JPS62207868A - Formation of thin metallic film - Google Patents

Formation of thin metallic film

Info

Publication number
JPS62207868A
JPS62207868A JP4989786A JP4989786A JPS62207868A JP S62207868 A JPS62207868 A JP S62207868A JP 4989786 A JP4989786 A JP 4989786A JP 4989786 A JP4989786 A JP 4989786A JP S62207868 A JPS62207868 A JP S62207868A
Authority
JP
Japan
Prior art keywords
substrate
thin film
bis
temperature
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4989786A
Other languages
Japanese (ja)
Other versions
JPH062943B2 (en
Inventor
Tomio Kudo
富雄 工藤
Atsutaka Yamaguchi
山口 温敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
Nippon Engelhard Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Engelhard Ltd filed Critical Nippon Engelhard Ltd
Priority to JP61049897A priority Critical patent/JPH062943B2/en
Publication of JPS62207868A publication Critical patent/JPS62207868A/en
Publication of JPH062943B2 publication Critical patent/JPH062943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simply obtain a high purity thin film of a group VIII metal by feeding an organometallic compound satisfying prescribed conditions as starting material to a part near a substrate heated to a prescribed temp. and by applying heat, plasma or light. CONSTITUTION:A solid organometallic compound contg. one or more kinds of group VIII metals and one or more kinds of 1-4C ligands, e.g., tris(acetylacetonato)rhodium, bis(acetylacetonato)palladium or bis-(cyclopentadienyl) palladium is prepd. The compound is vaporized at <=300 deg.C under <=10<-1>Torr pressure and one or more among heat, plasma and light are applied to the resulting vapor to form a thin metallic film on the surface of a substrate heated to <=300 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子部品などに用いられる元素周期律表第■族
金属の薄膜形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming a thin film of a metal from Group I of the Periodic Table of Elements used in electronic parts and the like.

〔従来の技術〕[Conventional technology]

白金などの第■族金属の薄膜は、電子部品等に用いられ
ている。第■族金属の薄膜の形成方法としては、蒸着法
として、例えば、「薄膜ハンドブック」(日本学術振興
会薄膜第131委員会編集オーム社昭和58年12月刊
)108頁にパラジウム、白金、ロジウムの蒸着による
薄膜形成方法が記載されている。
Thin films of Group I metals such as platinum are used in electronic components and the like. As a method for forming thin films of group Ⅰ metals, for example, as a vapor deposition method, there is a method for forming thin films of palladium, platinum, rhodium, etc. A method of forming thin films by vapor deposition is described.

また、CVD法としては、例えば、 J、 Elactrochem、 Soc、、 120
(5) 686 (1973)(著者Myrov J、
 Rand)には、固体化合物である、ジクロロビスカ
ルボニル白金(If )([Ptct□(CO)2))
、テトラキス(トリフルオロホスフィン)白金(n)(
[pt(pFz)、))を用い、常圧下で600℃に加
熱して金属薄膜を形成する方法が記載され、トリス(ア
セチルアセトナト)ルテニウム(m)((Ru(aca
c)z))を用いるRuの析出方法が特開昭51−14
1738号に開示され、またビス(アセチルアセトナト
)白金(n)((Pt (acac)z ))を用いて
pt皮膜を形成させる方法が、Vapor Depos
ition (C,F、 Powell他著JohnW
ily & 5ons、 Inc、、 New Yor
k(1966)) 310〜314頁およびJ、 El
ectrochem、 Soc、、 120(5)68
6(1973)(著者Myrov J、 Rand)に
記載されている。
Further, as the CVD method, for example, J, Electrochem, Soc, 120
(5) 686 (1973) (author Myrov J.
Rand) contains a solid compound, dichlorobiscarbonylplatinum (If) ([Ptct□(CO)2)).
, tetrakis(trifluorophosphine)platinum(n)(
A method of forming a metal thin film by heating to 600°C under normal pressure using [pt(pFz),
Ru precipitation method using c)z))
1738, and a method of forming a PT film using bis(acetylacetonato)platinum (n) ((Pt(acac)z)) is disclosed in Vapor Depos.
ition (C, F, Powell et al. John W.
ily & 5ons, Inc., New Year
K (1966)) pp. 310-314 and J, El.
electrochem, Soc, 120(5)68
6 (1973) (author Myrov J, Rand).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記の蒸着法は蒸着源となる金属単体材料を1
000〜2000℃の高温に加熱する必要があり。
However, in the above-mentioned vapor deposition method, the single metal material serving as the vapor deposition source is
It is necessary to heat it to a high temperature of 000-2000℃.

例えば、 10−”Torrの圧力下の融点は、パラジ
ウムは1460℃、白金は2090℃、ロジウムは20
40℃であることから、それぞれこれらの温度以上に加
熱する必要がある。この様な高温の加熱は省エネルギー
および経済性の見地より不利であり、同時に成膜速度コ
ントロールを困難にし、基体として用い得る材料が制約
されるという問題がある。
For example, the melting point under a pressure of 10-” Torr is 1460°C for palladium, 2090°C for platinum, and 20°C for rhodium.
Since the temperature is 40° C., it is necessary to heat each of them above these temperatures. Heating at such high temperatures is disadvantageous from the standpoint of energy saving and economic efficiency, and at the same time, there are problems in that it makes it difficult to control the film formation rate and limits the materials that can be used as the substrate.

