 [sccm].
It flowed over between 10 [sec] as, then, the flow rate of H 2 500 [s
to purge by passing over between 3 [seconds] as ccm], then TMI + H 2 is flowed over between 5 [sec] as a flow rate 500 sccm of, then, the flow rate of H 2 500 3 as [sccm]
Purge is performed by flowing for [sec], and one cycle is completed. Since each gas has an equal flow rate of 500 [sccm], any gas is always 500 [sccm] in the reaction chamber 4.
Only flowing.

第3図は、In(CH3とPH3とを原料ガスにし、本発
明を実施してInPの結晶を成長させた場合のIn(CH3
流量依存性を表す線図であり、横軸にはIn(CH3
量を、縦軸には1サイクル当たりの成長膜厚をそれぞれ
採ってある。尚、In(CH3の流量は〔ml/分〕で、ま
た、成長膜厚は格子定数でそれぞれ表してある。
Figure 3 is, In (CH 3) 3 and PH 3 and a raw material gas, an In (CH 3) when growing the InP crystal by implementing the present invention 3
FIG. 3 is a diagram showing the flow rate dependency, with the horizontal axis representing the In (CH 3 ) 3 flow rate and the vertical axis representing the growth film thickness per cycle. The flow rate of In (CH 3 ) 3 is represented by [ml / min], and the thickness of the grown film is represented by a lattice constant.

このデータを得た際の条件は、 ウエハ16の温度:350〔℃〕 In(CH3の蒸気圧:3〔Torr〕 In(CH3を流す時間:3〔秒〕/1サイクル In(CH3のバブラ温度:27.1〔℃〕 PH3の濃度:20〔%〕 PH3の流量:480〔ml/分〕 PH3を流す時間:20〔秒〕/1サイクル 図から判るように、In(CH3の流量が10〔ml/分〕
〜90〔ml/分〕と変化しても、InP結晶の成長率は変化し
ていない。これは、成長速度が気相中のIn(CH3
濃度の影響を受けていないことを示している。
Conditions for obtaining this data are as follows: temperature of wafer 16: 350 [° C.] Vapor pressure of In (CH 3 ) 3 : 3 [Torr] In (CH 3 ) 3 flowing time: 3 [sec] / cycle In (CH 3 ) 3 bubbler temperature: 27.1 [° C] PH 3 concentration: 20 [%] PH 3 flow rate: 480 [ml / min] PH 3 flow time: 20 [sec] / cycle As shown, the flow rate of In (CH 3 ) 3 is 10 [ml / min].
The growth rate of InP crystal does not change even if it changes to 90 [ml / min]. This indicates that the growth rate was not affected by the concentration of In (CH 3 ) 3 in the gas phase.

この場合のInP結晶の成長率は、1サイクル当たり1.4
7〔Å〕であって、これはInPの1/4格子定数に相当す
る。
In this case, the growth rate of the InP crystal is 1.4 per cycle.
7 [Å], which is equivalent to the 1/4 lattice constant of InP.

第4図はIn(CH3の供給時間と1サイクル当たり
のInP結晶成長膜厚との関係を表す線図であり、横軸にI
n(CH3をパルス的に流す場合の時間を〔秒〕で、ま
た、縦軸には1サイクル当たりの膜厚をML(monolaye
r)でそれぞれ採ってある。MLは分子層単位であって、
一分子層は1/2格子定数に相当し、ここでは約2.93
〔Å〕である。
FIG. 4 is a diagram showing the relationship between the supply time of In (CH 3 ) 3 and the thickness of the grown InP crystal per cycle, and the horizontal axis represents I
The time when n (CH 3 ) 3 flows in a pulse is [seconds], and the vertical axis is the film thickness per cycle in ML (monolaye).
Each is taken in r). ML is a molecular layer unit,
A monolayer corresponds to a 1/2 lattice constant, here about 2.93
[Å].

