JPS62210304A - Drum water-filling controller on stoppage - Google Patents

Drum water-filling controller on stoppage

Info

Publication number
JPS62210304A
JPS62210304A JP5250586A JP5250586A JPS62210304A JP S62210304 A JPS62210304 A JP S62210304A JP 5250586 A JP5250586 A JP 5250586A JP 5250586 A JP5250586 A JP 5250586A JP S62210304 A JPS62210304 A JP S62210304A
Authority
JP
Japan
Prior art keywords
water level
water
drum
flow rate
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5250586A
Other languages
Japanese (ja)
Inventor
国場 幸政
石川 利喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP5250586A priority Critical patent/JPS62210304A/en
Publication of JPS62210304A publication Critical patent/JPS62210304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Looms (AREA)
  • Paper (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排熱回収式コンバインド発電プラントの停止時
における最適なドラム水俣プ制御装置く関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optimal drum Minamata control system when an exhaust heat recovery type combined power generation plant is stopped.

〔従来の技術〕[Conventional technology]

例えば、特開昭60−169001 号公報「起動時の
ドラム水位制御装置」によれば、プラント停止時に調節
弁の開度を一定に固定し、水張シ開始時点でドラムの水
位からドラム内への給水流量を算出して、さらに、足間
度での給水時間を算出し、時間調節によシ給水流量を供
給する。ただし、この制御は従来、計算機による制御で
行なわれ、制御装置がかなり大規模な、且つ、高価なも
のとなった。
For example, according to Japanese Patent Application Laid-Open No. 60-169001, "Drum water level control device at startup," the opening degree of the control valve is fixed at a constant level when the plant is stopped, and the water level in the drum is lowered into the drum at the start of water filling. The water supply flow rate is calculated, and the water supply time per foot distance is calculated, and the water supply flow rate is supplied by adjusting the time. However, this control has conventionally been performed by computer control, and the control device has become quite large and expensive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

排熱回収ボイラの停止時は排ガス温度が降下するため、
ドラム内の温度と圧力の変化は大きく、そのため水位変
動が激しく、従来の比例積分制御では所定の水位に水張
りすることが難しい。このため、従来の比例積分制御に
よるものでなく、オープンループ制御によシ行なってい
るが、従来、調節弁の開度を一定値とし、時間の長さを
調節して所定の水張り水位の制御を行なっていたが、こ
の制御方式は演算を行なうための計算機が必要となり、
制御装置としてかなり大規模、かつ、高価なものとなっ
た。
When the exhaust heat recovery boiler is stopped, the exhaust gas temperature drops, so
Temperature and pressure inside the drum change greatly, resulting in large fluctuations in water level, making it difficult to fill the drum with water to a predetermined level using conventional proportional-integral control. For this reason, open-loop control is used instead of conventional proportional-integral control. Conventionally, the opening of the control valve is set to a constant value, and the length of time is adjusted to control the predetermined water level. However, this control method required a computer to perform the calculations,
The control device was quite large and expensive.

本発明は水位設定値がランプ関数的に設定されるのに対
し、設定値の上昇区間ではオープンル−プ制御を行ない
、最終的な水位設定値となった点で、再び、比例積分制
御に戻す制御方式により、簡易、かつ、安価な制御装置
で停止時のドラム水張り制御を実施することを目的とし
たものである。
In the present invention, whereas the water level set value is set in a ramp function manner, open loop control is performed in the rising section of the set value, and once the final water level set value is reached, proportional-integral control is applied again. The purpose of this is to use a simple and inexpensive control device to perform drum water filling control during stoppage using a return control system.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、給止流量調節弁を強制的に閉動作させる
回路と水位と水位設定値の偏差をモニタすることによっ
て調節弁を足間度で0N−OFF゛動作させる回路を設
けることによって達成される。
The above objective was achieved by providing a circuit that forcibly closes the stop flow control valve and a circuit that monitors the deviation between the water level and the water level set value to turn the control valve 0N-OFF in a short distance. be done.