また、前記CVD法の場合には、いずれも基体温度を3
50℃以上、多くは500〜600℃の高温に加熱する
必要がある為、やはり省エネルギーおよび経済性の点で
問題がある。さらに、成膜速度が0.001〜0.01
 μs/minと遅かったり、形成された薄膜に炭素不
純物が含まれるなどの問題が生じることもある。なお、
通常、CVD法には、気体または液体の原料を用いるこ
とが多いが、その場合には基体の近傍へ原料を集中的に
供給することが困難であり、原料の利用効率が悪いとい
う問題もある。
In addition, in the case of the above-mentioned CVD method, the substrate temperature is
Since it is necessary to heat to a high temperature of 50° C. or higher, often 500 to 600° C., there are still problems in terms of energy saving and economic efficiency. Furthermore, the film formation rate is 0.001 to 0.01
Problems may arise, such as the speed being as slow as μs/min and the formed thin film containing carbon impurities. In addition,
Usually, gas or liquid raw materials are often used in the CVD method, but in that case, it is difficult to supply the raw materials in a concentrated manner near the substrate, and there is also the problem of poor raw material utilization efficiency. .

第■族金属薄膜の形成法としてスパッタ法の利用が考え
られるが、一般に、スパッタ法では、基体の温度上昇が
激しいので、上記従来法の問題点を解決することができ
ず、さらに成膜速度が遅く、装置が極めて高価であると
いう等の問題がある。
Sputtering can be considered as a method for forming Group Ⅰ metal thin films, but in general, sputtering causes a rapid rise in the temperature of the substrate, making it impossible to solve the problems of the conventional methods mentioned above. There are problems such as slow speed and extremely expensive equipment.

そこで本発明の目的は、AI料湿温度よび基体温度とも
低温で実施でき、成膜のコントロールが容易で成膜速度
が比較的速く、さらに原料の利用効率が高く、高価な装
置を必要としない、高純度の第■族金属薄膜を形成でき
る方法を提供することにある0本発明者らは、第■族金
属元素を含有する特定の有機金属化合物を原料として選
択し、特定の条件下で分解させることにより前記従来技
術の問題点を解決し得ることを見出した。゛〔問題点を
解決するための手段〕 即ち、本発明は、前記問題点を解決するものとして、原
料として1有機金属化合物を用い、基体の表面に元素周
期律表第■族の金属の薄膜を形成する方法であって、前
記有機金属化合物が、第■族の金属元素の少なくとも一
種と炭素原子数1〜4の配位子の少なくとも一つを含有
する固体有機金属化合物、トリス(アセチルアセトナト
)ロジウム、ビス(アセチルアセトナト)パラジウム、
ビス(シクロペンタジェニル)パラジウム、ビス(シク
ロペンタジェニル)コバルト、ビス(シクロペンタジェ
ニル)ニッケルおよびビス(シクロペンタジェニル)ル
テニウムから選ばれる少なくとも一種であり、圧力1O
−1Torr以下、原料温度300℃以下、そして基体
温度300℃以下において、前記有機金属化合物を気化
させ、その蒸気に熱、プラズ了および光の少なくとも一
つを作用させることからなる金属薄膜形成方法を提供す
るものである。
Therefore, the purpose of the present invention is to enable AI to be carried out at low humidity and substrate temperatures, to easily control film formation, to have a relatively fast film formation rate, to have high raw material utilization efficiency, and to eliminate the need for expensive equipment. The present inventors selected a specific organometallic compound containing a group (III) metal element as a raw material and formed a thin film of a group (III) metal with high purity under specific conditions. It has been found that the problems of the prior art can be solved by decomposition. [Means for Solving the Problems] That is, the present invention solves the above-mentioned problems by using an organometallic compound as a raw material and coating a thin film of a metal of group (I) of the periodic table of elements on the surface of a substrate. , wherein the organometallic compound is a solid organometallic compound containing at least one metal element of group (I) and at least one ligand having 1 to 4 carbon atoms, tris(acetylacetate), Nato) rhodium, bis(acetylacetonato) palladium,
At least one member selected from bis(cyclopentagenyl)palladium, bis(cyclopentagenyl)cobalt, bis(cyclopentagenyl)nickel, and bis(cyclopentagenyl)ruthenium, and the pressure is 1O.
A metal thin film forming method comprising vaporizing the organometallic compound at −1 Torr or lower, a raw material temperature of 300° C. or lower, and a substrate temperature of 300° C. or lower, and applying at least one of heat, plasma, and light to the vapor. This is what we provide.