図に於いて、一点鎖線は本発明一実施例の特性線であ
り、この際のウエハ16の温度は、前記同様、350〔℃〕
である。また、破線は比較の為に挙げた従来技術に依っ
た場合の特性線であり、原子層エピタキシャル成長(at
omic layer epitaxy:ALE)法を実施して得られたもの
で、この際のウエハの温度は600〔℃〕である。
In the drawing, the one-dot chain line is a characteristic line of one embodiment of the present invention, and the temperature of the wafer 16 at this time is 350 ° C.
It is. The dashed line is a characteristic line in the case of the prior art cited for comparison, and is indicated by atomic layer epitaxial growth (at
omic layer epitaxy (ALE) method, and the wafer temperature at this time is 600 [° C.].

〔発明の効果〕〔The invention's effect〕

本発明に依る化合物半導体結晶成長方法に於いては、
気相中でIn(CH3が分解してIn原子にならない程度
の温度に基板を加熱し、トリメチルインジウム及び隣や
砒素などV族元素を含む化合物を交互に供給してInを含
む化合物半導体結晶を成長させるようにしている。
In the compound semiconductor crystal growth method according to the present invention,
The substrate is heated to a temperature at which In (CH 3 ) 3 is not decomposed into In atoms in the gas phase, and the compound containing In is obtained by alternately supplying trimethylindium and a compound containing a group V element such as arsenic and neighbors. A semiconductor crystal is grown.

前記構成を採ることに依り、気相中のIn(CH3
濃度変化が起こっても、基板上に成長するInを含む化合
物半導体結晶膜の組成や成長率は全く影響を受けず、均
一性が高い膜を原子的スケールで再現性良く成長させる
ことができ、大量のウエハについてエピタキシャル成長
を行う場合、ウエハ間の膜厚のバラツキを一原子層以下
に抑制することが可能である。
With the above configuration, even if the concentration of In (CH 3 ) 3 in the gas phase changes, the composition and growth rate of the In-containing compound semiconductor crystal film grown on the substrate are not affected at all, A film with high uniformity can be grown with good reproducibility on an atomic scale, and when epitaxial growth is performed on a large number of wafers, it is possible to suppress variations in film thickness between wafers to one atomic layer or less.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施する気相エピタキシャル成長装置
の一例を解説する為の要部説明図、第2図は本発明一実
施例に於けるソース・ガスの供給に関するタイミング・
チャート、第3図は本発明を実施してInP結晶を成長さ
せる場合に於けるIn(CH3流量依存性を説明する為
の線図、第4図は本発明を実施してInP結晶を成長させ
る場合に於けるIn(CH3の供給時間と1サイクル当
たりのInP結晶成長膜厚との関係を説明する為の線図、
第5図はIn(CH3及びPH3を原料ガスとする従来のOM
VPE法を適用してInP結晶を成長させる場合のIn(CH3
流量依存性を説明する為の線図をそれぞれ表してい
る。 図に於いて、1はウエハ装着用操作杆、2は準備室、3
はゲート・バルブ、4は反応室、5はカーボン・サセプ
タ、6は輻射加熱用ヒータ、7はターボ分子ポンプ、8
は排気口、9はフィルタ、10はロータリ・ポンプ、11は
マニホールド・バルブ、12はマスフロー・コントローラ
(MFC)、13はトリメチルインジウム源、14はホスフィ
ン源、15はキャリヤ・ガスであるH2送入管、16はウエハ
をそれぞれ示している。
FIG. 1 is an explanatory view of an essential part for explaining an example of a vapor phase epitaxial growth apparatus for carrying out the present invention, and FIG. 2 is a timing chart relating to supply of a source gas in one embodiment of the present invention.
FIG. 3 is a chart for explaining the flow rate dependence of In (CH 3 ) 3 in growing an InP crystal according to the present invention, and FIG. 4 is an InP crystal according to the present invention. A diagram for explaining the relationship between the supply time of In (CH 3 ) 3 and the thickness of the InP crystal grown per cycle in the case of growing
Fig. 5 shows a conventional OM using In (CH 3 ) 3 and PH 3 as source gas.
In (CH 3 ) when growing InP crystal by applying VPE method
3 shows diagrams for explaining the flow rate dependence. In the figure, 1 is an operation rod for mounting a wafer, 2 is a preparation room, 3
Is a gate valve, 4 is a reaction chamber, 5 is a carbon susceptor, 6 is a heater for radiation heating, 7 is a turbo molecular pump, 8
Exhaust port, 9 a filter, 10 is a rotary pump, 11 is a manifold valve, 12 is a mass flow controller (MFC), 13 is trimethylindium source 14 is a phosphine source, 15 feed H 2 is a carrier gas Reference numeral 16 denotes a wafer, and reference numeral 16 denotes a wafer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】気相中ではInの原料であるトリメチルイン
ジウムが熱分解してIn原子にならない程度の温度を維持
できるように基板を加熱し、 該基板の表面にトリメチルインジウム及び燐や砒素など
V族元素を含む水素化合物を交互に供給してInを含む化
合物半導体結晶を成長させる工程 が含まれてなることを特徴とする化合物半導体結晶の成
長方法。
In a gaseous phase, a substrate is heated to maintain a temperature at which trimethylindium, which is a source of In, is not thermally decomposed into In atoms, and trimethylindium, phosphorus, arsenic, or the like is formed on the surface of the substrate. A method of growing a compound semiconductor crystal containing In by alternately supplying a hydrogen compound containing a group V element.
JP63160695A 1988-06-30 1988-06-30 Compound semiconductor crystal growth method Expired - Fee Related JP2736655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63160695A JP2736655B2 (en) 1988-06-30 1988-06-30 Compound semiconductor crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63160695A JP2736655B2 (en) 1988-06-30 1988-06-30 Compound semiconductor crystal growth method