〔作用〕[Effect]

本発明の調節弁の強制閉回路は制限器の上限値を負の値
に切替えることによって比例積分器に負の入力を与えて
閉動作を行なわせる。また、足間度流量回路は高値選択
回路に入力することにより、強制閉動作実施後は足間度
流量回路のみが有効となるため、水位設定値がランプ関
数的に上昇する区間では水位設定値と水位の偏差をモニ
タすることによって調節弁を0N−OFF動作させて給
水し、水位設定値が最終的な値となった点で、再び、比
11iIJ漬分子1flJ御で給水を行ないドラムへの
水張シを行なう。
The forced closing circuit of the control valve of the present invention switches the upper limit value of the limiter to a negative value, thereby giving a negative input to the proportional integrator to cause it to perform a closing operation. In addition, by inputting the foot-to-foot flow rate circuit to the high value selection circuit, only the foot-to-foot flow rate circuit becomes effective after the forced closing operation is performed, so in the section where the water level setting value increases like a ramp function, the water level setting value By monitoring the deviation of the water level, the control valve is operated 0N-OFF to supply water, and when the water level set value reaches the final value, water is supplied again under the control of the ratio 11iIJ dipping molecular 1flJ and the water is supplied to the drum. Perform mizuharishi.

〔実施列〕[Implementation row]

本発明の前に排熱回収式コンバインド発電プラントにつ
いて第2図により説明する。
Prior to the present invention, an exhaust heat recovery type combined power generation plant will be explained with reference to FIG. 2.

先ず、ガスタービンの圧縮機1によって圧縮された空気
は燃焼器2で燃焼される。燃焼により膨張した燃焼ガス
をタービン3に送り、発電機4を駆動する。ガスタービ
ンよシ排出されたガスは排ガスダクト5に導かれ、過熱
器7、蒸発器8、節炭器9、ドラム6よシ構成される排
熱回収ボイラを通り、熱交換されて後に外部へ排出され
る。
First, air compressed by a compressor 1 of a gas turbine is combusted in a combustor 2. The combustion gas expanded by combustion is sent to the turbine 3 to drive the generator 4. The gas discharged from the gas turbine is led to the exhaust gas duct 5, passes through an exhaust heat recovery boiler consisting of a superheater 7, an evaporator 8, an economizer 9, and a drum 6, undergoes heat exchange, and then goes outside. be discharged.

一方、復水凝13より供給された水は復水ポンプ14を
経て、給水流量調節弁10によシ所要の給水流量を供給
する。給水された水は節炭器9によって加熱され、ドラ
ムへ給水される。さらに、蒸発48により加熱されて蒸
気となり、蒸気は加熱器7を経て加減弁11により蒸気
流量が調節され蒸気タービン12VC供給され、同様に
発電機4を、駆動する。
On the other hand, the water supplied from the condensate condenser 13 passes through the condensate pump 14 and supplies the required water supply flow rate to the water supply flow rate control valve 10. The supplied water is heated by the economizer 9 and supplied to the drum. Further, it is heated by evaporation 48 to become steam, and the steam passes through heater 7, the steam flow rate is adjusted by control valve 11, and is supplied to steam turbine 12VC, which similarly drives generator 4.

次に、従来のドラム水位制御系統について第3図により
間単に説明する。まず、水位設定25は上位計算機、或
いは、プログラマブル設定器などてより設定値が与えら
れる。与えられた水位設定値に対し、ドラム水位発信器
24よりフィードバック信号が与えられ、減x415で
設定値と実際の水位との偏差を出力し、比例積分616
で比例積分演算される。ドラム水位制御は三要素制御で
あるため減算器17で発信器26より蒸気流量、発信器
23より給水流量、及び、ドラム水位偏差の比例積分値
を減算することにより、偏差をさらに比例積分した値で
給水流量調節弁を制御する。
Next, a conventional drum water level control system will be briefly explained with reference to FIG. First, the water level setting 25 is given a setting value by a host computer or a programmable setting device. A feedback signal is given from the drum water level transmitter 24 for the given water level set value, and the deviation between the set value and the actual water level is output by subtraction x415, and the proportional integral is calculated by 616.
The proportional integral is calculated. Since the drum water level control is a three-element control, the subtractor 17 subtracts the steam flow rate from the transmitter 26, the water supply flow rate from the transmitter 23, and the proportional integral value of the drum water level deviation to obtain a value obtained by further proportionally integrating the deviation. to control the water supply flow rate control valve.

次に、本発明について第1図により説明する。Next, the present invention will be explained with reference to FIG.

先づドラム水位と水位設定値の減算器15の後にリミッ
タ−28、切替器29、信号発生器3o、31を設けて
ガスタービン消火とともに切替器29により通常の制限
値がセットされている信号発生器の出力から信号発生器
31の負出力に切替え、強制的に負の出力を出して給水
流量調節弁27の出力信号を閉方向に動作させる。これ
によって給水流iは急速に絞り込まれてゆく。さらに高
値選択回路22、切替器34、信号発生器35.36、
論理積回路37.38、タイマ39、モニタリレー32
.33を設ける。
First, a limiter 28, a switch 29, and signal generators 3o and 31 are provided after the drum water level and water level set value subtractor 15, and when the gas turbine is extinguished, the switch 29 generates a signal in which a normal limit value is set. The output of the signal generator 31 is switched to the negative output of the signal generator 31, and a negative output is forcibly output to operate the output signal of the water supply flow rate control valve 27 in the closing direction. As a result, the water supply flow i is rapidly narrowed down. Further, a high value selection circuit 22, a switch 34, a signal generator 35, 36,
AND circuit 37, 38, timer 39, monitor relay 32
.. 33 will be provided.

水位設定値を入力するモニタリレー33は水張水位設定
に達するまで1″の状態を示し、水張水位設定に達した
時点で“0″の状態となる。水位設定とドラム水位との
偏差を入力するモニタリレー32は偏差が所定の直よシ
小さくなくなったRK″″1″の状態となる。この二つ
のモニタリレー32.33の信号を論理積38.39に
入力することKよシ、水位識定値とドラム水位との偏差
が所定の値よυ小さくなった時に @1#の状態を出力
し、切替器34はO%開変の1直をもつ信号発生器35
から所定の足間直値をもつ信号発生器36の出力へと切
替える。これは、ガスタービンの消火よりランプ状に上
昇する水位設定において、水位設定値と水位の偏差をモ
ニタし、所定偏差より小さくなった場合に、給水流量調
節27は足間度となり、大きくなった場きは、開[0%
となる0N−OFF動作を行なう。これによって水位変
動の激しい水位設定上昇区間では適量に給水さノること
を防止できる。さらに、水位設定値が最i的な水張り設
定値となった点でモニタリレー3:の出力は@1”から
@0”へと切替わるため論阻積3g、39の出力値はそ
れぞれ@0”を出力コる。それによって切替器29では
通常の制限値ンリミツタに与え、切替器34では開度0
%の値ン高値選択回路に入力するため、再び、比例積分
制御を行なう自動制御に切替えることになる。
The monitor relay 33, which inputs the water level setting value, shows a state of 1'' until it reaches the water level setting, and becomes 0 when it reaches the water level setting.The deviation between the water level setting and the drum water level is The input monitor relay 32 is in the state of RK""1" in which the deviation is no longer smaller than the predetermined value. By inputting the signals of these two monitor relays 32 and 33 to the logical product 38 and 39, the state of @1# is output when the deviation between the water level identification value and the drum water level becomes smaller than a predetermined value. The switch 34 is a signal generator 35 having one shift with an opening change of 0%.
to the output of the signal generator 36 having a predetermined direct value between legs. This is done by monitoring the deviation between the water level set value and the water level when the water level rises in a ramp-like manner when the gas turbine is extinguished, and when the deviation becomes smaller than a predetermined deviation, the water supply flow rate adjustment 27 is adjusted to a foot-to-low level and the water level becomes larger. The place is open [0%
The ON-OFF operation is performed as follows. This prevents the water from being supplied in an appropriate amount in the rising water level section where the water level fluctuates rapidly. Furthermore, at the point where the water level setting value becomes the most i-optimal water filling setting value, the output of monitor relay 3: switches from @1" to @0", so the output values of the logical cross sections 3g and 39 become @0, respectively. ” is output. As a result, the switch 29 applies the normal limit value to the limiter, and the switch 34 outputs the opening degree 0.
In order to input the % value to the high value selection circuit, the automatic control is again switched to proportional-integral control.

このように、ガスタービン消火から水位設定7ランプ関
数的に上昇する区間までは偏差をモニ)しながら給水流
量調節弁を0N−OFF制御し、最終的な水俣設定値に
達した点で、再び、比例4分制御に戻すことにより、所
定の水張水位設定佑に水を張ることができる。
In this way, from the gas turbine extinguishing to the section where the water level rises according to the 7-ramp function, the water supply flow rate control valve is controlled 0N-OFF while monitoring the deviation, and when the final Minamata set value is reached, the water level is set again. By returning to proportional 4-minute control, water can be filled to a predetermined water level setting.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、流量の出し過ぎがなく、北上的安定し
た状態で水張りを行なうことができ、また、水張り設定
が一定となった所で、再び、1奪?1tlJIRに移る
が、水位設定値との偏差が小さく、汎L  度、圧力も
安定しているため、自動制御で十分追給  従できる動
作が得られる。
According to the present invention, it is possible to perform water filling in a stable state without overflowing the flow rate, and when the water filling setting becomes constant, it is possible to perform water filling again in a stable state. Moving on to 1tlJIR, the deviation from the water level set value is small, and the general L degree and pressure are stable, so automatic control can provide sufficient tracking and follow-up operation.

【図面の簡単な説明】[Brief explanation of drawings]

1   第1図は本発明の一実M列の制御系統図、第2
図は排熱回収式フンバインド発電プラントの概略:  
説明図、第3図は従来のドラム水位制御系統図でj ! 【 【 [ ν 盲1図
1. Fig. 1 is a control system diagram of one real M train of the present invention, Fig. 2
The diagram shows an outline of the exhaust heat recovery Humbind power plant:
The explanatory diagram, Figure 3, is a conventional drum water level control system diagram. [ [ [ ν Blind figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、ドラム水位制御系統において、水位と水位設定値の
偏差出力の後に制限器、切替器、信号発生器を設け、強
制的に給水流量調節弁を閉じる回路と高値選択回路にH
/Lモニタ、前記切替器、前記信号発生器を設け、水位
偏差をモニタしながら定開度流量を与える回路を設けた
ことを特徴とする停止時のドラム水張り制御装置。
1. In the drum water level control system, a limiter, a switch, and a signal generator are installed after the deviation output between the water level and the water level set value, and H is installed in the circuit that forcibly closes the water supply flow rate control valve and the high value selection circuit.
1. A drum water filling control device during stoppage, characterized in that a circuit is provided which includes a /L monitor, the switching device, and the signal generator, and provides a constant opening flow rate while monitoring water level deviation.
JP5250586A 1986-03-12 1986-03-12 Drum water-filling controller on stoppage Pending JPS62210304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250586A JPS62210304A (en) 1986-03-12 1986-03-12 Drum water-filling controller on stoppage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250586A JPS62210304A (en) 1986-03-12 1986-03-12 Drum water-filling controller on stoppage

Publications (1)

Publication Number Publication Date
JPS62210304A true JPS62210304A (en) 1987-09-16

Family

ID=12916585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250586A Pending JPS62210304A (en) 1986-03-12 1986-03-12 Drum water-filling controller on stoppage

Country Status (1)

Country Link
JP (1) JPS62210304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226991A (en) * 2004-02-12 2005-08-25 General Electric Co <Ge> Method and apparatus for drum water level control for drum-type boiler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226991A (en) * 2004-02-12 2005-08-25 General Electric Co <Ge> Method and apparatus for drum water level control for drum-type boiler

Similar Documents

Publication Publication Date Title
EP1275822B1 (en) Primary frequency regulation method in combined-cycle steam turbines
JPS58501866A (en) Damper control device for heat recovery steam generator
US6766646B1 (en) Rapid power producing system and method for steam turbine
US4036011A (en) Multiple valve sequential control for a combined cycle power plant
JPS62210304A (en) Drum water-filling controller on stoppage
JP2698141B2 (en) Water supply control device for FCB of drum boiler
JPS6149487B2 (en)
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JPS62172103A (en) Drum water-filling control system on stoppage
JP3673295B2 (en) Method and apparatus for controlling reheat steam temperature of boiler
JP3544689B2 (en) Start-up controller for variable-pressure once-through boiler
JP3112579B2 (en) Pressure control device
JP2549190B2 (en) Combined Cycle Power Plant Controller
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JP2645128B2 (en) Coal gasification power plant control unit
JPS6211167B2 (en)
JPH0122521B2 (en)
JPS57210106A (en) Controller for turbine
JPS63220005A (en) Steam-temperature control method of thermal plant
JPH1122420A (en) Control method for preventing low-temperature corrosion of refuse incinerating power plant
JPH0765728B2 (en) Method and apparatus for controlling stop of combined cycle power plant
JP2645129B2 (en) Condensate recirculation flow control device
JPH01212802A (en) Steam temperature control device for boiler
SU819497A1 (en) System for regulating steam outside of boiler
JPS5977202A (en) Controller for temperature of steam