本発明の方法に原料として用いられる有機金属化合物は
、元素周期律表第■族元素の少なくとも一種含有するも
のであり、第■族元素としては、鉄(Fe)、コバルト
(Co)、ニッケル(Ni)、ルテニウム(Ru)、ロ
ジウム(Rh)、パラジウム(Pd) 、オスミウム(
Os)、イリジウム(Ir)、白金(pt)があげられ
る。
The organometallic compound used as a raw material in the method of the present invention contains at least one element from Group Ⅰ of the Periodic Table of the Elements, and examples of Group Ⅰ elements include iron (Fe), cobalt (Co), and nickel ( Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (
Os), iridium (Ir), and platinum (pt).

また、用いられる有機金属化合物の一種は常温、常圧に
おいて固体であり、炭素原子数1〜4の配位子を少なく
とも一つ含有するものである。すべての配位子が炭素原
子数5以上であると、後記化合物を除いて、300℃以
下で蒸気化困難であったり、形成される薄膜に炭素や有
機不純物が取り込まれる恐れが大きい、この様な炭素原
子数1〜4の配位子としては、例えば、カルボニル、メ
チル、エチル、プロピル、ブチル、アリル、エチレジ等
があげられる。該有機金属化合物は、炭素原子数1〜4
の配位子以外の配位子を有することは任意であり、その
様な配位子として1例えば、アセチルアセトナト、シク
ロペンタジェニル、シクロオフタテトラエン、1,4.
5−η−4−シクロオクテンー1−イル、ふっ素、塩素
、臭素、ヨウ素等のハロゲン等があげられる。炭素原子
数1〜4の配位子を少なくとも一つと第1数の金属元素
を含有する固体の有機金属化合物の具体例としては、ト
リカルボニル(シクロオクタテトラエン)鉄 ((Fa (CO)a (C−He ))、エンネア力
ルボニルニ鉄((Fax (Go)s ] )、オクタ
カルボニルニコバルト((Cot (Co)s ))、
ドデカカルボニル四コバルト((CO4(co)z□〕
)、ドデカカルボニル三コバルトロジウム((co、R
h(co)、))、ドデカカルボニル玉ルテニウム((
Ruz (Co)、z〕)、ドデカカルボニル鉄二ルテ
ニウム((FeRu、(Co)1−))、ドデカカルボ
ニル四ロジウム([Rh4(Co)l□])、ヘキサデ
カカルボニル六ロジウム((Rh、 (Co)□。〕)
、ジカルボニル(アセチルアセトナト)ロジウム((R
h(Co)、 (acac)))。
Moreover, one type of organometallic compound used is solid at normal temperature and normal pressure, and contains at least one ligand having 1 to 4 carbon atoms. If all the ligands have 5 or more carbon atoms, except for the compounds listed below, it may be difficult to vaporize at temperatures below 300°C, or there is a high risk that carbon and organic impurities will be incorporated into the formed thin film. Examples of the ligand having 1 to 4 carbon atoms include carbonyl, methyl, ethyl, propyl, butyl, allyl, and ethylenedi. The organometallic compound has 1 to 4 carbon atoms.
It is optional to have a ligand other than the ligand of 1,4.
Examples include halogens such as 5-η-4-cycloocten-1-yl, fluorine, chlorine, bromine, and iodine. Specific examples of solid organometallic compounds containing at least one ligand having 1 to 4 carbon atoms and the first metal element include tricarbonyl(cyclooctatetraene)iron ((Fa (CO)a (C-He)), iron carbonyl nitrate ((Fax (Go)s)), octacarbonylnicobalt ((Cot (Co)s)),
Dodecacarbonyl tetracobalt ((CO4(co)z□)
), dodecacarbonyl tricobalthodium ((co, R
h(co), )), dodecacarbonyl ruthenium ((
Ruz (Co), z]), dodecacarbonyl iron diruthenium ((FeRu, (Co)1-)), dodecacarbonyl tetrarhodium ([Rh4(Co)l□]), hexadecacarbonyl hexarhodium ((Rh, ( Co)□.〕)
, dicarbonyl(acetylacetonato)rhodium ((R
h(Co), (acac))).

ジアリル(アセチルアセトナト)ロジウム((Rh (
C,H,)* (acac) ) )、ビス(エチレン
)シクロペンタジェニルロジウム((nh(c、o、)
z(csl)) 、テトラカルボニルパラジウム((p
d(co)、)) 、トリス(エチレン)パラジウム(
(Pd(Cu2):i)) −アリル(シクロペンタジ
ェニル)パラジウム ((pd(c、o、)(c、Hs))) 、ジカルボニ
ル(アセチルアセトナト)白金((pt (CO)2 
(acac) ) ) −ジアリル白金([Pt (c
a IIs )2 ] )、トリメチル(アセチルアセ
トナト)白金((Pt (CHa )3 (acac)
) )等があげられる。なお、原料とする化合物は前記
の様にハロゲンを含有してもよいが、この場合には排ガ
スにハロゲンが含まれるので環境衛生、安全上注意を要
する。
Diallyl(acetylacetonato)rhodium ((Rh (
C,H,)* (acac) )), bis(ethylene)cyclopentadienyl rhodium ((nh(c,o,)
z(csl)), tetracarbonylpalladium((p
d(co), )), tris(ethylene)palladium (
(Pd(Cu2):i)) -allyl(cyclopentadienyl)palladium((pd(c,o,)(c,Hs))), dicarbonyl(acetylacetonato)platinum((pt(CO)2)
(acac) ) ) -diallylplatinum ([Pt (c
a IIs )2 ] ), trimethyl(acetylacetonato)platinum ((Pt (CHa )3 (acac)
) ) etc. Note that the compound used as a raw material may contain a halogen as described above, but in this case, since the exhaust gas contains a halogen, care must be taken in terms of environmental health and safety.

本発明の方法はハロゲンを含まない原料を選択できる利
点がある。
The method of the present invention has the advantage that raw materials that do not contain halogen can be selected.

また、炭素原子数1〜4の配位子を有しないが、トリス
(アセチルアセトナト)ロジウム(m)((Rh (a
cacL ))、ビス(アセチルアセトナト)パラジウ
ム(■) ((Pd (acac)z ]) −ビス(
シクロペンタジェニル)パラジウム((pd(c、 O
5)z ))、ビス(シクロペンタジェニル)コバルト
((Co(CsHs)z))−ビス(シクロペンタジェ
ニル)ニッケル((Nl (Ci Ha )z ) )
およびビス(シクロペンタジェニル)ルテニウム((R
u (cs J )z ))は、本発明の方法に用いる
ことができる。これら化合物も、比較的蒸気圧は高いが
、常温、常圧において固体である。
Also, although it does not have a ligand having 1 to 4 carbon atoms, tris(acetylacetonato)rhodium(m)((Rh (a
cacL )), bis(acetylacetonato)palladium (■) ((Pd(acac)z ]) -bis(
cyclopentagenyl) palladium ((pd(c, O
5)z)), bis(cyclopentadienyl)cobalt ((Co(CsHs)z))-bis(cyclopentagenyl)nickel ((Nl(CiHa)z))
and bis(cyclopentadienyl)ruthenium ((R
u (cs J )z )) can be used in the method of the invention. These compounds also have relatively high vapor pressures, but are solid at normal temperature and pressure.

上記の有機金属化合物は、目的とする薄膜の組成に応じ
て一種単独でも二種以上の組み合わせでも使用すること
ができる。
The above organometallic compounds can be used singly or in combination of two or more, depending on the composition of the desired thin film.

本発明の方法は、圧力10”” Torr以下、好まし
くは10−” Torr以下、特に好ましくは10−”
 Torr以下において、原料である前記の有機金属化
合物の温度300℃以下、好ましくは室温から200℃
、そして基体温度300℃以下、好ましくは200℃以
下において実施される。圧力が10−1τorrを超え
ると、原料を気化する為に原料温度を300℃より高く
しなければならない、原料温度が300℃を超えると、
低温化を図る本発明の目的に反し、また原料化合物が蒸
気になる前に分解したり、基体上への成膜速度が遅くな
る。基体の温度を300℃より高くすることも本発明の
目的に反するし、また、前記の有機金属化合物を使用す
る限り、300℃以下で十分に金@薄膜を形成すること
ができるので300℃より高くする必要はない。
The method of the invention is performed at pressures below 10"" Torr, preferably below 10" Torr, particularly preferably below 10"
Torr or less, the temperature of the organometallic compound as a raw material is 300°C or less, preferably room temperature to 200°C.
, and the substrate temperature is 300°C or less, preferably 200°C or less. If the pressure exceeds 10-1τorr, the raw material temperature must be higher than 300°C to vaporize the raw material.If the raw material temperature exceeds 300°C,
This is contrary to the purpose of the present invention, which is to reduce the temperature, and the raw material compound may be decomposed before it becomes vapor, and the rate of film formation on the substrate may be slowed down. Raising the temperature of the substrate higher than 300°C also goes against the purpose of the present invention, and as long as the above-mentioned organometallic compound is used, a gold@thin film can be sufficiently formed at a temperature below 300°C. There's no need to make it expensive.

原料化合物の気化は、上記の圧力下で原料を300℃以
下の、多くは200℃以下の適当な温度に調整すればよ
く、必要に応じて加熱する。具体的な温度は、圧力およ
び原料化合物の種類により異なるが容易に選定できる。
To vaporize the raw material compound, the raw material may be adjusted to an appropriate temperature of 300° C. or less, often 200° C. or less under the above pressure, and may be heated if necessary. The specific temperature varies depending on the pressure and the type of raw material compound, but can be easily selected.

本発明の方法は、こうして蒸気化した原料化合物を基体
表面の近傍1例えば基体から1〜10cmの位置に導き
、熱、プラズマおよび光の少なくとも一種を作用させる
。これにより、原料化合物は基体の表面に第■族元素の
金属またはその合金からなる薄膜が形成される。
In the method of the present invention, the raw material compound vaporized in this manner is introduced into the vicinity of the substrate surface, for example, at a position 1 to 10 cm from the substrate, and is treated with at least one of heat, plasma, and light. As a result, a thin film of the raw material compound is formed on the surface of the substrate, consisting of a Group 1 metal or an alloy thereof.

熱を作用させるには、通常基体を加熱すればよく、この
場合、基体温度が300℃を超えないように加熱する。
To apply heat, it is usually sufficient to heat the substrate, and in this case, the substrate temperature is heated so as not to exceed 300°C.

また、プラズマを反応容器内に生起させる方法は特に制
約はなく、′例えば高周波放電、マグネトロン型放電、
 ECR放電等を利用することができる。
There are no particular restrictions on the method of generating plasma in the reaction vessel; for example, high-frequency discharge, magnetron-type discharge,
ECR discharge etc. can be used.

プラズマ励起に用いる気体は1通常空気でよく特に制約
はない。基体上のエネルギー密度は0.1〜10001
1/a#の範囲が好ましい。
There are no particular restrictions on the gas used for plasma excitation, which may generally be air. The energy density on the substrate is 0.1-10001
A range of 1/a# is preferred.

また、光を作用させる際に用いられる光としては、例え
ば、 CO,レーザー(10,59μ+a) 、 Ar
+レーザー(0,1257μm)等のレーザー光をあげ
ることができる。
In addition, examples of light used when applying light include CO, laser (10,59μ+a), Ar
A laser beam such as + laser (0.1257 μm) can be used.

熱、プラズマおよび光は、必要に応じて二種以上組み合
わせて作用させることができる。
Heat, plasma, and light can be used in combination of two or more types, if necessary.

本発明に用いられる基体の形状、材質には特に制約はな
く、材質としては、例えば、セラミック、金属、ガラス
、樹脂等が可能である。なお、基体と金属薄膜との密着
強度を向上させる為、プライマーコーティング、予備加
熱、イオンボンバード処理、プラズマ処理等の各種前処
理を行なってもよい。
There are no particular restrictions on the shape and material of the substrate used in the present invention, and examples of the material include ceramic, metal, glass, and resin. In order to improve the adhesion strength between the substrate and the metal thin film, various pretreatments such as primer coating, preheating, ion bombardment treatment, plasma treatment, etc. may be performed.

本発明の方法によれば、厚さ約5μ園程度までの第■族
金属の薄膜を高純度で形成することができる。
According to the method of the present invention, it is possible to form a highly pure thin film of Group I metal up to a thickness of approximately 5 μm.

〔実施例〕〔Example〕

以下、本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 第1図に概略を示す高周波プラズマ用コイルを備えた蒸
着装置を使用した。該装置はペルジャー型反応器1内に
ヒーターを備えた試料台2を備え、試料台2の真上約6
cn+離れた位置に基板3を取りけることができ、基板
3もヒーター(図示略)により加熱することができる。
Example 1 A vapor deposition apparatus equipped with a high-frequency plasma coil schematically shown in FIG. 1 was used. The apparatus is equipped with a sample stage 2 equipped with a heater in a Pelger type reactor 1, and is located approximately 600 meters directly above the sample stage 2.
The substrate 3 can be placed at a position cn+ apart, and the substrate 3 can also be heated by a heater (not shown).

反応器1の内部はバルブ4を備えた排気管5により排気
でき、内部の真空度は真空計6により測定でき、調節可
能である。また、試料台2の上に置かれる原料化合物7
および基板3の温度は熱電対(図示略)で測定すること
ができる。反応器1の外側には反応器内にプラズマを励
起するための高周波用コイル8が設けられている。
The inside of the reactor 1 can be evacuated through an exhaust pipe 5 equipped with a valve 4, and the degree of vacuum inside can be measured and adjusted with a vacuum gauge 6. In addition, the raw material compound 7 placed on the sample stage 2
And the temperature of the substrate 3 can be measured with a thermocouple (not shown). A high frequency coil 8 is provided outside the reactor 1 to excite plasma within the reactor.

上記の装置を用い、しかし、プラズマは励起させずに、
真空度2X10−3Torr、基板温度150℃、試料
温度20℃において、(Rua (Co)□2〕を試料
として用い、ガラス基板上にルテニウム金属薄膜を形成
した。
Using the above apparatus, but without exciting the plasma,
A ruthenium metal thin film was formed on a glass substrate using (Rua (Co)□2) as a sample at a vacuum degree of 2×10 −3 Torr, a substrate temperature of 150° C., and a sample temperature of 20° C.

得られた1μ履厚の薄膜のピーリング試験による密着強
度は良好であり、成膜速度は0.2μm/winであっ
た。また、金属1膜は殆ど基板表面にのみ形成され、原
料の利用効率が高かった。
The adhesion strength of the obtained thin film with a thickness of 1 μm was found to be good in a peeling test, and the film formation rate was 0.2 μm/win. Further, the metal 1 film was formed almost only on the substrate surface, and the raw material utilization efficiency was high.

実施例2 実施例1と同じ装置を用い、真空度5 X 1O−4T
orr、基板温度150℃、試料温度200℃において
、(Rh4(co)t□)を試料として用いた以外は実
施例1と同様にして、ガラス基板上にロジウム金属薄膜
を形成した。
Example 2 Using the same equipment as Example 1, vacuum degree 5 x 1O-4T
A rhodium metal thin film was formed on a glass substrate in the same manner as in Example 1 except that (Rh4(co)t□) was used as a sample at a substrate temperature of 150°C and a sample temperature of 200°C.

得られた0、5μ履厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.1μm/winで
あった。
The adhesion strength of the obtained thin film with a thickness of 0.5 μm was found to be good in a peeling test, and the film formation rate was 0.1 μm/win.

実施例3 実施例1と同じ装置を用い、真空度5 X 10’−1
Torr、基板温度150℃、試料温度150℃におい
て、(Pt (Co)、 (acae) )を試料とし
て用いた以外は実施例1と同様にして、ガラス基板上に
白金金属薄膜を形成した。
Example 3 Using the same equipment as Example 1, vacuum degree 5 x 10'-1
A platinum metal thin film was formed on a glass substrate in the same manner as in Example 1 except that (Pt (Co), (acae) ) was used as a sample at Torr, substrate temperature of 150° C., and sample temperature of 150° C.

得られた0、5μ履厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.1μm/winで
あった。
The adhesion strength of the obtained thin film with a thickness of 0.5 μm was found to be good in a peeling test, and the film formation rate was 0.1 μm/win.

実施例4 実施例1と同じ装置を用い、真空度5 X 10−1T
orr。
Example 4 Using the same equipment as Example 1, vacuum degree 5 x 10-1T
orr.

基板温度室温、試料温度200℃において。At a substrate temperature of room temperature and a sample temperature of 200°C.

(Pd (acac)z )を試料として用いた以外は
実施例1と同様にして、ガラス基板上にパラジウム金属
薄膜を形成した。
A palladium metal thin film was formed on a glass substrate in the same manner as in Example 1 except that (Pd (acac)z ) was used as the sample.

得られた0、5μ履厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.1μ+i/+mi
nであった。
The peeling test of the obtained thin film with a thickness of 0.5μ showed good adhesion strength, and the film formation rate was 0.1μ+i/+mi.
It was n.

実施例5 実施例1と同じ装置を用い、真空度5 X 10−”T
orr、基板温度150℃、試料温度室温において、(
Co、 (Co)s )を試料として用いた以外は実施
例1と同様にして、ガラろ基板上にコバルト金属薄膜を
形成した。
Example 5 Using the same equipment as Example 1, vacuum degree 5 × 10-”T
orr, substrate temperature 150°C, sample temperature room temperature, (
A cobalt metal thin film was formed on a gala substrate in the same manner as in Example 1 except that Co, (Co)s ) was used as the sample.

得られた0、5μ履厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.1μ+s/win
であった。
The peeling test of the obtained thin film with a thickness of 0.5μ showed good adhesion strength, and the film formation rate was 0.1μ+s/win.
Met.

実施例6 実施例1と同じ装置を用い、真空度5 X 10−1T
orr、基板温度室温、試料温度室温において。
Example 6 Using the same equipment as Example 1, vacuum degree 5 x 10-1T
orr, substrate temperature at room temperature, sample temperature at room temperature.

CRu5 (Co)xz )を試料として用い、基板上
のエネルギー密度がLOW/aJである高周波プラズマ
を作用させて、ガラス基板上にルテニウム金属薄膜を形
成した。
Using CRu5 (Co)xz ) as a sample, a ruthenium metal thin film was formed on a glass substrate by applying high frequency plasma with an energy density of LOW/aJ on the substrate.

得られた1μm厚の薄膜のピーリング試験による密着強
度は良好であり、成膜速度は0.2μs/lll1nで
あった。
The adhesion strength of the resulting thin film with a thickness of 1 μm determined by a peeling test was good, and the film formation rate was 0.2 μs/lll1n.

実施例7 実施例1と同じ装置を用い、真空度5 X 10””T
orr。
Example 7 Using the same equipment as Example 1, vacuum degree 5 x 10”T
orr.

基板温度150℃、試料温度室温において、(Cot 
(CO)−3と(Ru、 (co)xi)の混合物を試
料として用いた以外は実施例1と同様にして、ガラス基
板上に金属薄膜を形成した。
At a substrate temperature of 150°C and a sample temperature of room temperature, (Cot
A metal thin film was formed on a glass substrate in the same manner as in Example 1 except that a mixture of (CO)-3 and (Ru, (co)xi) was used as a sample.

得られた薄膜は、析出比率がCo : Ru=70 :
 30(重量比)のCo−Ru合金皮膜であった。得ら
れた1μm厚の薄膜のピーリング試験による密着強度は
良好であり、成膜速度は0.2μs/winであった。
The obtained thin film had a precipitation ratio of Co:Ru=70:
It was a Co-Ru alloy film with a weight ratio of 30 (weight ratio). The adhesion strength of the obtained 1 μm thick thin film as determined by a peeling test was good, and the film formation rate was 0.2 μs/win.