Publications (2)

Publication Number Publication Date
JPH0212814A JPH0212814A (en) 1990-01-17
JP2736655B2 true JP2736655B2 (en) 1998-04-02

Family

ID=15720470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63160695A Expired - Fee Related JP2736655B2 (en) 1988-06-30 1988-06-30 Compound semiconductor crystal growth method

Country Status (1)

Country Link
JP (1) JP2736655B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270247A (en) * 1991-07-12 1993-12-14 Fujitsu Limited Atomic layer epitaxy of compound semiconductor
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213253A (en) * 1986-03-14 1987-09-19 Fujitsu Ltd Crystal growth

Also Published As

Publication number Publication date
JPH0212814A (en) 1990-01-17

Similar Documents

Publication Publication Date Title
US5294286A (en) Process for forming a thin film of silicon
US5166092A (en) Method of growing compound semiconductor epitaxial layer by atomic layer epitaxy
JP2797233B2 (en) Thin film growth equipment
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
JPH09315899A (en) Compound semiconductor vapor growth method
US5036022A (en) Metal organic vapor phase epitaxial growth of group III-V semiconductor materials
JP2736655B2 (en) Compound semiconductor crystal growth method
JP3386302B2 (en) N-type doping method for compound semiconductor, chemical beam deposition method using the same, compound semiconductor crystal formed by these crystal growth methods, and electronic device and optical device constituted by this compound semiconductor crystal
JPH05335241A (en) Compound semiconductor and manufacture thereof
JP2687371B2 (en) Vapor growth of compound semiconductors
US20050112281A1 (en) Growth of dilute nitride compounds
JPH05186295A (en) Method for growing crystal
JPH0535719B2 (en)
JP2753009B2 (en) Compound semiconductor growth method
JP3090232B2 (en) Compound semiconductor thin film formation method
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
JPS6129915B2 (en)
JPH04151822A (en) Vapor growth method for compound semiconductor organic metal
JPH07226380A (en) Atomic layer crystal growth method
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JPH0897149A (en) Organic metal vapor growth method, and organic metal vapor growth device
JP2577543B2 (en) Single crystal thin film growth equipment
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH04260696A (en) Production of crystal of compound semiconductor
JPS63227007A (en) Vapor growth method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees