JP4517565B2 - Ruthenium complex, method for producing the same, and method for producing the thin film - Google Patents

Ruthenium complex, method for producing the same, and method for producing the thin film Download PDF

Info

Publication number
JP4517565B2
JP4517565B2 JP2002217225A JP2002217225A JP4517565B2 JP 4517565 B2 JP4517565 B2 JP 4517565B2 JP 2002217225 A JP2002217225 A JP 2002217225A JP 2002217225 A JP2002217225 A JP 2002217225A JP 4517565 B2 JP4517565 B2 JP 4517565B2
Authority
JP
Japan
Prior art keywords
represented
ruthenium
general formula
group
ruthenium compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002217225A
Other languages
Japanese (ja)
Other versions
JP2003342286A (en
Inventor
和久 河野
謙一 関本
憲昭 大島
哲夫 渋田見
周治 熊谷
泰志 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2002217225A priority Critical patent/JP4517565B2/en
Publication of JP2003342286A publication Critical patent/JP2003342286A/en
Application granted granted Critical
Publication of JP4517565B2 publication Critical patent/JP4517565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法とする)、塗布熱分解法等によるルテニウム含有薄膜の形成に有用な有機ルテニウム錯体、その製造方法、及び半導体メモリー等の電子素子等に使用されるルテニウム含有薄膜の製造方法に関する。
【0002】
【従来の技術】
半導体メモリー素子の高集積化に伴いメモリーセルの微細化が進み、キャパシター絶縁膜に(Ba、Sr)TiO3等の強誘電体薄膜を使用することが検討されている。強誘電体薄膜を使用したキャパシターでは電極としてPt、Ru、Irといった貴金属が使用される。このうちRuは酸化物が導電性を持つ、微細加工性に優れるといった点から電極材料として最も有力視されており、Ru薄膜あるいはRuO2薄膜による電極が検討されている。高集積化したメモリー素子におけるこれらRu含有薄膜の形成方法としては段差被覆性、組成制御性に優れるといった点からCVD法が最適である。
【0003】
このCVD法を用いて薄膜を形成させるための原料物質としては金属化合物の中でも融点が低く取り扱い性が容易である有機金属化合物が適していると考えられる。従来、ルテニウムまたはルテニウム酸化物薄膜を析出させる為の有機金属化合物としてはルテノセンあるいはトリ(ジピバロイルメタナート)ルテニウム(以後Ru(DPM)3)[特開平6−283438号公報]またはトリ(オクタン−2,4−ジオネート)ルテニウム(以後Ru(OD)3)[特開2000−212744号公報]が用いられていた。ルテノセンは、それぞれのシクロペンタジエン環を構成するのが炭素と水素のみであり、2つのシクロペンタジエン環の間にルテニウムが挟まれているサンドイッチ構造を有する。このルテノセンは大気中の安定性が高く、毒性も無いことからCVD原料としての適性を有するものの、常温では固体であり、融点が約200℃と比較的高い為、原料の気化および基盤への輸送が多少困難になるという問題点がある。
【0004】
そこで最近では融点の低いルテニウム化合物についての研究が活発に行われている。このルテニウム含有有機金属化合物の低融点化の手法としては、ルテノセンのシクロペンタジエン環の少なくとも一つの水素原子をメチル基、エチル基等のアルキル基で置換したルテノセン誘導体とするものがある。例えば、特開平11−35589号公報ではルテノセン誘導体として、ビス(エチルシクロペンタジエニル)ルテニウム(以後Ru(EtCp)2)およびビス(イソプロピルシクロペンタジエニル)ルテニウムに代表される、ビス(アルキルシクロペンタジエニル)ルテニウムが開示されている。また特開2000−281694号公報ではアルキル置換ルテノセンをCVD材料として用いる事が開示されている。これらの金属化合物はいずれも常温で液体であり、その融点もルテノセンに比して低いことから、CVD法に適用する原料物質として必要な特性を具備するものであるとされている。しかしこれらビス(アルキルシクロペンタジエニル)ルテニウムは基本的にルテノセン構造を有しており、この構造は安定性が極めて高いことから錯体の分解温度が高く、必然的に成膜時の基盤温度を高くする必要があり、結果としてステップカバレッジが悪くなるという問題点を抱えていた。
【0005】
一方、一分子のシクロペンタジエニル基を配位子とするハーフサンドイッチ構造を有する錯体の合成例としては、R.Gleiter等のOrganometallics,8,298(1989)に報告されている、(シクロペンタジエニル)(2,4−ジメチルペンタジエニル)ルテニウムがある。しかしながらこの錯体は融点が136〜137℃で、常温で固体となり、CVD材料として適当な材料であるとは言い難い。これまでに室温で液体の優れた気化特性を示すハーフサンドイッチ構造のルテニウム錯体の合成報告例はない。
【0006】
また、ハーフサンドイッチ構造のルテノセンの合成法に関しては、ペンタジエン誘導体、シクロペンタジエン誘導体、亜鉛およびルテニウムを適当な溶媒中に一度に加え、適当な反応条件で反応させるのが一般的であるが、この方法では収率が極端に悪くなり、実用的でない。また、反応後の後処理として反応液を濃縮し、泥状混合物を得た後にその泥状混合物から適当な溶媒で目的物を抽出し、セライト濾過もしくはアルミナカラムを用いたカラムクロマトグラフィーを行い精製することで目的物を得る方法が一般的であった。しかしこの方法は反応終了後に濃縮していられる泥状化合物からの抽出や、セライト濾過もしくはカラムクロマトグラフィーなど工業上好ましくないプロセスを含んでおり、ハーフサンドイッチ構造有機ルテニウム化合物が工業的に有利になる為に、安定して高収率で目的物を得ることが出来る製造方法が望まれていた。
【0007】
一方、塗布熱分解法による成膜は比較的集積度の低い素子の製造に使用されている。塗布熱分解法で使用される原料は膜厚を制御するため有機溶媒に溶解して使用することから有機溶媒に可溶で、さらに低温で分解するものが好ましい。しかし、このような特徴を有するルテニウム化合物はこれまでほとんどなかった。
【0008】
従来、カルボニルビス(ジエン)ルテニウム錯体としてはカルボニルビス(1,3−ブタジエン)ルテニウム(D.Minniti and P.L.Timms,J.Organomet.Chem.,258,C12(1983))、カルボニルビス(2,3−ジメチル−1,3−ブタジエン)ルテニウム、カルボニルビス(1,3−シクロヘキサジエン)ルテニウム(D.N.Cox andR.Roulet,Helv.Chim.Acta,67,1365(1984))のみが知られている。これらの錯体の製造方法は−196℃でRuとジエンを反応させた後、COを加えるという低温での反応を必要とする方法であった。
【0009】
【発明が解決しようとする課題】
CVD法では薄膜の原料となる錯体をガスとして供給する必要があるが、従来使用されている錯体のうちRu(DPM)3は融点168℃で高温なため、昇華によるガス化となる。昇華によるガス化では固体の表面積変化により原料ガス濃度に変化が生じ安定な供給量が得られないという問題がある。これに対し、錯体を有機溶媒に溶解して使用する方法が提案されている(特開平5−132776号公報)。しかし、この方法では溶媒と錯体の揮発性の差により溶媒のみが揮発したり、固体が析出するといった問題があり必ずしも安定な原料供給方法とはいえない。一方、Ru(OD)3およびRu(EtCp)2は室温で液体であり比較的高い蒸気圧を持つため原料の安定供給については問題ないが、どちらの錯体もRuと有機配位子の結合が安定で分解しにくいため、高温での成膜が必要である。
【0010】
本発明は、CVD法による成膜において上記錯体よりも低温での成膜が可能であり、且つ安定した原料供給の行えるルテニウム錯体、その製造方法、及びルテニウム含有薄膜の製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、先の課題を解決すべく検討を重ねた結果、ルテノセン構造を有する既知化合物の片方のシクロペンタジエニル環(以後Cp環)を直鎖型のペンタジエニルに変えることで分解温度が下がることを見出し、さらに鋭意検討を重ねた結果、Cp環に低級アルキル基を導入することで、室温で液体の融点を示し、良好な気化特性、分解特性を有する新規なルテニウム錯体を開発するに至った。また低分子量のジエンとカルボニル基を配位子としたカルボニルビス(ジエン)ルテニウム錯体により上記目的を達成できることを見出し、本発明を完成するに至った。
【0012】
即ち本発明は、一般式[1]
【0013】
【化9】

Figure 0004517565
[式中R1、R2、R3、R4は同一または相異なって水素、ハロゲン、低級アシル基、低級アルコキシ基、低級アルコキシカルボニル基、または低級アルキル基を示す。ただしR1〜R4全てが水素である場合、及び、R1が水素でR2〜R4のいずれか1つが水素で残りがメチル基である場合を除く。]で表されることを特徴とする、ハーフサンドイッチ構造有機ルテニウム化合物である。
【0014】
また本発明は、上述のハーフサンドイッチ構造有機ルテニウム化合物を原料とし、化学気相蒸着法を用いて、加熱した基板上にルテニウム含有薄膜を製造することを特徴とする、ルテニウム含有薄膜の製造方法である。
【0015】
更に本発明は、一般式[3]
【0016】
【化10】
Figure 0004517565
[式中R2、R3、R4は同一または相異なって水素、ハロゲン、低級アシル基、低級アルコキシ基、低級アルコキシカルボニル基、または低級アルキル基を示す。]で表されるオープンルテノセンに、溶媒中で亜鉛存在下、一般式[4]
【0017】
【化11】
Figure 0004517565
[式中R1は水素、ハロゲン、低級アシル基、低級アルコキシ基、低級アルコキシカルボニル基、または低級アルキル基を示す。]で表されるシクロペンタジエンを反応させることを特徴とする、一般式[1]で表されるハーフサンドイッチ構造有機ルテニウム化合物の製造方法である。
【0018】
また本発明は、一般式[7]
【0019】
【化12】
Figure 0004517565
(式中R5〜R8は水素または炭素数1〜6のアルキル、エーテル、エステル、アルデヒド、アルコール、ケトン、ハロゲン化アルキル、カルボン酸、アミン、アミドを示す。但し、R5〜R8全てが水素の場合、及びR5、R8が水素でR6、R7がメチルの場合を除く。)で表されることを特徴とする、カルボニルビス(ジエン)ルテニウム錯体である。
【0020】
さらに本発明は、塩化ルテニウム・n水和物(nは1以上の数)とジエンを亜鉛粉末存在下アルコール中で反応させることを特徴とする、上述のカルボニルビス(ジエン)ルテニウム錯体の製造方法である。
【0021】
また本発明は、上述のカルボニルビス(ジエン)ルテニウム錯体を原料として使用することを特徴とする、ルテニウム含有薄膜の製造方法である。以下、本発明について詳しく述べる。
【0022】
最初に本明細書で用いられる用語の定義ならびにその具体例について説明する。本明細書中に記述の「低級」なる用語は特に断らない限り、この語が付与された基に於いて、炭素数1個以上6個以下の直鎖状、分岐状、または環状の炭化水素基を含有するものであることを示す。
【0023】
よってR1、R2、R3、またはR4において用いられる低級アルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル(アミル)基、イソペンチル基、ネオペンチル基、tert−ペンチル基、1−メチルブチル基、2−メチルブチル基、1,2−ジメチルプロピル基、ヘキシル基、イソヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、2,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−1−メチルプロピル基、1−エチル−2−メチルプロピル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、シクロプルピルエチル基、およびシクロブチルメチル基等があげられる。より好ましくはメチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基である。
【0024】
また、R1、R2、R3、またはR4において用いられる低級アルコキシ基としては、具体的に例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、1−メチルブチルオキシ基、2−メチルブチルオキシ基、3−メチルブチルオキシ基、1,2−ジメチルプロピルオキシ基、ヘキシルオキシ基、1−メチルペンチルオキシ基、1−エチルプロピルオキシ基、2−メチルペンチルオキシ基、3−メチルペンチルオキシ基、4−メチルペンチルオキシ基、1,2−ジメチルブチルオキシ基、1,3−ジメチルブチルオキシ基、2,3−ジメチルブチルオキシ基、1,1−ジメチルブチルオキシ基、2,2−ジメチルブチルオキシ基、3,3−ジメチルブチルオキシ基等が挙げられる。より好ましくは、メトキシ基、エトキシ基、またはプロポキシ基である。
【0025】
1、R2、R3、またはR4において用いられる低級アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、シクロプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec−ブトキシカルボニル基、tert−ブトキシカルボニル基等が挙げられる。より好ましくは、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基またはシクロプロポキシカルボニル基である。
【0026】
1、R2、R3、またはR4において用いられる低級アシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、1−メチルプロピルカルボニル基、イソバレリル基、ペンチルカルボニル基、1−メチルブチルカルボニル基、2−メチルブチルカルボニル基、3−メチルブチルカルボニル基、1−エチルプロピルカルボニル基、2−エチルプロピルカルボニル基等を挙げることが出来る。より好ましくはホルミル基、アセチル基、プロピオニル基である。
【0027】
また、R1、R2、R3、またはR4においては上記した低級アルキル基、低級アルコキシ基、低級アルコキシカルボニル基および低級アシル基の他に、同一または異なって水素原子またはハロゲン原子が好ましく用いられる。ハロゲン原子の具体的な例として、フッ素、塩素、臭素またはヨウ素が挙げられ、より好ましくはフッ素および塩素である。
【0028】
本発明は、上述のように一般式[1]で表されることを特徴とするハーフサンドイッチ構造ルテニウム化合物である。好ましくは一般式[2]
【0029】
【化13】
Figure 0004517565
[式中R1、R2は同一または相異なって水素、ハロゲン、低級アシル基、低級アルコキシ基、低級アルコキシカルボニル基、または低級アルキル基を示す。但し、R1が水素でR2がメチル基の場合を除く。]で表されるハーフサンドイッチ構造有機ルテニウム化合物であり、更に好ましくはR1,R2共に低級アルキル基であり、特にR1はエチル基、R2はメチル基が好ましい。
【0030】
また本発明は上述のハーフサンドイッチ構造有機ルテニウム化合物を用いてCVD法でルテニウム含有薄膜を作る方法である。図1に装置の一例を示す。本発明のハーフサンドイッチ構造有機ルテニウム化合物を原料容器1に入れ、40〜120℃に保ち、この液に減圧下でキャリアーガス7をバブリングさせることによりハーフサンドイッチ構造有機ルテニウム化合物を蒸発させ、反応槽3に送る。加熱して200〜750℃に保持された基板4の上においてハーフサンドイッチ構造有機ルテニウム化合物を熱分解させるとルテニウム含有薄膜が生成する。
【0031】
さらに本発明におけるCVD成膜法は、図1のようなバブリング法でもよいし、また、本発明の有機ルテニウム化合物をそのまま又は有機溶媒に溶かした溶液を気化器内に送って気化器内でガス化する溶液気化型でもよい。
【0032】
また、本発明におけるCVD法で用いるハーフサンドイッチ構造有機ルテニウム化合物は、そのまま用いてもよいし、有機溶媒に溶解したハーフサンドイッチ構造有機ルテニウム化合物溶液として用いてもよい。この場合に用いられる有機溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、酢酸エチル、酢酸ブチル、酢酸イソアミル等のエステル類、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、ジエチルエーテル、グライム、ジグライム、トリグライム、テトラヒドロフラン等のエーテル類、メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ベンゼン、トルエン、キシレン等の炭化水素類が挙げられるが特に限定する物ではない。
【0033】
本発明の一般式[1]で表される化合物は、一般式[3]で表されるオープン型ルテニウム錯体と一般式[4]で表されるシクロペンタジエンとを反応させることにより得ることができる。このとき、一般式[3]で表されるオープン型ルテニウム錯体は、一般式[5]で表されるペンタジエン誘導体と一般式[6]で表されるハロゲン化ルテニウム水和物を亜鉛存在下に反応させて得ることができる。これらの反応を反応式[I]に示す。従来これらハーフサンドイッチ構造有機ルテニウム化合物の製造方法の多くが、ペンタジエン誘導体とシクロペンタジエン誘導体を一度に加えて反応させる為に収率が芳しくなかったのに対し、このような製法によれば高収率で目的物を得ることが出来る。
【0034】
【化14】
Figure 0004517565
[式中、Xはハロゲンを表し、nは0〜10の数を示す。R1、R2、R3、R4は前記と同じ内容を表す。]
この製法では、反応溶媒は特に限定されず、また生成物の回収・精製方法は特に限定されるものではない。しかしながらメタノールを一部又は全部の反応溶媒として用い、反応終了後にろ過して過剰の亜鉛を取り除いた後、メタノールと任意に交じり合わない溶媒を用いて一般式[1]で表されるハーフサンドイッチ構造有機ルテニウム化合物を抽出し、濃縮して得られる油状物を蒸留することにより、工業的に有利な工程を経て目的物を得ることが出来る。この際用いるメタノールと任意に交わらない溶媒としては、例えばペンタン、ヘキサン、ヘプタン、オクタン等、脂肪族炭化水素を挙げることが出来る。この中でも特にペンタン、ヘキサンは安価に入手可能であり、工業的に有利であるため好ましい。
【0035】
本発明において反応に用いる亜鉛の量は特に限定されないが、一般式[6]で表される化合物又は一般式[3]で表される化合物1モルに対して1.0モル以上が好ましく、1.5モル以上用いるのが更に好ましい。大過剰量用いても経済的に不利なので1.5乃至100モル用いるのが有利である。一般式[5]で表される化合物と、一般式[6]で表される化合物を亜鉛の存在下反応させる際、一般式[5]で表される化合物を一般式[6]で表される化合物1モルに対して2モルあるいは過剰モル用いて反応させるのが好ましい。大過剰量用いても経済的に不利なので2乃至20モル用いるのが有利である。
【0036】
一般式[5]で表される化合物と一般式[6]で表される化合物を亜鉛の存在下反応させる際、反応温度は−20乃至100℃で反応させるのが好ましい。さらに好ましくは−20乃至80℃である。一般式[3]で表される化合物と一般式[4]で表される化合物を亜鉛の存在下反応させる際、反応温度は−20乃至100℃で反応させるのが好ましい。さらに好ましくは−20乃至80℃である。
【0037】
一般式[3]で表される化合物と一般式[4]で表される化合物を亜鉛の存在下反応させる際、一般式[4]で表される化合物を一般式[3]で表される化合物1モルに対して0.8乃至1.0モル用いて反応させるのが好ましい。0.8モル未満用いれば未反応で残る一般式[3]で表される化合物が多くなり、1.0モルを越えて用いれば副生物としてビス(エチルシクロペンタジエニル)ルテニウムが多く生成するために好ましい条件とは言えない。
【0038】
本発明において、一般式[5]で表される化合物と一般式[6]で表される化合物とを反応させて、一般式[3]で表される化合物を製造した場合は、一般式[3]で表される化合物を単離することなくそのまま1ポットで一般式[4]で表される化合物と反応させて、一般式[1]で表される化合物を合成することが好ましい。
【0039】
本発明における反応は、すべて窒素または不活性ガス雰囲気下で行うのが好ましい。不活性ガスとは例えばヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドンを挙げることが出来る。これらのうち安価に入手でき、空気より思いという点から窒素、アルゴンがさらに好ましい。
【0040】
次に一般式[7]で表される化合物について説明する。このようなカルボニルビス(ジエン)ルテニウム錯体としてはカルボニルビス(1,3−ヘキサジエン)ルテニウム[R5〜R7=−H、R8=−C25]、カルボニルビス(2,4−ヘキサジエン)ルテニウム[R5,R8=−CH3、R6,R7=−H]、カルボニルビス(3−メチル−1,3−ペンタジエン)ルテニウム[R5,R6=−H、R7,R8=−CH3]、カルボニルビス(2,4−ヘキサジエナール)ルテニウム[R5=−CH3、R8=−C=O、R6,R7=−H]、カルボニルビス(2,4−ヘキサジエン−1−オル)ルテニウム[R5=−CH3、R8=−CH2OH、R6,R7=−H]、カルボニルビス(1−アセトキシ−1,3−ブタジエン)ルテニウム[R5=−O−COCH3、R6,R7,R8=−H]、カルボニルビス(2,4−ヘキサジエン酸)ルテニウム[R5=−CH3、R8=−COOH、R6,R7=−H]、カルボニルビス(2,4−ペンタジエン酸メチル)ルテニウム[R5=−COOCH3、R6,R7,R8=−H]等があげられる。
【0041】
またカルボニルビス(2,4−ヘプタジエナール)ルテニウム[R5=−C25、R8=−C=O、R6,R7=−H]、カルボニルビス(2,6−ジメチル−2,4,6−オクタトリエン)ルテニウム[R5,R6=−CH3、R8=−C=C(CH32、R7=−H]、カルボニルビス(2,4−デカジエン酸エチル)ルテニウム[R5=−CH2CH2CH2CH2CH3、R8=−COOC25、R6,R7=−H]、カルボニルビス(ミルセン)ルテニウム[R6=−CH2CH2CH=C(CH32、R5,R7,R8=−H]、カルボニルビス(2,4−オクタジエナール)ルテニウム[R5=−CH2CH2CH3、R8=−C=O、R6,R7=−H]、カルボニルビス(ソルビン酸エチル)ルテニウム[R5=−CH3、R8=−COOC25、R6,R7=−H]、カルボニルビス(ソルビン酸メチル)ルテニウム[R5=−CH3、R8=−COOCH3、R6,R7=−H]、カルボニルビス(2,4−ヘプタジエン−6−オン)ルテニウム[R5=−CH3、R8=−COCH3、R6,R7=−H]等が挙げられる。
【0042】
錯体の気化温度を下げる上では、R5〜R8のうち少なくとも1つが炭素数1〜2のアルキル基、エーテル、エステル、アルデヒド、アルコール、ケトン、ハロゲン化アルキル、カルボン酸、アミン、アミドで、他は水素であることが好ましく、更に好ましくはR5〜R8のうち少なくとも1つが炭素数1〜2のアルキル基で他は水素であり、このうちカルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウム[R5,R7=−H、R6,R8=−CH3]が最も好ましい。
【0043】
本発明の一般式[7]で表されるカルボニルビス(ジエン)ルテニウム錯体は塩化ルテニウム・n水和物とジエンを亜鉛存在下、アルコール中で反応させることにより製造することができる。この時、ジエンが不足の状態になると金属ルテニウムが生成して収率が低下するためジエン過剰で反応させることが好ましく、塩化ルテニウム・n水和物の10〜20倍モルのジエン量が好ましい。亜鉛粉末は塩化ルテニウム・n水和物の還元を十分に行なうため、10倍モル以上の過剰量が好ましい。また、これらを混合する際、亜鉛粉末を分散させたジエンまたはジエンのアルコール溶液中に塩化ルテニウム・n水和物のアルコール溶液を滴下すると高収率で目的とするカルボニルビス(ジエン)ルテニウム錯体を得ることができる。
【0044】
使用されるジエンは分子内の連続した炭素鎖上に2つ以上の二重結合を持つ化合物であれば特に限定されない。反応中に二重結合の移動が起こるので1,4−ヘキサジエン、1,5−ヘキサジエン、2−メチル−1,4−ペンタジエン、3−メチル−1,4−ペンタジエン、2−メチル−1,5−ヘキサジエン等の非共役ジエンを使用してもよいが、下記一般式[8]で表わされる共役ジエンが好ましい。
【0045】
【化15】
Figure 0004517565
(式中R5〜R8は水素または炭素数1〜6のアルキル、エーテル、エステル、アルデヒド、アルコール、ケトン、ハロゲン化アルキル、カルボン酸、アミン、アミドを示す。但し、R5〜R8全てが水素の場合、及びR5、R8が水素でR6、R7がメチルの場合を除く。)。
【0046】
特に一般式[8]において、R5〜R8のうち少なくとも1つが炭素数1〜2のアルキル、エーテル、エステル、アルデヒド、アルコール、ケトン、ハロゲン化アルキル、カルボン酸、アミン、アミドであり、他は水素であることが好ましい。
【0047】
このような共役ジエンとしては1,3−ヘキサジエン(R5〜R7=−H、R8=−C25)、2,4−ヘキサジエン(R5,R8=−CH3、R6,R7=−H)、3−メチル−1,3−ペンタジエン(R5,R6=−H、R7,R8=−CH3)、2,4−ヘキサジエナール(R5=−CH3、R8=−C=O、R6,R7=−H)、2,4−ヘキサジエン−1−オル(R5=−CH3、R8=−CH2OH、R6,R7=−H)、1−アセトキシ−1,3−ブタジエン(R5=−O−COCH3、R6,R7,R8=−H)、2,4−ヘキサジエン酸(R5=−CH3、R8=−COOH、R6,R7=−H)、2,4−ペンタジエン酸メチル(R5=−COOCH3、R6,R7,R8=−H)、2,4−ヘプタジエナール(R5=−C25、R8=−C=O、R6,R7=−H)があげられる。
【0048】
また、2,6−ジメチル−2,4,6−オクタトリエン(R5,R6=−CH3、R8=−C=C(CH32、R7=−H)、2,4−デカジエン酸エチル(R5=−CH2CH2CH2CH2CH3、R8=−COOC25、R6,R7=−H)、ミルセン(R6=−CH2CH2CH=C(CH32、R5,R7,R8=−H)、2,4−オクタジエナール(R5=−CH2CH2CH3、R8=−C=O、R6,R7=−H)、ソルビン酸エチル(R5=−CH3、R8=−COOC25、R6,R7=−H)、ソルビン酸メチル(R5=−CH3、R8=−COOCH3、R6,R7=−H)、2,4−ヘプタジエン−6−オン(R5=−CH3、R8=−COCH3、R6,R7=−H)等が挙げられるが、2−メチル−1,3−ペンタジエン(R5,R7=−H、R6,R8=−CH3)が最も好ましい。
【0049】
アルコールは室温(25℃)で液体であるものであれば特に限定されないが、アルコールから配位子となるCOが生成するため、反応速度の点からメタノール、エタノール、1−プロパノールが好ましい。また、使用するアルコールは1種類のみでなく、数種類の混合でもよい。亜鉛粉末を分散させたジエン又はジエンのアルコール溶液中に塩化ルテニウム・n水和物のアルコール溶液を滴下する場合には、ジエンを溶解に使用するアルコールと塩化ルテニウム・n水和物の溶解に使用するアルコールは同一である必要はなく異なっていても良い。反応温度は低温では反応速度が遅く、高温ではジエンの重合反応がおこるため、0〜80℃が好ましい。反応後、生成した錯体は亜鉛粉末をろ過により取り除いた後、反応混合物から直接あるいは反応混合物からアルコール、未反応のジエンを除去した残査から、ペンタン、ヘキサン等の溶媒により抽出することができる。抽出した液中には錯体以外に反応で生成したジエンの重合体等も含まれるため、クロマトグラフィー、蒸留等により精製し、錯体が得られる。
【0050】
これらのカルボニルビス(ジエン)ルテニウム錯体を原料としてルテニウム含有薄膜を製造することができる。
【0051】
CVD法によりカルボニルビス(ジエン)ルテニウム錯体を原料として基板上にルテニウムまたは酸化ルテニウムなどのルテニウム含有薄膜を製造する場合、ガス化して基板上に供給する。ガス化の方法としては加熱した液体の錯体中に不活性キャリアガスを導入し、キャリアガスに同伴させて基板の置かれた反応槽に導く方法、錯体を有機溶媒に溶かして溶液とし、溶液を気化器に送って気化器内でガス化して基板上の置かれた反応槽に導く方法等がある。
【0052】
カルボニルビス(ジエン)ルテニウム錯体を有機溶媒に溶かして溶液として用いる場合、有機溶媒としては、例えば、メタノール、エタノール、イソプロパノ−ル等のアルコール類、酢酸エチル、酢酸ブチル、酢酸イソアミル等のエステル類、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、グライム、ジグライム、トリグライム、テトラヒドロフラン等のエーテル類、メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン等のケトン類、ヘキサン、シクロヘキサン、ヘプタン、オクタン、トルエン、キシレン等の炭化水素類が挙げられるが特に限定されるものではない。
【0053】
また、塗布熱分解法により基板上にルテニウム又は酸化ルテニウムなどのルテニウム含有薄膜を形成する場合も溶液で使用するが、このときも上記の有機溶媒を使用することができる。
【0054】
本発明のルテニウム含有薄膜の製造に用いられるCVD法は熱CVD、プラズマCVD、光CVD等一般に使用されるCVD法であれば特に限定されない。塗布熱分解法の原料塗布方法としては例えばスピンコート法、ディップ法、噴霧法等が挙げられ、加熱方法としてはオーブン、ホットプレート等が使用できるが、塗布方法、加熱方法およびその組み合せは特に限定されない。
【0055】
【実施例】
次に本発明を実施例によって詳細に説明するが、本発明はこの実施例にのみ限定されるものではない。
【0056】
実施例1 (2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムの合成および熱分解特性
四つ口フラスコに亜鉛400gを秤量し、容器をアルゴン置換して、2,4−ジメチル−1,3−ペンタジエン205mlを加えて懸濁液とした。3塩化ルテニウムn水和物(n=約3)30gをメタノール1000mlに溶かした溶液を40分かけて室温で滴下した。滴下終了後室温で30分間攪拌した後、60℃に昇温して2時間攪拌した。一旦放冷した後、エチルシクロペンタジエン12mlを投入しそのまま室温で30分攪拌、60℃に昇温して2時間攪拌した。反応終了後室温まで冷却し、グラスフィルターを用いて未反応の亜鉛を取り除いた後、ヘキサン750ml×1回、300ml×4回抽出した。抽出溶液を減圧下濃縮し、得られた油状物について減圧蒸留を行い、目的物である(2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを25.4g(収率76.3%)得た。
黄色油状物。
1H−NMR(500MHz,CDCl3,dppm)
5.38(s,1H),4.63(t,J=2.0Hz,2H),4.52(t,J=2.0Hz,2H),2.70(d,J=2.5Hz,2H),2.15(q,J=7.5Hz,2H),1.93(s,6H),1.12(t,J=7.5Hz,3H),−0.09(d,J=2.5Hz,2H)。
IR(neat,cm-1
3050,2960,2910,1475,1445,1430,1375,1030,860,800
MS(GC/MS,EI)
102Ruでの(2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムの分子イオンピーク;m/z 290。なおこのMSのチャートを図2に示す。
【0057】
(分解特性)
また得られた(2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムの分解特性を測定した結果を図3に示す。なお分解特性測定条件は以下の通りである。
Figure 0004517565
比較例1 ビス(エチルシクロペンタジエニル)ルテニウムの分解特性
実施例1と同様の条件でビス(エチルシクロペンタジエニル)ルテニウムの分解特性を測定した。320℃付近より発熱反応が見られた。結果を図4に示す。
【0058】
実施例2 (2,4−ジメチルペンタジエニル)(メチルシクロペンタジエニル)ルテニウムの合成
50mlシュレンク管に亜鉛8.0gを秤量し、容器にアルゴンを置換して、2,4−ジメチル−1,3−ペンタジエン4mlを加えて懸濁液をした。3塩化ルテニウム水和物0.6gをエタノール20mlに溶かした溶液を50分かけて室温で滴下した。滴下終了後、室温で30分攪拌した後、70℃に昇温して2時間攪拌した。いったん放冷した後、メチルシクロペンタジエン240μlを投入し、そのまま室温で30分攪拌、70℃に昇温して2時間攪拌した。反応終了後室温まで冷却し、グラスフィルターを用いて未反応の亜鉛を取り除いた後、濃縮して泥状混合物を得た。得られた泥状混合物からペンタンで抽出し、抽出液について、アルミナを担体、ペンタンを溶離液としてカラムクロマトグラフィーを行い、目的物である、(2,4−ジメチルペンタジエニル)(メチルシクロペンタジエニル)ルテニウム0.28gを得た。