比較例1(蒸着法) 実施例1と同じ装置を用い、真空度5X1(1’″1T
orr、基板温度150℃、試料温度2100℃におい
て、ptを試料として用い、蒸着によりガラス基板上に
白金金属薄膜を作成した。
Comparative Example 1 (Vapour Deposition Method) Using the same equipment as in Example 1, the degree of vacuum was 5X1 (1'''1T)
Using PT as a sample, a platinum metal thin film was formed on a glass substrate by vapor deposition at a substrate temperature of 150°C and a sample temperature of 2100°C.

得られた0、5μm厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.1μm/minで
あった。
The adhesion strength of the obtained thin film with a thickness of 0.5 μm was determined by a peeling test to be good, and the film formation rate was 0.1 μm/min.

比較例2(スパッタ法) 高周波スパッタ装置を用い、キャリヤーガスとしてアル
ゴンを用い、真空度5X10−″” Torrで、基板
温度200℃、試料温度室温において、ptを試料とし
て用い、高周波二極スパッタ法により、ガラス基板上に
白金金属薄膜を作成した。
Comparative Example 2 (Sputtering method) Using a high-frequency sputtering device, using argon as a carrier gas, at a vacuum level of 5 x 10-'' Torr, at a substrate temperature of 200°C, and a sample temperature of room temperature, a high-frequency bipolar sputtering method was carried out using PT as a sample. A platinum metal thin film was created on a glass substrate.

得られた0、1μm厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.01μm1w1n
であった。
The adhesion strength of the obtained thin film with a thickness of 0.1 μm was determined by a peeling test, and the film formation rate was 0.01 μm1w1n.
Met.

比較例3 (CVD法) CVD装置を用い、キャリヤーガスとして水素を用い、
常圧(1気圧)で、基板温度600℃、試料温度150
℃において、(Pt(PF−)4〕を試料として用い、
ガラス基板上に白金金属薄膜を作成した。なお、排出ガ
スは、塩素系除去剤を有する排ガス処理装置に通した後
、水スクラバー(NaOII含有)に通して処理を行な
った。
Comparative Example 3 (CVD method) Using a CVD device and using hydrogen as a carrier gas,
At normal pressure (1 atm), substrate temperature 600℃, sample temperature 150℃
℃, using (Pt(PF-)4) as a sample,
A platinum metal thin film was created on a glass substrate. Note that the exhaust gas was passed through an exhaust gas treatment device containing a chlorine-based removing agent and then passed through a water scrubber (containing NaOII) for treatment.

得られた0、1μm厚の薄膜のピーリング試験による密
着強度は良好であり、成膜速度は0.01μm/aki
nであった。
The adhesion strength of the obtained thin film with a thickness of 0.1 μm was determined by a peeling test, and the film formation rate was 0.01 μm/aki.
It was n.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によると、原料および基体の温度が300
℃以下の低温において第■族金漠の薄膜を形成すること
ができ、しかも、成膜速度が速いとともにその速度を原
料化合物の加熱を調節することで容易にコントロールす
ることができる。また。
According to the method of the present invention, the temperature of the raw material and substrate is 300°C.
A thin film of Group I metal can be formed at a low temperature below .degree. C., and the film formation rate is fast, and the speed can be easily controlled by adjusting the heating of the raw material compound. Also.

原料化合物が固体であるので反応器内で原料と基体の間
隔を随意に調節でき、原料を基体の近傍に設置すること
ができる為、薄膜形成への利用効率が高い、さらに、高
価な装置や原料を必要としない利点がある。
Since the raw material compound is a solid, the distance between the raw material and the substrate can be adjusted at will in the reactor, and the raw material can be placed near the substrate, resulting in high utilization efficiency for thin film formation. It has the advantage of not requiring raw materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例で用いた蒸着装置の概略を示す縦断面
図である。 1、反応器    3.基板
FIG. 1 is a vertical cross-sectional view schematically showing a vapor deposition apparatus used in Examples. 1. Reactor 3. substrate

Claims (1)