1H−NMR(500MHz,CDCl3,δppm)
5.36(s、1H),4.61(t,J=2.0Hz,2H),4.57(t,J=2.0Hz,2H),2.67(d,J=2.5Hz,2H),1.93(s,6H),1.83(s,3H),−0.07(d,J=2.5Hz,2H)
MS(GC/MS,EI)
102Ruでの(2,4−ジメチルペンタジエニル)(メチルシクロペンタジエニル)ルテニウムの分子イオンピーク;m/z 276。なお、このMSチャートは図5に示す。
【0059】
実施例3 (2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料としてCVD法によるルテニウム含有薄膜の製造
図1に示す装置を用い、基板としては表面にSiO2膜が100nm形成されたSi基板を用いた。原料容器1内に(2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム約10gを入れてオイルバスで加熱、60℃恒温状態にした。真空ポンプ11、圧力調整弁を用いて反応槽3を10Torr、反応容器内を100Torrに調整した。キャリアガス7として窒素を用い、流量をマスフローコントローラーで100sccmに設定した。酸化ガス5として酸素を用い、カウンターガス6として窒素を用いた。酸化ガス流量を0、10、30、300sccmに設定し、カウンターガス流量を、酸化ガス流量との合計が500sccmとなるように設定した。基板4を400℃に設定し、加熱保持した状態で60分間成膜を行った。
【0060】
図6に酸素流量に対する基板上に成膜されたRu含有薄膜の膜厚を示す。また図6のA,B,Cで得られた膜について、図7にこれら膜のX線回折図形を示す。図7より、酸素流量が0sccmの場合(A)はRu膜が得られ、またそれ以上の酸素流量(B)(C)においてRuの酸化膜が得られることが明らかである。即ち、CVDにおける酸素流量により、Ru膜とRuO2膜とを作り分けることが可能であることが明らかとなった。
【0061】
実施例4 (2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料としてCVD法によるルテニウム含有薄膜の製造
図1に示す装置を用い、基板としては表面にSiO2膜が100nm形成されたSi基板を用いた。原料容器1内に(2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム約10gを入れてオイルバスで加熱、60℃恒温状態にした。真空ポンプ11、圧力調整弁を用いて反応槽3を10Torr、反応容器内を100Torrに調整した。キャリアガス7として窒素を用い、流量をマスフローコントローラーで100sccmに設定した。酸化ガス5として酸素を用い、カウンターガス6として窒素を用いた。酸化ガス流量を300sccmに設定し、カウンターガス流量を200sccmに設定した。基板4を170、200、300、400、500、600℃に設定し、加熱保持した状態で60分間成膜を行った。
【0062】
図8の(a)(黒丸)で膜の成長速度のアレニウスプロットを示す。200℃以上でRu含有薄膜を形成することができた。得られた膜の抵抗率を図9に示す。バルクの抵抗率(図9の矢印で表示)に近い良好な抵抗率が得られた。
【0063】
実施例5 (2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料としてCVD法によるルテニウム含有薄膜の製造
図1に示す装置を用い、基板としては表面にSiO2膜が100nm形成されたSi基板を用いた。原料容器1内に(2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム約10gを入れてオイルバスで加熱、60℃恒温状態にした。真空ポンプ11、圧力調整弁を用いて反応槽3を10Torr、反応容器内を100Torrに調整した。キャリアガス7として窒素を用い、流量をマスフローコントローラーで100sccmに設定した。酸化ガス5を使用せず、カウンターガス6として窒素を用い、カウンターガス流量を500sccmに設定した。基板4を250、275、300、325、350、375、400、450、500、550、600℃に設定し、加熱保持した状態で60分間成膜を行った。
【0064】
図8の(b)(白丸)で膜の成長速度のアレニウスプロットを示す。275℃以上でRu膜を形成することができた。また図10に成膜されたRu含有薄膜のX線回折図を示す。400℃以上で結晶性のよい膜が得られた。図11に得られた膜の抵抗率を示す。バルクの抵抗率(図11の矢印で表示)に近い良好な抵抗率が得られた。図12,図14に基板温度300℃および600℃の成膜により得られた膜の断面のSEM写真を示す。いずれの温度においても緻密な膜が観察されたが、特に600℃の成膜ではより緻密な膜が観察された。また図16,図18に基板温度350℃および600℃の成膜により得られた膜の断面のAFM像を示す。AFMによる表面粗さの測定の結果、Ra(算術平均粗さ)及びRy(最大高さ)を表1(a)に示す。ここでRa及びRyはJIS B0601−1994・JIS B0031−1994に記載された方法である。本発明によるRu含有薄膜の表面は非常に平坦であることがわかる。
【0065】
【表1】
Figure 0004517565
比較例2
比較例として、図1に示す装置を用い、原料容器1内に市販のビス(エチルシクロペンタジエニル)ルテニウム約10gを入れた以外はすべて実施例6と同様の条件において成膜を行った。図13,図15に基板温度300℃および600℃の成膜により得られた膜の断面のSEM写真を示す。いずれの場合もまくの緻密さに劣り、柱状の結晶成長が確認された。また図17,図19に基板温度350℃および600℃の成膜により得られた膜の断面のAFM像を示す。AFMによる表面粗さの測定の結果、Ra及びRyを表1(b)に示す。実施例と比較して表面粗さの大きいものであった。
【0066】
実施例6 (2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料としてCVD法によるルテニウム含有薄膜の製造
図1に示す装置を用い、基板としては表面にSiO2膜が100nm形成されたSi基板を用いた。原料容器1内に(2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム約10gを入れてオイルバスで加熱、60℃恒温状態にした。真空ポンプ11、圧力調整弁を用いて反応槽3を10Torr、反応容器内を100Torrに調整した。キャリアガス7として窒素を用い、流量をマスフローコントローラーで30、100sccmに設定した。酸化ガス5として酸素を用い、カウンターガス6として窒素を用いた。酸化ガス流量を300sccmに設定し、カウンターガス流量を200sccmに設定した。基板4を400℃に設定し、加熱保持した状態で60分間成膜を行った。キャリアガス流量と基板上に成膜されたRu含有薄膜の成膜速度の関係を図20に示す。キャリアガスの少ない領域においても十分成膜可能であった。
【0067】
実施例7 (2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウムを原料としてCVD法によるルテニウム含有薄膜の製造
図1に示す装置を用い、基板としては表面にSiO2膜が100nm形成されたSi基板を用いた。原料容器1内に(2,4―ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム約10gを入れてオイルバスで加熱、60℃恒温状態にした。真空ポンプ11、圧力調整弁を用いて反応槽3を10Torr、反応容器内を100Torrに調整した。キャリアガス7として窒素を用い、流量をマスフローコントローラーで100sccmに設定した。酸化ガス5を使用せず、カウンターガス6として窒素を用い、カウンターガス流量を500sccmに設定した。基板4を350℃に設定し、加熱保持した状態で2.5、5、10、20、60、120分間成膜を行った。
【0068】
図21の(a)(黒丸)で成膜時間と基板上に成膜されたRu含有薄膜の膜厚を示す。成膜時間2.5分以上でRu含有薄膜が得られ、時間に対し直線的に膜厚が増加した。本発明によるRu含有薄膜はインキュベーション時間(基板上に膜が形成されない時間)が認められず、Ru含有薄膜を容易に成膜することができる。
【0069】
比較例3
比較例として、図1に示す装置を用い、原料容器1内に市販のビス(エチルシクロペンタジエニル)ルテニウム約10gを入れた以外はすべて実施例7と同様の条件において成膜を行った。図21の(b)(四角)で成膜時間と基板上に成膜されたRu含有薄膜の膜厚を示す。成膜時間20分まではインキュベ−ション時間が存在した。
【0070】
実施例8 カルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウムの合成
1000mlの4つ口フラスコに亜鉛粉末160gを入れ、攪拌装置、滴下ロート、冷却管、温度計を取り付け、フラスコ内をアルゴンで置換した。2−メチル−1,3−ペンタジエン60mlを加えて攪拌して亜鉛粉末を分散させた後、水浴で25℃以下に保ちながら滴下ロートより塩化ルテニウム・n水和物10gをエタノール400mlに溶解したものを1時間で滴下した。滴下終了後、70℃に加熱して3時間攪拌した。反応後の溶液から亜鉛粉末を濾過により除去し、減圧下でエタノール等を除去して得られた泥状物をペンタンで抽出した。抽出液をアルミナを充填剤、ペンタンを溶媒としたカラムクロマトグラフィーにより精製し、溶媒除去後、カルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウムを黄色液体として9.99g(収率89%)得た。
【0071】
1H−NMR(CDCl3)δ3.91(d,2H,J=7.5Hz),2.04(s,6H),1.42(s,2H),1.27(d,6H,J=6Hz),1.17(dq,2H,J=14Hz),0.30(s,2H)。
13C−NMR(CDCl3)δ218.88(CO),91.51(C),89.47(CH),50.51(CH),37.58(CH2),22.84(CH3),18.78(CH3)。
IR 1967cm-1(CO)。
MS 294(M+)。
【0072】
実施例9 カルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウムの熱分解特性(DSC測定)
実施例8で得られたカルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウム6.7mgをステンレス製パンに取り、ステンレス製のふたで密封した。このサンプルを酸化アルミニウム18.8mgをリファレンスとして1分間に10℃の昇温速度で示差走査熱量測定装置(DSC)により加熱時の熱量変化を測定した。120℃付近より発熱反応が見られ錯体の分解が確認された。結果を図22に示す。
【0073】
実施例10
カルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウムを原料としてCVD法によるルテニウム含有膜膜の製造
カルボニルビス(2−メチル−1、3−ペンタジエン)ルテニウムを原料として図1に示すCVD装置を用いて、原料温度50℃、キャリアガス(N2)流量100sccm、原料圧力400Torr、カウンターガス(N2)流量200sccm、配管温度80℃、基板温度300℃、チャンバー圧力10Torr、酸化ガス(O2)流量300sccmでSiO2膜付シリコンウエハ上に1時間成膜を行なった。膜組成をX線回折により確認したところRuO2であり、膜厚をSEMにより測定したところ500nmだった。
【0074】
実施例11 カルボニルビス(2−メチル−1,3−ペンタジエン)ルテニウムを原料としてスピンコート法によるルテニウム含有膜膜の製造
カルボニルビス(2−メチル−1、3−ペンタジエン)ルテニウム1mlをヘプタン9mlに溶かし溶液を作製した。この溶液をシリコンウエハ上に500rpmで5秒、1000rpmで10秒スピンコートし、150℃のオーブン中で20分間加熱した。膜組成をX線回折により確認したところRuO2であり、膜厚をSEMにより測定したところ300nmだった。
【0075】
比較例4
実施例10と同様の方法によりビス(エチルシクロペンタジエン)ルテニウムを原料として成膜を行なったところRuを含む膜は得られなかった。
【0076】
実施例12(比較例)
亜鉛8gをシュレンク管に仕込み、アルゴン置換を行った後、エチルシクロペンタジエン240ml、2,4−ジメチル−1,3−ペンタジエン4mlを加えた。氷冷下に塩化ルテニウム水和物608mg(n=約3)を脱水エタノール25mlに溶解した溶液を1時間15分かけて滴下した後、氷冷下1時間30分攪拌、室温1時間攪拌した。反応終了後グラスフィルターを用いて未反応の亜鉛を取り除いた後、減圧下濃縮して泥状物を得た。この泥状物からペンタンで抽出を行い、抽出液についてカラムクロマトグラフィー(ペンタン/アルミナ)を行い、目的物の(2,4−ジメチルペンタジエニル)(エチルシクロペンタジエニル)ルテニウム106mg(収率16%)を得た。また、副生物としてビス(エチルシクロペンタジエニル)ルテニウムを70mg(収率11%)得た。
【0077】
【発明の効果】
本発明の一般式[1]で表されるハーフサンドイッチ構造有機ルテニウム化合物は室温で液体であり、100℃付近で充分な蒸気圧を有しているので、CVD原料としてガスバブリングにより定量的に供給できる。また、従来の材料よりも低温で熱分解することができるので基板上にステップカバレッジに優れるRu含有薄膜を形成することが出来る。本発明により量産性に優れたCVD法でRu含有薄膜を形成できる。
【0078】
本発明の有機ルテニウム化合物を用いてCVD法を行うことにより、CVDにおける酸素流量によってRu膜とRuO2膜とを作り分けることが可能である。また得られたRu含有薄膜は、緻密で、不純物が少なく、かつ結晶性にも優れたものであり、結果として抵抗率がバルクの値に近い良好な値を示すものを得ることができる。また本発明によるRu含有薄膜は、従来品を用いて作製した場合と比較して、緻密かつ薄膜表面が平坦なものを得ることができる。
【0079】
本発明のハーフサンドイッチ構造有機ルテニウム化合物の製造方法によれば、従来の製造方法では低収率でしか得られなかったハーフサンドイッチ構造有機ルテニウム化合物を安定的に高収率で得られる。また、アルコールを濃縮することなく目的物を得ることもできるため、エネルギー的に有利に製造できる。このため、本発明のハーフサンドイッチ構造有機ルテニウム化合物の製造方法は、これらを製造する際の少量スケールでの製造のみならず、工業的な規模の製造に至るまで幅広く利用が可能である。
【0080】
本発明のカルボニルビス(ジエン)ルテニウム錯体は、CVD法による成膜において従来使用さている錯体よりも低温での成膜が可能であり、且つ安定した原料供給のもとルテニウム含有薄膜の形成が可能である。また、熱分解温度が低く溶媒への溶解性が高いことから塗布熱分解法でもルテニウム含有薄膜の形成が可能である。さらに、溶媒中での反応触媒としての機能も期待できる。製造方法は従来知られているカルボニルビス(ジエン)ルテニウム錯体の製造方法に比べ、穏やかな条件であり製造に有利である。
【図面の簡単な説明】
【図1】CVD装置の概略図である。
【図2】実施例1で測定したMSのチャートを示す図である。
【図3】実施例1で測定した分解特性(DSC)の結果を示す図である。
【図4】比較例1で測定した分解特性(DSC)の結果を示す図である。
【図5】実施例2で測定したMSのチャートを示す図である。
【図6】実施例3における酸素流量と成膜速度との関係を示す図である。
【図7】実施例3で製造した膜のX線回折図である。
【図8】膜の成長速度のアレニウスプロットを示す図である。
【図9】実施例4で得られた膜の抵抗率を示す図である。
【図10】実施例5で得られた膜のX線回折図である。
【図11】実施例5で得られた膜の抵抗率を示す図である。
【図12】実施例5で得られた膜のSEMを示す図である。
【図13】比較例2で得られた膜のSEMを示す図である。
【図14】実施例5で得られた膜のSEMを示す図である。
【図15】比較例2で得られた膜のSEMを示す図である。
【図16】実施例5で得られた膜のAFMを示す図である。
【図17】比較例2で得られた膜のAFMを示す図である。
【図18】実施例5で得られた膜のAFMを示す図である。
【図19】比較例2で得られた膜のAFMを示す図である。
【図20】実施例6におけるキャリアガス流量と成膜速度との関係を示す図である。
【図21】成膜時間と膜厚との関係を示す図である。
【図22】実施例9のDSC曲線を示す図である。
【符号の説明】
1 原料容器
2 恒温槽
3 反応槽
4 基板
5 酸化ガス
6 カウンターガス
7 キャリアガス
8 マスフローコントローラー
9 マスフローコントローラー
10 マスフローコントローラー
11 真空ポンプ
12 排気[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic ruthenium complex useful for forming a ruthenium-containing thin film by a chemical vapor deposition method (hereinafter referred to as a CVD method), a coating pyrolysis method, a manufacturing method thereof, a semiconductor memory, etc. The present invention relates to a method for producing a ruthenium-containing thin film used for an electronic device or the like.
[0002]
[Prior art]
As semiconductor memory devices are highly integrated, memory cells are becoming finer and (Ba, Sr) TiO is used as capacitor insulation films.ThreeThe use of a ferroelectric thin film such as A capacitor using a ferroelectric thin film uses a noble metal such as Pt, Ru, or Ir as an electrode. Of these, Ru is regarded as the most promising electrode material in that the oxide has conductivity and is excellent in fine workability.2Thin film electrodes are being studied. As a method for forming these Ru-containing thin films in a highly integrated memory device, the CVD method is optimal from the viewpoint of excellent step coverage and composition controllability.
[0003]
As a raw material for forming a thin film using this CVD method, among metal compounds, an organometallic compound having a low melting point and easy handling is considered suitable. Conventionally, as an organometallic compound for depositing ruthenium or a ruthenium oxide thin film, ruthenocene or tri (dipivaloylmethanato) ruthenium (hereinafter Ru (DPM)) is used.Three) [JP-A-6-283438] or tri (octane-2,4-dionate) ruthenium (hereinafter Ru (OD))Three) [Japanese Patent Laid-Open No. 2000-212744] has been used. Ruthenocene has a sandwich structure in which each cyclopentadiene ring comprises only carbon and hydrogen, and ruthenium is sandwiched between two cyclopentadiene rings. This ruthenocene is suitable as a CVD raw material because it is highly stable in the atmosphere and has no toxicity, but it is solid at room temperature and has a relatively high melting point of about 200 ° C., so the material is vaporized and transported to the substrate. There is a problem that becomes somewhat difficult.
[0004]
Therefore, recently, research on ruthenium compounds having a low melting point has been actively conducted. As a technique for lowering the melting point of this ruthenium-containing organometallic compound, there is a method in which at least one hydrogen atom of the cyclopentadiene ring of ruthenocene is a ruthenocene derivative substituted with an alkyl group such as a methyl group or an ethyl group. For example, in JP-A-11-35589, bis (ethylcyclopentadienyl) ruthenium (hereinafter Ru (EtCp)) is used as a ruthenocene derivative.2) And bis (alkylcyclopentadienyl) ruthenium, represented by bis (isopropylcyclopentadienyl) ruthenium, are disclosed. JP 2000-281694 discloses the use of alkyl-substituted ruthenocene as a CVD material. All of these metal compounds are liquid at room temperature, and their melting point is lower than that of ruthenocene. Therefore, they are said to have characteristics necessary as a raw material applied to the CVD method. However, these bis (alkylcyclopentadienyl) rutheniums basically have a ruthenocene structure, and since this structure is extremely stable, the decomposition temperature of the complex is high. It had to be high, and as a result, it had the problem that step coverage was poor.
[0005]
On the other hand, as a synthesis example of a complex having a half sandwich structure having one molecule of a cyclopentadienyl group as a ligand, R.I. There is (cyclopentadienyl) (2,4-dimethylpentadienyl) ruthenium as reported in Gleitter et al., Organometallics, 8, 298 (1989). However, this complex has a melting point of 136 to 137 ° C., becomes a solid at room temperature, and cannot be said to be a suitable material as a CVD material. There have been no reports of synthesis of ruthenium complexes with a half sandwich structure that exhibit excellent vaporization properties of liquids at room temperature.
[0006]
As for the synthesis method of ruthenocene having a half sandwich structure, a pentadiene derivative, a cyclopentadiene derivative, zinc and ruthenium are generally added to an appropriate solvent at a time and reacted under appropriate reaction conditions. In this case, the yield is extremely poor and is not practical. Also, as a post-treatment after the reaction, the reaction solution is concentrated to obtain a mud mixture, and then the target product is extracted from the mud mixture with an appropriate solvent and purified by celite filtration or column chromatography using an alumina column. In general, a method for obtaining the target product is generally used. However, this method includes industrially unfavorable processes such as extraction from a muddy compound that is concentrated after the completion of the reaction, celite filtration, or column chromatography, and the half-sandwich organic ruthenium compound is industrially advantageous. In addition, a production method capable of stably obtaining a target product with a high yield has been desired.
[0007]
On the other hand, film formation by a coating pyrolysis method is used for manufacturing a device having a relatively low degree of integration. Since the raw material used in the coating pyrolysis method is used after being dissolved in an organic solvent in order to control the film thickness, a material that is soluble in an organic solvent and further decomposes at a low temperature is preferable. However, there have been almost no ruthenium compounds having such characteristics.
[0008]
Conventionally, as the carbonylbis (diene) ruthenium complex, carbonylbis (1,3-butadiene) ruthenium (D. Minniti and PL Timms, J. Organomet. Chem., 258, C12 (1983)), carbonylbis (1983), 2,3-dimethyl-1,3-butadiene) ruthenium, carbonylbis (1,3-cyclohexadiene) ruthenium (DN Cox and R. Roulet, Helv. Chim. Acta, 67, 1365 (1984)). Are known. The production method of these complexes is a method that requires a reaction at a low temperature in which Ru and diene are reacted at −196 ° C. and then CO is added.
[0009]
[Problems to be solved by the invention]
In the CVD method, it is necessary to supply a complex as a raw material for a thin film as a gas. Of the complexes conventionally used, Ru (DPM)ThreeSince it has a melting point of 168 ° C. and a high temperature, it is gasified by sublimation. In gasification by sublimation, there is a problem that a stable supply amount cannot be obtained due to a change in the raw material gas concentration due to a change in the surface area of the solid. On the other hand, a method of dissolving a complex in an organic solvent and using it has been proposed (Japanese Patent Laid-Open No. 5-132776). However, this method has a problem that only the solvent volatilizes due to the difference in volatility between the solvent and the complex, or a solid precipitates, and is not necessarily a stable raw material supply method. On the other hand, Ru (OD)ThreeAnd Ru (EtCp)2Is a liquid at room temperature and has a relatively high vapor pressure, so there is no problem with the stable supply of raw materials. However, since both complexes are stable in the bond between Ru and the organic ligand and difficult to decompose, film formation at high temperatures is possible. is necessary.
[0010]
The present invention provides a ruthenium complex capable of forming a film at a temperature lower than that of the above complex in film formation by CVD and capable of supplying a stable raw material, a method for producing the ruthenium complex, and a method for producing a ruthenium-containing thin film. Objective.
[0011]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, the present inventors have changed the decomposition temperature by changing one cyclopentadienyl ring (hereinafter referred to as Cp ring) of a known compound having a ruthenocene structure to a linear pentadienyl. As a result of further diligent investigations, by introducing a lower alkyl group into the Cp ring, a new ruthenium complex that exhibits a liquid melting point at room temperature and has good vaporization and decomposition properties is developed. It came to. Further, the inventors have found that the above object can be achieved by a carbonylbis (diene) ruthenium complex having a low molecular weight diene and a carbonyl group as a ligand, and have completed the present invention.
[0012]
That is, the present invention relates to the general formula [1]
[0013]
[Chemical 9]
Figure 0004517565
[Wherein R1, R2, RThree, RFourAre the same or different and each represents hydrogen, halogen, a lower acyl group, a lower alkoxy group, a lower alkoxycarbonyl group, or a lower alkyl group. However, R1~ RFourIf all are hydrogen and R1Is hydrogen and R2~ RFourThe case where any one of is hydrogen and the rest is a methyl group is excluded. It is a half sandwich structure organic ruthenium compound characterized by the above-mentioned.
[0014]
The present invention also provides a method for producing a ruthenium-containing thin film, characterized in that the ruthenium-containing thin film is produced on a heated substrate using the above-mentioned half sandwich structure organic ruthenium compound as a raw material and using a chemical vapor deposition method. is there.
[0015]
Furthermore, the present invention provides a general formula [3]
[0016]
[Chemical Formula 10]
Figure 0004517565
[Wherein R2, RThree, RFourAre the same or different and each represents hydrogen, halogen, a lower acyl group, a lower alkoxy group, a lower alkoxycarbonyl group, or a lower alkyl group. In the presence of zinc in a solvent, open ruthenocene represented by the general formula [4]
[0017]
Embedded image
Figure 0004517565
[Wherein R1Represents hydrogen, halogen, a lower acyl group, a lower alkoxy group, a lower alkoxycarbonyl group, or a lower alkyl group. And a cyclopentadiene represented by the general formula [1]. A method for producing a half sandwich structure organoruthenium compound represented by the general formula [1].
[0018]
The present invention also provides a general formula [7].
[0019]
Embedded image
Figure 0004517565
(Where RFive~ R8Represents hydrogen or alkyl having 1 to 6 carbon atoms, ether, ester, aldehyde, alcohol, ketone, alkyl halide, carboxylic acid, amine or amide. However, RFive~ R8If all are hydrogen, and RFive, R8Is hydrogen and R6, R7Except when is methyl. It is a carbonylbis (diene) ruthenium complex characterized by being represented by this.
[0020]
Furthermore, the present invention provides a process for producing the above-mentioned carbonylbis (diene) ruthenium complex, characterized in that ruthenium chloride n-hydrate (n is a number of 1 or more) and diene are reacted in an alcohol in the presence of zinc powder. It is.
[0021]
Moreover, this invention is a manufacturing method of the ruthenium containing thin film characterized by using the above-mentioned carbonylbis (diene) ruthenium complex as a raw material. The present invention will be described in detail below.
[0022]
First, definitions of terms used in the present specification and specific examples thereof will be described. Unless otherwise specified, the term “lower” in the present specification is a straight, branched or cyclic hydrocarbon having 1 to 6 carbon atoms in the group to which this word is attached. It shows that it contains a group.
[0023]
So R1, R2, R3,Or RFourExamples of the lower alkyl group used in the above are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl (amyl) group, isopentyl group. Group, neopentyl group, tert-pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl Group, 1,1-dimethylbutyl group, 2,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-dimethylbutyl group, 3,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl Group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl-1-methyl Propyl group, 1-ethyl-2-methylpropyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclopropylmethyl group, a cycloalkyl pull pills ethyl group, and cyclobutylmethyl group. More preferred are methyl group, ethyl group, propyl group, isopropyl group and cyclopropyl group.
[0024]
R1, R2, R3,Or RFourSpecific examples of the lower alkoxy group used in the formula include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, 1-methylbutyl Oxy group, 2-methylbutyloxy group, 3-methylbutyloxy group, 1,2-dimethylpropyloxy group, hexyloxy group, 1-methylpentyloxy group, 1-ethylpropyloxy group, 2-methylpentyloxy group 3-methylpentyloxy group, 4-methylpentyloxy group, 1,2-dimethylbutyloxy group, 1,3-dimethylbutyloxy group, 2,3-dimethylbutyloxy group, 1,1-dimethylbutyloxy group 2,2-dimethylbutyloxy group, 3,3-dimethylbutyloxy group, etc. It is below. More preferably, they are a methoxy group, an ethoxy group, or a propoxy group.
[0025]
R1, R2, R3,Or RFourExamples of the lower alkoxycarbonyl group used in are a methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, cyclopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert- Examples include butoxycarbonyl group. More preferred is a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an isopropoxycarbonyl group or a cyclopropoxycarbonyl group.
[0026]
R1, R2, R3,Or RFourExamples of the lower acyl group used in the formula include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, 1-methylpropylcarbonyl group, isovaleryl group, pentylcarbonyl group, 1-methylbutylcarbonyl group, Examples include 2-methylbutylcarbonyl group, 3-methylbutylcarbonyl group, 1-ethylpropylcarbonyl group, 2-ethylpropylcarbonyl group and the like. More preferred are formyl group, acetyl group, and propionyl group.
[0027]
R1, R2, R3,Or RFourIn addition to the above-mentioned lower alkyl group, lower alkoxy group, lower alkoxycarbonyl group and lower acyl group, the same or different hydrogen atom or halogen atom is preferably used. Specific examples of the halogen atom include fluorine, chlorine, bromine or iodine, more preferably fluorine and chlorine.
[0028]
The present invention is a ruthenium compound having a half sandwich structure represented by the general formula [1] as described above. Preferably, the general formula [2]
[0029]
Embedded image
Figure 0004517565
[Wherein R1, R2Are the same or different and each represents hydrogen, halogen, a lower acyl group, a lower alkoxy group, a lower alkoxycarbonyl group, or a lower alkyl group. However, R1Is hydrogen and R2Except when is a methyl group. And an organic ruthenium compound represented by a half sandwich structure, more preferably R1, R2Both are lower alkyl groups, especially R1Is an ethyl group, R2Is preferably a methyl group.
[0030]
The present invention is also a method for producing a ruthenium-containing thin film by the CVD method using the above-described half-sandwich organic ruthenium compound. FIG. 1 shows an example of the apparatus. The half-sandwich organic ruthenium compound of the present invention is placed in the raw material container 1 and kept at 40 to 120 ° C., and the carrier gas 7 is bubbled into this liquid under reduced pressure to evaporate the half-sandwich organic ruthenium compound. Send to. When the half-sandwich organic ruthenium compound is thermally decomposed on the substrate 4 heated and maintained at 200 to 750 ° C., a ruthenium-containing thin film is formed.
[0031]
Further, the CVD film formation method in the present invention may be a bubbling method as shown in FIG. 1, or a solution in which the organic ruthenium compound of the present invention is dissolved as it is or in an organic solvent is sent into the vaporizer and gas is generated in the vaporizer. The solution vaporizing type may be used.
[0032]
Further, the half sandwich structure organic ruthenium compound used in the CVD method of the present invention may be used as it is, or may be used as a half sandwich structure organic ruthenium compound solution dissolved in an organic solvent. Examples of the organic solvent used in this case include alcohols such as methanol, ethanol and isopropanol, esters such as ethyl acetate, butyl acetate and isoamyl acetate, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether and ethylene glycol monobutyl ether. Glycol ethers such as diethyl ether, glyme, diglyme, triglyme, tetrahydrofuran, etc., ketones such as methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, Hydrocarbons such as hexane, cyclohexane, heptane, octane, benzene, toluene, xylene and the like can be mentioned but are not particularly limited.
[0033]
The compound represented by the general formula [1] of the present invention can be obtained by reacting an open-type ruthenium complex represented by the general formula [3] with a cyclopentadiene represented by the general formula [4]. . At this time, the open-type ruthenium complex represented by the general formula [3] includes a pentadiene derivative represented by the general formula [5] and a ruthenium halide hydrate represented by the general formula [6] in the presence of zinc. It can be obtained by reaction. These reactions are shown in Reaction Formula [I]. Conventionally, many of the production methods of these half-sandwich organic ruthenium compounds have been poor in yield because the pentadiene derivative and the cyclopentadiene derivative are added and reacted at one time. The target can be obtained.
[0034]
Embedded image
Figure 0004517565
[Wherein, X represents halogen, and n represents a number of 0 to 10. R1, R2, RThree, RFourRepresents the same content as above. ]
In this production method, the reaction solvent is not particularly limited, and the method for recovering and purifying the product is not particularly limited. However, a half sandwich structure represented by the general formula [1] using methanol as a part or all of the reaction solvent, filtering off after completion of the reaction to remove excess zinc, and using a solvent that does not arbitrarily mix with methanol By extracting the organic ruthenium compound and concentrating the oily substance obtained by distillation, the desired product can be obtained through industrially advantageous steps. Examples of the solvent that does not arbitrarily intersect with methanol used at this time include aliphatic hydrocarbons such as pentane, hexane, heptane, and octane. Of these, pentane and hexane are particularly preferred because they are available at low cost and are industrially advantageous.
[0035]
The amount of zinc used for the reaction in the present invention is not particularly limited, but is preferably 1.0 mol or more with respect to 1 mol of the compound represented by the general formula [6] or the compound represented by the general formula [3]. More preferably, 5 mol or more is used. Even if a large excess is used, it is economically disadvantageous, so it is advantageous to use 1.5 to 100 moles. When the compound represented by the general formula [5] and the compound represented by the general formula [6] are reacted in the presence of zinc, the compound represented by the general formula [5] is represented by the general formula [6]. The reaction is preferably carried out using 2 moles or excess moles per mole of the compound. It is advantageous to use 2 to 20 mol since it is economically disadvantageous even if a large excess is used.
[0036]
When the compound represented by the general formula [5] and the compound represented by the general formula [6] are reacted in the presence of zinc, the reaction temperature is preferably −20 to 100 ° C. More preferably, it is −20 to 80 ° C. When the compound represented by the general formula [3] and the compound represented by the general formula [4] are reacted in the presence of zinc, the reaction temperature is preferably −20 to 100 ° C. More preferably, it is −20 to 80 ° C.
[0037]
When the compound represented by the general formula [3] and the compound represented by the general formula [4] are reacted in the presence of zinc, the compound represented by the general formula [4] is represented by the general formula [3]. The reaction is preferably carried out using 0.8 to 1.0 mole per mole of the compound. If less than 0.8 mol is used, the amount of the compound represented by the general formula [3] that remains unreacted increases, and if it exceeds 1.0 mol, a large amount of bis (ethylcyclopentadienyl) ruthenium is produced as a by-product. Therefore, it is not a preferable condition.
[0038]
In the present invention, when the compound represented by the general formula [5] is reacted with the compound represented by the general formula [6] to produce the compound represented by the general formula [3], the general formula [3] It is preferable to synthesize the compound represented by the general formula [1] by reacting the compound represented by the general formula [4] as it is in one pot without isolation.
[0039]
All the reactions in the present invention are preferably carried out in an atmosphere of nitrogen or an inert gas. Examples of the inert gas include helium, neon, argon, krypton, xenon, and radon. Of these, nitrogen and argon are more preferable because they are available at a low cost and are more attractive than air.
[0040]
Next, the compound represented by the general formula [7] will be described. As such a carbonylbis (diene) ruthenium complex, carbonylbis (1,3-hexadiene) ruthenium [RFive~ R7= -H, R8= -C2HFive], Carbonylbis (2,4-hexadiene) ruthenium [RFive, R8= -CHThree, R6, R7= -H], carbonylbis (3-methyl-1,3-pentadiene) ruthenium [RFive, R6= -H, R7, R8= -CHThree], Carbonylbis (2,4-hexadienal) ruthenium [RFive= -CHThree, R8= -C = O, R6, R7= -H], carbonylbis (2,4-hexadien-1-ol) ruthenium [RFive= -CHThree, R8= -CH2OH, R6, R7= -H], carbonylbis (1-acetoxy-1,3-butadiene) ruthenium [RFive= -O-COCHThree, R6, R7, R8= -H], carbonylbis (2,4-hexadienoic acid) ruthenium [RFive= -CHThree, R8= -COOH, R6, R7= -H], carbonylbis (methyl 2,4-pentadienoate) ruthenium [RFive= -COOCHThree, R6, R7, R8= -H] and the like.
[0041]
Also carbonylbis (2,4-heptadienal) ruthenium [RFive= -C2HFive, R8= -C = O, R6, R7= -H], carbonylbis (2,6-dimethyl-2,4,6-octatriene) ruthenium [RFive, R6= -CHThree, R8= -C = C (CHThree)2, R7= -H], carbonylbis (ethyl 2,4-decadienoate) ruthenium [RFive= -CH2CH2CH2CH2CHThree, R8= -COOC2HFive, R6, R7= -H], carbonylbis (myrcene) ruthenium [R6= -CH2CH2CH = C (CHThree)2, RFive, R7, R8= -H], carbonylbis (2,4-octadienal) ruthenium [RFive= -CH2CH2CHThree, R8= -C = O, R6, R7= -H], carbonylbis (ethyl sorbate) ruthenium [RFive= -CHThree, R8= -COOC2HFive, R6, R7= -H], carbonylbis (methyl sorbate) ruthenium [RFive= -CHThree, R8= -COOCHThree, R6, R7= -H], carbonylbis (2,4-heptadien-6-one) ruthenium [RFive= -CHThree, R8= -COCHThree, R6, R7= -H] and the like.
[0042]
In reducing the vaporization temperature of the complex, RFive~ R8Of these, at least one is an alkyl group having 1 to 2 carbon atoms, ether, ester, aldehyde, alcohol, ketone, alkyl halide, carboxylic acid, amine or amide, and the other is preferably hydrogen, more preferably RFive~ R8At least one of them is an alkyl group having 1 to 2 carbon atoms and the other is hydrogen, of which carbonylbis (2-methyl-1,3-pentadiene) ruthenium [RFive, R7= -H, R6, R8= -CHThree] Is most preferable.
[0043]
The carbonylbis (diene) ruthenium complex represented by the general formula [7] of the present invention can be produced by reacting ruthenium chloride n-hydrate with diene in an alcohol in the presence of zinc. At this time, if the diene is in a deficient state, metal ruthenium is generated and the yield is lowered, so that the reaction is preferably carried out in an excess of diene, and the amount of diene is preferably 10 to 20 times mol of ruthenium chloride n-hydrate. The zinc powder is preferably used in an excess amount of 10-fold mol or more in order to sufficiently reduce the ruthenium chloride n-hydrate. In addition, when these are mixed, the target carbonylbis (diene) ruthenium complex can be obtained in a high yield by dropping a ruthenium chloride n-hydrate alcohol solution into a diene or diene alcohol solution in which zinc powder is dispersed. Obtainable.
[0044]
The diene used is not particularly limited as long as it is a compound having two or more double bonds on a continuous carbon chain in the molecule. Since the movement of the double bond occurs during the reaction, 1,4-hexadiene, 1,5-hexadiene, 2-methyl-1,4-pentadiene, 3-methyl-1,4-pentadiene, 2-methyl-1,5 -Non-conjugated dienes such as hexadiene may be used, but conjugated dienes represented by the following general formula [8] are preferred.
[0045]
Embedded image
Figure 0004517565
(Where RFive~ R8Represents hydrogen or alkyl having 1 to 6 carbon atoms, ether, ester, aldehyde, alcohol, ketone, alkyl halide, carboxylic acid, amine or amide. However, RFive~ R8If all are hydrogen, and RFive, R8Is hydrogen and R6, R7Except when is methyl. ).
[0046]
Especially in the general formula [8], RFive~ R8Of these, at least one is alkyl having 1 to 2 carbon atoms, ether, ester, aldehyde, alcohol, ketone, alkyl halide, carboxylic acid, amine or amide, and the other is preferably hydrogen.
[0047]
Such conjugated dienes include 1,3-hexadiene (RFive~ R7= -H, R8= -C2HFive), 2,4-hexadiene (R)Five, R8= -CHThree, R6, R7= -H), 3-methyl-1,3-pentadiene (RFive, R6= -H, R7, R8= -CHThree), 2,4-hexadienal (RFive= -CHThree, R8= -C = O, R6, R7= -H), 2,4-hexadien-1-ol (RFive= -CHThree, R8= -CH2OH, R6, R7= -H), 1-acetoxy-1,3-butadiene (RFive= -O-COCHThree, R6, R7, R8= -H), 2,4-hexadienoic acid (RFive= -CHThree, R8= -COOH, R6, R7= -H), methyl 2,4-pentadienoate (RFive= -COOCHThree, R6, R7, R8= -H), 2,4-heptadienal (RFive= -C2HFive, R8= -C = O, R6, R7= -H).
[0048]
In addition, 2,6-dimethyl-2,4,6-octatriene (RFive, R6= -CHThree, R8= -C = C (CHThree)2, R7= -H), ethyl 2,4-decadienoate (RFive= -CH2CH2CH2CH2CHThree, R8= -COOC2HFive, R6, R7= -H), myrcene (R6= -CH2CH2CH = C (CHThree)2, RFive, R7, R8= -H), 2,4-octadienal (RFive= -CH2CH2CHThree, R8= -C = O, R6, R7= -H), ethyl sorbate (R)Five= -CHThree, R8= -COOC2HFive, R6, R7= -H), methyl sorbate (R)Five= -CHThree, R8= -COOCHThree, R6, R7= -H), 2,4-heptadien-6-one (RFive= -CHThree, R8= -COCHThree, R6, R7= -H) and the like, but 2-methyl-1,3-pentadiene (RFive, R7= -H, R6, R8= -CHThree) Is most preferred.
[0049]
Although alcohol will not be specifically limited if it is a liquid at room temperature (25 degreeC), Since CO used as a ligand produces | generates from alcohol, methanol, ethanol, and 1-propanol are preferable from the point of reaction rate. Moreover, the alcohol to be used may be not only one type but also a mixture of several types. When alcohol solution of ruthenium chloride n-hydrate is dropped into diene or diene alcohol solution in which zinc powder is dispersed, diene is used to dissolve ruthenium chloride n-hydrate alcohol and ruthenium chloride n-hydrate. The alcohols used need not be the same and may be different. The reaction temperature is preferably 0 to 80 ° C. because the reaction rate is low at low temperatures and the polymerization reaction of diene occurs at high temperatures. After the reaction, the complex formed can be extracted with a solvent such as pentane or hexane directly from the reaction mixture or after removing the alcohol and unreacted diene from the reaction mixture after removing the zinc powder by filtration. In addition to the complex, the extracted liquid contains a diene polymer produced by the reaction and the like, and thus the complex is obtained by purification by chromatography, distillation or the like.
[0050]
A ruthenium-containing thin film can be produced using these carbonylbis (diene) ruthenium complexes as raw materials.
[0051]
When a ruthenium-containing thin film such as ruthenium or ruthenium oxide is produced on a substrate using a carbonylbis (diene) ruthenium complex as a raw material by CVD, it is gasified and supplied onto the substrate. As a gasification method, an inert carrier gas is introduced into a heated liquid complex, and the carrier gas is entrained with the carrier gas and led to a reaction vessel on which a substrate is placed. The complex is dissolved in an organic solvent to form a solution. There is a method in which the gas is sent to a vaporizer, gasified in the vaporizer, and led to a reaction vessel placed on a substrate.
[0052]
When the carbonylbis (diene) ruthenium complex is dissolved in an organic solvent and used as a solution, examples of the organic solvent include alcohols such as methanol, ethanol and isopropanol, esters such as ethyl acetate, butyl acetate and isoamyl acetate, Glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethers such as glyme, diglyme, triglyme, and tetrahydrofuran, methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl Examples include ketones such as ketone, methyl amyl ketone, and cyclohexanone, and hydrocarbons such as hexane, cyclohexane, heptane, octane, toluene, and xylene. But it is not particularly limited.
[0053]
In addition, when a ruthenium-containing thin film such as ruthenium or ruthenium oxide is formed on a substrate by a coating pyrolysis method, it is used in a solution, but the above organic solvent can also be used at this time.
[0054]
The CVD method used for the production of the ruthenium-containing thin film of the present invention is not particularly limited as long as it is a commonly used CVD method such as thermal CVD, plasma CVD, or photo CVD. Examples of the raw material coating method of the coating pyrolysis method include a spin coating method, a dip method, a spraying method, and the like. As a heating method, an oven, a hot plate, or the like can be used. Not.
[0055]
【Example】
EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited only to this Example.
[0056]
Example 1 Synthesis and Thermal Decomposition Properties of (2,4-Dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium
400 g of zinc was weighed into a four-necked flask, the container was purged with argon, and 205 ml of 2,4-dimethyl-1,3-pentadiene was added to form a suspension. A solution prepared by dissolving 30 g of ruthenium trichloride n-hydrate (n = about 3) in 1000 ml of methanol was added dropwise at room temperature over 40 minutes. After completion of dropping, the mixture was stirred at room temperature for 30 minutes, then heated to 60 ° C. and stirred for 2 hours. After allowing to cool once, 12 ml of ethylcyclopentadiene was added, and the mixture was stirred as it was at room temperature for 30 minutes, heated to 60 ° C. and stirred for 2 hours. After completion of the reaction, the reaction mixture was cooled to room temperature and unreacted zinc was removed using a glass filter, followed by extraction with hexane 750 ml × 1 time and 300 ml × 4 times. The extracted solution was concentrated under reduced pressure, and the resulting oily product was distilled under reduced pressure to obtain 25.4 g (yield: 76. 2) of the desired product (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium. 3%).
Yellow oil.
1H-NMR (500 MHz, CDCl3, dppm)
5.38 (s, 1H), 4.63 (t, J = 2.0 Hz, 2H), 4.52 (t, J = 2.0 Hz, 2H), 2.70 (d, J = 2.5 Hz) , 2H), 2.15 (q, J = 7.5 Hz, 2H), 1.93 (s, 6H), 1.12 (t, J = 7.5 Hz, 3H), −0.09 (d, J = 2.5 Hz, 2H).
IR (neat, cm-1)
3050, 2960, 2910, 1475, 1445, 1430, 1375, 1030, 860, 800
MS (GC / MS, EI)
102Molecular ion peak of (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium at Ru; m / z 290. The MS chart is shown in FIG.
[0057]
(Decomposition characteristics)
Moreover, the result of having measured the decomposition | disassembly characteristic of the obtained (2, 4- dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium is shown in FIG. The degradation characteristic measurement conditions are as follows.
Figure 0004517565
Comparative Example 1 Decomposition characteristics of bis (ethylcyclopentadienyl) ruthenium
Under the same conditions as in Example 1, the decomposition characteristics of bis (ethylcyclopentadienyl) ruthenium were measured. An exothermic reaction was observed from around 320 ° C. The results are shown in FIG.
[0058]
Example 2 Synthesis of (2,4-dimethylpentadienyl) (methylcyclopentadienyl) ruthenium
In a 50 ml Schlenk tube, 8.0 g of zinc was weighed, and the container was purged with argon, and 4 ml of 2,4-dimethyl-1,3-pentadiene was added to form a suspension. A solution prepared by dissolving 0.6 g of ruthenium trichloride hydrate in 20 ml of ethanol was added dropwise at room temperature over 50 minutes. After completion of dropping, the mixture was stirred at room temperature for 30 minutes, then heated to 70 ° C. and stirred for 2 hours. After allowing to cool, 240 μl of methylcyclopentadiene was added, and the mixture was stirred at room temperature for 30 minutes, heated to 70 ° C. and stirred for 2 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, unreacted zinc was removed using a glass filter, and concentrated to obtain a mud mixture. The resulting mud mixture was extracted with pentane, and the extract was subjected to column chromatography using alumina as a carrier and pentane as an eluent, and the target product (2,4-dimethylpentadienyl) (methylcyclopenta). 0.28 g of dienyl) ruthenium was obtained.
1H-NMR (500 MHz, CDClThree, Δppm)
5.36 (s, 1H), 4.61 (t, J = 2.0 Hz, 2H), 4.57 (t, J = 2.0 Hz, 2H), 2.67 (d, J = 2.5 Hz) , 2H), 1.93 (s, 6H), 1.83 (s, 3H), -0.07 (d, J = 2.5 Hz, 2H)
MS (GC / MS, EI)
102Molecular ion peak of (2,4-dimethylpentadienyl) (methylcyclopentadienyl) ruthenium at Ru; m / z 276. This MS chart is shown in FIG.
[0059]
Example 3 Production of a ruthenium-containing thin film by CVD using (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material
Using the apparatus shown in FIG. 1, the surface of the substrate is SiO.2A Si substrate having a film formed of 100 nm was used. About 10 g of (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 and heated in an oil bath to a constant temperature of 60 ° C. The reaction tank 3 was adjusted to 10 Torr and the inside of the reaction vessel was adjusted to 100 Torr using the vacuum pump 11 and the pressure adjusting valve. Nitrogen was used as the carrier gas 7 and the flow rate was set to 100 sccm with a mass flow controller. Oxygen was used as the oxidizing gas 5 and nitrogen was used as the counter gas 6. The oxidizing gas flow rate was set to 0, 10, 30, 300 sccm, and the counter gas flow rate was set so that the sum of the oxidizing gas flow rate and the oxidizing gas flow rate was 500 sccm. The substrate 4 was set to 400 ° C., and film formation was performed for 60 minutes while being heated and held.
[0060]
FIG. 6 shows the film thickness of the Ru-containing thin film formed on the substrate with respect to the oxygen flow rate. FIG. 7 shows X-ray diffraction patterns of the films obtained by A, B, and C in FIG. From FIG. 7, it is clear that when the oxygen flow rate is 0 sccm (A), a Ru film is obtained, and at a higher oxygen flow rate (B) (C), a Ru oxide film is obtained. That is, depending on the oxygen flow rate in CVD, the Ru film and RuO2It became clear that it was possible to make a separate film.
[0061]
Example 4 Production of ruthenium-containing thin film by CVD using (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material
Using the apparatus shown in FIG. 1, the surface of the substrate is SiO.2A Si substrate having a film formed of 100 nm was used. About 10 g of (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 and heated in an oil bath to a constant temperature of 60 ° C. The reaction tank 3 was adjusted to 10 Torr and the inside of the reaction vessel was adjusted to 100 Torr using the vacuum pump 11 and the pressure adjusting valve. Nitrogen was used as the carrier gas 7 and the flow rate was set to 100 sccm with a mass flow controller. Oxygen was used as the oxidizing gas 5 and nitrogen was used as the counter gas 6. The oxidizing gas flow rate was set to 300 sccm, and the counter gas flow rate was set to 200 sccm. The substrate 4 was set to 170, 200, 300, 400, 500, and 600 ° C., and film formation was performed for 60 minutes in a state of being heated and held.
[0062]
FIG. 8A (black circle) shows an Arrhenius plot of the film growth rate. A Ru-containing thin film could be formed at 200 ° C. or higher. The resistivity of the obtained film is shown in FIG. A good resistivity close to the bulk resistivity (indicated by the arrow in FIG. 9) was obtained.
[0063]
Example 5 Production of ruthenium-containing thin film by CVD using (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material
Using the apparatus shown in FIG. 1, the surface of the substrate is SiO.2A Si substrate having a film formed of 100 nm was used. About 10 g of (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 and heated in an oil bath to a constant temperature of 60 ° C. The reaction tank 3 was adjusted to 10 Torr and the inside of the reaction vessel was adjusted to 100 Torr using the vacuum pump 11 and the pressure adjusting valve. Nitrogen was used as the carrier gas 7 and the flow rate was set to 100 sccm with a mass flow controller. The oxidizing gas 5 was not used, nitrogen was used as the counter gas 6, and the counter gas flow rate was set to 500 sccm. The substrate 4 was set to 250, 275, 300, 325, 350, 375, 400, 450, 500, 550, and 600 ° C., and film formation was performed for 60 minutes in a state of being heated and held.
[0064]
FIG. 8B (white circle) shows an Arrhenius plot of the film growth rate. A Ru film could be formed at 275 ° C. or higher. FIG. 10 shows an X-ray diffraction pattern of the Ru-containing thin film formed. A film having good crystallinity was obtained at 400 ° C. or higher. FIG. 11 shows the resistivity of the obtained film. Good resistivity close to the bulk resistivity (indicated by the arrow in FIG. 11) was obtained. 12 and 14 show SEM photographs of cross sections of films obtained by film formation at substrate temperatures of 300 ° C. and 600 ° C. FIG. A dense film was observed at any temperature, but a dense film was observed particularly at 600 ° C. FIGS. 16 and 18 show AFM images of cross sections of the films obtained by film formation at the substrate temperatures of 350 ° C. and 600 ° C. As a result of measuring the surface roughness by AFM, Ra (arithmetic average roughness) and Ry (maximum height) are shown in Table 1 (a). Here, Ra and Ry are the methods described in JIS B0601-1994 / JIS B0031-1994. It can be seen that the surface of the Ru-containing thin film according to the present invention is very flat.
[0065]
[Table 1]
Figure 0004517565
Comparative Example 2
As a comparative example, a film was formed under the same conditions as in Example 6 except that about 10 g of commercially available bis (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 using the apparatus shown in FIG. 13 and 15 show SEM photographs of cross sections of films obtained by film formation at substrate temperatures of 300 ° C. and 600 ° C. In either case, the density was poor, and columnar crystal growth was confirmed. FIGS. 17 and 19 show AFM images of the cross sections of the films obtained by the film formation at the substrate temperatures of 350 ° C. and 600 ° C. As a result of measuring the surface roughness by AFM, Ra and Ry are shown in Table 1 (b). Compared with the examples, the surface roughness was large.
[0066]
Example 6 Production of ruthenium-containing thin film by CVD using (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material
Using the apparatus shown in FIG. 1, the surface of the substrate is SiO.2A Si substrate having a film formed of 100 nm was used. About 10 g of (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 and heated in an oil bath to a constant temperature of 60 ° C. The reaction tank 3 was adjusted to 10 Torr and the inside of the reaction vessel was adjusted to 100 Torr using the vacuum pump 11 and the pressure adjusting valve. Nitrogen was used as the carrier gas 7 and the flow rate was set to 30, 100 sccm with a mass flow controller. Oxygen was used as the oxidizing gas 5 and nitrogen was used as the counter gas 6. The oxidizing gas flow rate was set to 300 sccm, and the counter gas flow rate was set to 200 sccm. The substrate 4 was set to 400 ° C., and film formation was performed for 60 minutes while being heated and held. FIG. 20 shows the relationship between the carrier gas flow rate and the deposition rate of the Ru-containing thin film deposited on the substrate. Films could be sufficiently formed even in a region with a small amount of carrier gas.
[0067]
Example 7 Production of ruthenium-containing thin film by CVD using (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium as a raw material
Using the apparatus shown in FIG. 1, the surface of the substrate is SiO.2A Si substrate having a film formed of 100 nm was used. About 10 g of (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 and heated in an oil bath to a constant temperature of 60 ° C. The reaction tank 3 was adjusted to 10 Torr and the inside of the reaction vessel was adjusted to 100 Torr using the vacuum pump 11 and the pressure adjusting valve. Nitrogen was used as the carrier gas 7 and the flow rate was set to 100 sccm with a mass flow controller. The oxidizing gas 5 was not used, nitrogen was used as the counter gas 6, and the counter gas flow rate was set to 500 sccm. Film formation was performed for 2.5, 5, 10, 20, 60, and 120 minutes while the substrate 4 was set at 350 ° C. and kept heated.
[0068]
FIG. 21A (black circle) shows the film formation time and the film thickness of the Ru-containing thin film formed on the substrate. A Ru-containing thin film was obtained after the film formation time of 2.5 minutes or more, and the film thickness increased linearly with time. In the Ru-containing thin film according to the present invention, the incubation time (the time during which no film is formed on the substrate) is not recognized, and the Ru-containing thin film can be easily formed.
[0069]
Comparative Example 3
As a comparative example, a film was formed under the same conditions as in Example 7 except that about 10 g of commercially available bis (ethylcyclopentadienyl) ruthenium was placed in the raw material container 1 using the apparatus shown in FIG. FIG. 21B (square) shows the film formation time and the film thickness of the Ru-containing thin film formed on the substrate. There was an incubation time up to 20 minutes.
[0070]
Example 8 Synthesis of carbonylbis (2-methyl-1,3-pentadiene) ruthenium
A 1000 ml four-necked flask was charged with 160 g of zinc powder, a stirrer, a dropping funnel, a condenser, and a thermometer were attached, and the inside of the flask was replaced with argon. After adding 60 ml of 2-methyl-1,3-pentadiene and stirring to disperse the zinc powder, 10 g of ruthenium chloride n-hydrate was dissolved in 400 ml of ethanol from a dropping funnel while keeping it at 25 ° C. or lower in a water bath. Was added dropwise over 1 hour. After completion of dropping, the mixture was heated to 70 ° C. and stirred for 3 hours. The zinc powder was removed from the solution after the reaction by filtration, and the muddy material obtained by removing ethanol and the like under reduced pressure was extracted with pentane. The extract was purified by column chromatography using alumina as a filler and pentane as a solvent. After removing the solvent, 9.9 g of carbonylbis (2-methyl-1,3-pentadiene) ruthenium as a yellow liquid (yield 89%) )Obtained.
[0071]
1H-NMR (CDClThree) Δ 3.91 (d, 2H, J = 7.5 Hz), 2.04 (s, 6H), 1.42 (s, 2H), 1.27 (d, 6H, J = 6 Hz), 1.17 (Dq, 2H, J = 14 Hz), 0.30 (s, 2H).
13C-NMR (CDClThree) 218.88 (CO), 91.51 (C), 89.47 (CH), 50.51 (CH), 37.58 (CH2), 22.84 (CHThree), 18.78 (CHThree).
IR 1967cm-1(CO).
MS 294 (M+).
[0072]
Example 9 Thermal decomposition characteristics of carbonylbis (2-methyl-1,3-pentadiene) ruthenium (DSC measurement)
6.7 mg of carbonylbis (2-methyl-1,3-pentadiene) ruthenium obtained in Example 8 was placed in a stainless steel pan and sealed with a stainless steel lid. This sample was measured for change in calorie during heating with a differential scanning calorimeter (DSC) at a heating rate of 10 ° C. per minute with 18.8 mg of aluminum oxide as a reference. An exothermic reaction was observed from around 120 ° C., confirming the decomposition of the complex. The results are shown in FIG.
[0073]
Example 10
Production of ruthenium-containing film by CVD method using carbonylbis (2-methyl-1,3-pentadiene) ruthenium as a raw material
A carbonyl bis (2-methyl-1,3-pentadiene) ruthenium is used as a raw material and a CVD apparatus shown in FIG.2) Flow rate 100sccm, raw material pressure 400Torr, counter gas (N2) Flow rate 200 sccm, piping temperature 80 ° C., substrate temperature 300 ° C., chamber pressure 10 Torr, oxidizing gas (O2) SiO at a flow rate of 300sccm2Film formation was performed on a silicon wafer with a film for 1 hour. When the film composition was confirmed by X-ray diffraction, RuO2When the film thickness was measured by SEM, it was 500 nm.
[0074]
Example 11 Production of ruthenium-containing film by spin coating using carbonylbis (2-methyl-1,3-pentadiene) ruthenium as a raw material
A solution was prepared by dissolving 1 ml of carbonylbis (2-methyl-1,3-pentadiene) ruthenium in 9 ml of heptane. This solution was spin-coated on a silicon wafer at 500 rpm for 5 seconds and 1000 rpm for 10 seconds, and heated in an oven at 150 ° C. for 20 minutes. When the film composition was confirmed by X-ray diffraction, RuO2When the film thickness was measured by SEM, it was 300 nm.
[0075]
Comparative Example 4
When film formation was performed using bis (ethylcyclopentadiene) ruthenium as a raw material by the same method as in Example 10, a film containing Ru was not obtained.
[0076]
  Example 12(Comparative example)
  After charging 8 g of zinc into a Schlenk tube and replacing with argon, 240 ml of ethylcyclopentadiene and 4 ml of 2,4-dimethyl-1,3-pentadiene were added. A solution prepared by dissolving 608 mg (n = about 3) of ruthenium chloride hydrate in 25 ml of dehydrated ethanol was added dropwise over 1 hour and 15 minutes under ice cooling, followed by stirring for 1 hour and 30 minutes under ice cooling and for 1 hour at room temperature. After completion of the reaction, unreacted zinc was removed using a glass filter, and then concentrated under reduced pressure to obtain a mud. This mud was extracted with pentane, and the extract was subjected to column chromatography (pentane / alumina). The desired product (2,4-dimethylpentadienyl) (ethylcyclopentadienyl) ruthenium 106 mg (yield) 16%). Further, 70 mg (yield 11%) of bis (ethylcyclopentadienyl) ruthenium was obtained as a by-product.
[0077]
【The invention's effect】
Since the half-sandwich organic ruthenium compound represented by the general formula [1] of the present invention is liquid at room temperature and has a sufficient vapor pressure near 100 ° C., it is quantitatively supplied as a CVD raw material by gas bubbling. it can. Further, since it can be thermally decomposed at a lower temperature than conventional materials, a Ru-containing thin film having excellent step coverage can be formed on the substrate. According to the present invention, a Ru-containing thin film can be formed by a CVD method excellent in mass productivity.
[0078]
By performing the CVD method using the organoruthenium compound of the present invention, the Ru film and the RuOO are controlled by the oxygen flow rate in the CVD.2It is possible to make a separate film. Further, the obtained Ru-containing thin film is dense, has few impurities, and is excellent in crystallinity. As a result, it is possible to obtain a film whose resistivity is close to the bulk value. In addition, the Ru-containing thin film according to the present invention can be obtained with a dense and flat thin film surface as compared with the case of using a conventional product.
[0079]
According to the method for producing a half-sandwich organic ruthenium compound of the present invention, a half-sandwich organic ruthenium compound that has been obtained only in a low yield by the conventional production method can be stably obtained in a high yield. Moreover, since the target product can be obtained without concentrating the alcohol, it can be produced advantageously in terms of energy. For this reason, the manufacturing method of the half sandwich structure organic ruthenium compound of the present invention can be widely used not only for manufacturing on a small scale but also for manufacturing on an industrial scale.
[0080]
The carbonylbis (diene) ruthenium complex of the present invention can form a film at a lower temperature than the complex conventionally used in film formation by CVD, and can form a ruthenium-containing thin film with a stable supply of raw materials. It is. Further, since the pyrolysis temperature is low and the solubility in a solvent is high, a ruthenium-containing thin film can be formed even by a coating pyrolysis method. Furthermore, a function as a reaction catalyst in a solvent can be expected. The production method is milder than the conventionally known methods for producing carbonylbis (diene) ruthenium complexes and is advantageous for production.
[Brief description of the drawings]
FIG. 1 is a schematic view of a CVD apparatus.
2 is a chart showing an MS measured in Example 1. FIG.
3 is a graph showing the results of decomposition characteristics (DSC) measured in Example 1. FIG.
4 is a graph showing the results of decomposition characteristics (DSC) measured in Comparative Example 1. FIG.
5 is a view showing a chart of MS measured in Example 2. FIG.
6 is a graph showing the relationship between the oxygen flow rate and the film formation rate in Example 3. FIG.
7 is an X-ray diffraction pattern of the film produced in Example 3. FIG.
FIG. 8 shows an Arrhenius plot of film growth rate.
9 is a graph showing the resistivity of the film obtained in Example 4. FIG.
10 is an X-ray diffraction pattern of the film obtained in Example 5. FIG.
11 is a graph showing the resistivity of the film obtained in Example 5. FIG.
12 is a view showing an SEM of the film obtained in Example 5. FIG.
13 is a view showing an SEM of the film obtained in Comparative Example 2. FIG.
14 is a view showing an SEM of the film obtained in Example 5. FIG.
15 is a view showing an SEM of a film obtained in Comparative Example 2. FIG.
16 is a view showing an AFM of the film obtained in Example 5. FIG.