【特許請求の範囲】[Claims] 原料として、有機金属化合物を用い、基体の表面に元素
周期律表第VIII族の金属の薄膜を形成する方法であって
、前記有機金属化合物が、第VIII族の金属元素の少なく
とも一種と炭素原子数1〜4の配位子の少なくとも一つ
を含有する固体有機金属化合物、トリス(アセチルアセ
トナト)ロジウム、ビス(アセチルアセトナト)パラジ
ウム、ビス(シクロペンタジエニル)パラジウム、ビス
(シクロペンタジエニル)コバルト、ビス(シクロペン
タジエニル)ニッケルおよびビス(シクロペンタジエニ
ル)ルテニウムから選ばれる少なくとも一種であり、圧
力10^−^1Torr以下、原料温度300℃以下、
そして基体温度300℃以下において、前記有機金属化
合物を気化させ、その蒸気に熱、プラズマおよび光の少
なくとも一つを作用させることからなる金属薄膜の形成
方法。
A method for forming a thin film of a metal of group VIII of the periodic table of elements on the surface of a substrate using an organometallic compound as a raw material, the organometallic compound comprising at least one metal element of group VIII and a carbon atom. Solid organometallic compounds containing at least one of the following ligands: tris(acetylacetonato)rhodium, bis(acetylacetonato)palladium, bis(cyclopentadienyl)palladium, bis(cyclopentadienyl); at least one selected from enyl) cobalt, bis(cyclopentadienyl) nickel, and bis(cyclopentadienyl) ruthenium, the pressure is 10^-^1 Torr or less, the raw material temperature is 300°C or less,
and a method for forming a metal thin film, which comprises vaporizing the organometallic compound at a substrate temperature of 300° C. or lower, and applying at least one of heat, plasma, and light to the vapor.
JP61049897A 1986-03-07 1986-03-07 Method for forming metal thin film Expired - Lifetime JPH062943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049897A JPH062943B2 (en) 1986-03-07 1986-03-07 Method for forming metal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049897A JPH062943B2 (en) 1986-03-07 1986-03-07 Method for forming metal thin film

Publications (2)

Publication Number Publication Date
JPS62207868A true JPS62207868A (en) 1987-09-12
JPH062943B2 JPH062943B2 (en) 1994-01-12

Family

ID=12843808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049897A Expired - Lifetime JPH062943B2 (en) 1986-03-07 1986-03-07 Method for forming metal thin film

Country Status (1)

Country Link
JP (1) JPH062943B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274275A (en) * 1990-03-26 1991-12-05 Mitsubishi Electric Corp Device for forming thin film utilizing organometallic gas
JPH04268070A (en) * 1990-11-02 1992-09-24 Abb Patent Gmbh Method for forming metal layer on substrate
US5171992A (en) * 1990-10-31 1992-12-15 International Business Machines Corporation Nanometer scale probe for an atomic force microscope, and method for making same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665029A (en) * 1979-10-17 1981-06-02 Ruhrchemie Ag Method of forming metal* metal oxide or metal carbide layer on polyolefin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665029A (en) * 1979-10-17 1981-06-02 Ruhrchemie Ag Method of forming metal* metal oxide or metal carbide layer on polyolefin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274275A (en) * 1990-03-26 1991-12-05 Mitsubishi Electric Corp Device for forming thin film utilizing organometallic gas
US5171992A (en) * 1990-10-31 1992-12-15 International Business Machines Corporation Nanometer scale probe for an atomic force microscope, and method for making same
JPH04268070A (en) * 1990-11-02 1992-09-24 Abb Patent Gmbh Method for forming metal layer on substrate

Also Published As

Publication number Publication date
JPH062943B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JP3875491B2 (en) Chemical properties of precursors for chemical vapor deposition of ruthenium or ruthenium oxide.
EP0554246B1 (en) Cvd of metal films from beta-diketonate complexes
US5403620A (en) Catalysis in organometallic CVD of thin metal films
EP1293509B1 (en) Ruthenium complex, process for producing the same and process for producing thin film
US5783716A (en) Platinum source compositions for chemical vapor deposition of platinum
US5130172A (en) Low temperature organometallic deposition of metals
US5149596A (en) Vapor deposition of thin films
US4992305A (en) Chemical vapor deposition of transistion metals
JP4517565B2 (en) Ruthenium complex, method for producing the same, and method for producing the thin film
Hierso et al. Platinum, palladium and rhodium complexes as volatile precursors for depositing materials
US5693377A (en) Method of reducing carbon incorporation into films produced by chemical vapor deposition involving titanium organometallic and metal-organic precursor compounds
US4415420A (en) Cubic boron nitride preparation
JPS62207868A (en) Formation of thin metallic film
JP4661130B2 (en) Chemical vapor deposition method
JP2021025121A (en) Chemical vapor deposition raw material, method for manufacturing tin containing thin film and method for manufacturing tin oxide thin film
JP2010215982A (en) Method for producing ruthenium-containing film using ruthenium complex organic solvent solution, and ruthenium-containing film
US3194824A (en) Preparation of cyclopentadienyl group vb metal tetracarbonyls
JP4553642B2 (en) Organic iridium compound, process for producing the same, and process for producing film
EP1657245B1 (en) Organoiridium compound, process for producing the same, and process for producing film
JP5859885B2 (en) Metal multilayer film forming method and metal multilayer film forming apparatus
JPH04214867A (en) Method for growing thin film and apparatus therefor
JP5660055B2 (en) Ruthenium film forming material and ruthenium film forming method
Blackburn Chemical fluid deposition: Reactive deposition of thin metal films from supercritical carbon dioxide solutions
JPH05226335A (en) Forming method of thin film
JP2001181840A (en) Copper raw material for chemical vapor growth and method for producing thin film using the same