17 is a view showing an AFM of the film obtained in Comparative Example 2. FIG.
18 is a view showing an AFM of the film obtained in Example 5. FIG.
19 is a diagram showing an AFM of the film obtained in Comparative Example 2. FIG.
20 is a graph showing the relationship between the carrier gas flow rate and the deposition rate in Example 6. FIG.
FIG. 21 is a diagram showing a relationship between a film formation time and a film thickness.
22 shows a DSC curve of Example 9. FIG.
[Explanation of symbols]
1 Raw material container
2 Thermostatic bath
3 reaction tank
4 Substrate
5 Oxidizing gas
6 Counter gas
7 Carrier gas
8 Mass flow controller
9 Mass flow controller
10 Mass flow controller
11 Vacuum pump
12 Exhaust

Claims (14)

一般式[2]
Figure 0004517565
[式中R炭素数2個以上6個以下の直鎖状、分岐状、又は環状アルキル基を示す。はメチル基を示す。]で表されることを特徴とする、ハーフサンドイッチ構造有機ルテニウム化合物。
General formula [2]
Figure 0004517565
[Wherein R 1 represents a linear, branched, or cyclic alkyl group having 2 to 6 carbon atoms. R 2 represents a methyl group. ] An organic ruthenium compound having a half sandwich structure, which is represented by the following formula:
請求項1に記載のハーフサンドイッチ構造有機ルテニウム化合物を原料とし、化学気相蒸着法を用いて、加熱した基板上にルテニウム含有薄膜を製造することを特徴とする、ルテニウム含有薄膜の製造方法。A method for producing a ruthenium-containing thin film, characterized in that a ruthenium-containing thin film is produced on a heated substrate using the half-sandwich organic ruthenium compound according to claim 1 as a raw material and using a chemical vapor deposition method. 式[9]
Figure 0004517565
で表されるオープンルテノセンに、溶媒中で亜鉛存在下、一般式[4]
Figure 0004517565
[式中R炭素数2個以上6個以下の直鎖状、分岐状、又は環状アルキル基を示す。]で表されるシクロペンタジエンを反応させることを特徴とする、一般式[2]
Figure 0004517565
[式中Rは前記と同じ。Rはメチル基を示す。]で表されるハーフサンドイッチ構造有機ルテニウム化合物の製造方法。
Formula [9]
Figure 0004517565
In the presence of zinc in a solvent, open ruthenocene represented by the general formula [4]
Figure 0004517565
[Wherein R 1 represents a linear, branched, or cyclic alkyl group having 2 to 6 carbon atoms. And a cyclopentadiene represented by the general formula [2]
Figure 0004517565
[Wherein R 1 is the same as defined above. R 2 represents a methyl group. ] The manufacturing method of a half sandwich structure organic ruthenium compound represented by this.
式[9]で表されるオープンルテノセンが、式[10]
Figure 0004517565
で表されるペンタジエンと亜鉛の混合液中に、一般式[6]
RuX・nHO [6]
[式中Xはハロゲンを表し、nは0乃至10の数字を示す。]で表されるハロゲン化ルテニウム水和物を溶媒で希釈した溶液を滴下・反応させて得られるものであることを特徴とする、請求項3に記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。
Open ruthenocene represented by the formula [9] is represented by the formula [10].
Figure 0004517565
In the mixed solution of pentadiene and zinc represented by the general formula [6]
RuX 3 · nH 2 O [6]
[Wherein X represents halogen, and n represents a number of 0 to 10. The method for producing an organic ruthenium compound having a half-sandwich structure according to claim 3, wherein the solution is obtained by dropping and reacting a solution obtained by diluting a ruthenium halide hydrate represented by a solvent with a solvent.
メタノールを一部または全部の溶媒として用い、反応終了後に濾過して過剰の亜鉛を取り除いた後、メタノールと任意に混合しない溶媒を用いて一般式[2]で表されるルテニウム化合物を抽出することを特徴とする、請求項3又は4に記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。Extracting the ruthenium compound represented by the general formula [2] using methanol as part or all of the solvent, filtering off the excess zinc after the completion of the reaction, and then using a solvent not arbitrarily mixed with methanol. The method for producing an organic ruthenium compound having a half-sandwich structure according to claim 3 or 4, wherein: メタノールと任意に混合しない溶媒を用いて抽出した後の溶液を濃縮し、次いで蒸留することにより、一般式[2]で表されるハーフサンドイッチ構造有機ルテニウム化合物を精製することを特徴とする、請求項5に記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。The half-sandwich organoruthenium compound represented by the general formula [2] is purified by concentrating and then distilling the solution after extraction using a solvent that is not arbitrarily mixed with methanol, Item 6. A method for producing an organic ruthenium compound having a half sandwich structure according to Item 5. 式[10]で表されるペンタジエンの添加量が、ハロゲン化ルテニウム水和物1モルに対して2乃至20モルであることを特徴とする、請求項4〜6いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。The half sandwich structure according to any one of claims 4 to 6, wherein the amount of pentadiene represented by the formula [10] is 2 to 20 moles per mole of ruthenium halide hydrate. A method for producing an organic ruthenium compound. 亜鉛の添加量が、ハロゲン化ルテニウム水和物又は式[9]で表されるオープンルテノセン1モルに対して1.5乃至100モルであることを特徴とする、請求項3〜7いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。The amount of zinc added is 1.5 to 100 moles per mole of ruthenium halide hydrate or open ruthenocene represented by the formula [9]. A method for producing an organic ruthenium compound having a half sandwich structure as described in 1. 式[10]で表されるペンタジエンと一般式[6]で表されるハロゲン化ルテニウム水和物を反応させて式[9]で表されるオープンルテノセンを合成する際の反応温度が−20乃至100℃であることを特徴とする、請求項4〜8いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。The reaction temperature when synthesizing the open ruthenocene represented by the formula [9] by reacting the pentadiene represented by the formula [10] with the ruthenium halide hydrate represented by the general formula [6] is -20. It is thru | or 100 degreeC, The manufacturing method of the half sandwich structure organic ruthenium compound in any one of Claims 4-8 characterized by the above-mentioned. 式[9]で表されるオープンルテノセンと一般式[4]で表されるシクロペンタジエンを反応させて一般式[2]で表されるハーフサンドイッチ構造有機ルテニウム化合物を合成するときの反応温度が、−20乃至100℃であることを特徴とする、請求項3〜9いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。The reaction temperature when synthesizing the half-sandwich organic ruthenium compound represented by the general formula [2] by reacting the open ruthenocene represented by the formula [9] with the cyclopentadiene represented by the general formula [4] is as follows. The method for producing an organic ruthenium compound having a half sandwich structure according to any one of claims 3 to 9, wherein the temperature is -20 to 100 ° C. 式[9]で表されるオープンルテノセンと一般式[4]で表されるシクロペンタジエンを反応させて一般式[2]で表されるハーフサンドイッチ構造有機ルテニウム化合物を合成する際に、一般式[4]で表されるシクロペンタジエンの添加量が式[9]で表されるオープンルテノセン1モルに対して0.8〜1モルであることを特徴とする、請求項3〜10いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。When the open ruthenocene represented by the formula [9] and the cyclopentadiene represented by the general formula [4] are reacted to synthesize a half sandwich structure organic ruthenium compound represented by the general formula [2], the general formula The amount of cyclopentadiene represented by [4] is 0.8 to 1 mole per mole of open ruthenocene represented by formula [9]. A method for producing an organic ruthenium compound having a half sandwich structure as described in 1. 式[9]で表されるオープンルテノセンを製造した後、単離することなく1ポットで一般式[4]で表されるシクロペンタジエン誘導体と反応させて、一般式[2]で表されるハーフサンドイッチ構造有機ルテニウム化合物を合成することを特徴とする、請求項4〜11いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。After the open ruthenocene represented by the formula [9] is produced, it is reacted with the cyclopentadiene derivative represented by the general formula [4] in one pot without isolation, and represented by the general formula [2]. The method for producing a half-sandwich organic ruthenium compound according to any one of claims 4 to 11, wherein a half-sandwich organic ruthenium compound is synthesized. 反応を窒素ガスまたは不活性ガス雰囲気中で行うことを特徴とする、請求項3〜12いずれかに記載のハーフサンドイッチ構造有機ルテニウム化合物の製造方法。The method for producing an organic ruthenium compound having a half sandwich structure according to any one of claims 3 to 12, wherein the reaction is performed in an atmosphere of nitrogen gas or inert gas. 請求項2に記載の方法において、請求項1に記載のハーフサンドイッチ構造有機ルテニウム化合物を有機溶媒に溶解した、ハーフサンドイッチ構造有機ルテニウム化合物溶液を用いる事を特徴とする、ルテニウム含有薄膜の製造方法。3. A method for producing a ruthenium-containing thin film according to claim 2, wherein a half-sandwich organic ruthenium compound solution prepared by dissolving the half-sandwich organic ruthenium compound according to claim 1 in an organic solvent is used.
JP2002217225A 2001-09-12 2002-07-25 Ruthenium complex, method for producing the same, and method for producing the thin film Expired - Fee Related JP4517565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217225A JP4517565B2 (en) 2001-09-12 2002-07-25 Ruthenium complex, method for producing the same, and method for producing the thin film

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP2001276478 2001-09-12
JP2001276480 2001-09-12
JP2001276479 2001-09-12
JP2001276481 2001-09-12
JP2001359769 2001-11-26
JP2001-276479 2002-03-20
JP2001-276481 2002-03-20
JP2001-359769 2002-03-20
JP2001-276478 2002-03-20
JP2001-276480 2002-03-20
JP2002078970 2002-03-20
JP2002-78970 2002-03-20
JP2002217225A JP4517565B2 (en) 2001-09-12 2002-07-25 Ruthenium complex, method for producing the same, and method for producing the thin film

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2005226885A Division JP2006036780A (en) 2001-09-12 2005-08-04 Method for producing ruthenium complex
JP2008102854A Division JP5104499B2 (en) 2001-09-12 2008-04-10 Carbonyl bis (diene) ruthenium complex, method for producing the same, and method for producing a thin film
JP2010047698A Division JP5136576B2 (en) 2001-09-12 2010-03-04 Organoruthenium compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003342286A JP2003342286A (en) 2003-12-03
JP4517565B2 true JP4517565B2 (en) 2010-08-04

Family

ID=29783447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217225A Expired - Fee Related JP4517565B2 (en) 2001-09-12 2002-07-25 Ruthenium complex, method for producing the same, and method for producing the thin film

Country Status (1)

Country Link
JP (1) JP4517565B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060131874A (en) * 2004-02-04 2006-12-20 프랙스에어 테크놀로지, 인코포레이티드 High nucleation density organometallic compounds
US7619093B2 (en) 2004-10-15 2009-11-17 Praxair Technology, Inc. Organometallic compounds and mixtures thereof
KR101159073B1 (en) * 2005-09-23 2012-06-25 삼성전자주식회사 New metal-organic precursor material and fabrication method of metal thin film using the same
JP4888999B2 (en) * 2005-12-22 2012-02-29 株式会社高純度化学研究所 Ruthenium film forming composition
CN101395297B (en) * 2006-02-28 2013-03-20 东京毅力科创株式会社 Methods of depositing ruthenium film and memory medium readable by computer
JP5375093B2 (en) * 2006-07-27 2013-12-25 宇部興産株式会社 Organic ruthenium complex and method for producing ruthenium thin film using the ruthenium complex
US7435484B2 (en) * 2006-09-01 2008-10-14 Asm Japan K.K. Ruthenium thin film-formed structure
EP1935897B1 (en) 2006-12-22 2011-03-02 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude New organo-Ruthenium compound, the process for its preparation and its use as a ruthenium precursor to manufacture ruthenium based film coated metal electrodes
JP5293930B2 (en) 2007-03-22 2013-09-18 Jsr株式会社 Chemical vapor deposition material and chemical vapor deposition method
JP5234718B2 (en) * 2007-03-26 2013-07-10 株式会社アルバック Manufacturing method of semiconductor device
JP2009007270A (en) * 2007-06-27 2009-01-15 Tosoh Corp Method for producing ruthenium compound and method for producing thin film
JP5202905B2 (en) * 2007-08-22 2013-06-05 東ソー株式会社 Ruthenium compound, method for producing the same, ruthenium-containing thin film and method for producing the same
JP5549848B2 (en) * 2008-12-25 2014-07-16 東ソー株式会社 Ruthenium compound, production method thereof and film formation method using the same
JP5732772B2 (en) 2009-12-28 2015-06-10 東ソー株式会社 Ruthenium complex mixture, production method thereof, film-forming composition, ruthenium-containing film and production method thereof
JP6249733B2 (en) * 2012-12-07 2017-12-20 東ソー株式会社 Ruthenium complex and production method thereof, ruthenium-containing thin film and production method thereof
TWI610932B (en) 2012-12-07 2018-01-11 東曹股份有限公司 Ruthenium complex and method for producing the same, cationic tris(nitrile) complex and method for producing the same, and method for producing ruthenium-containing film
JP6436826B2 (en) * 2015-03-25 2018-12-12 東ソー株式会社 Cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
JP6584150B2 (en) * 2014-06-09 2019-10-02 東ソー株式会社 Cobalt complex and method for producing the same, cobalt-containing thin film and method for producing the same
WO2015190420A1 (en) * 2014-06-09 2015-12-17 東ソー株式会社 Cobalt complex and method for producing same, and cobalt-containing thin-film and method for producing same
JP7087394B2 (en) * 2017-09-29 2022-06-21 東ソー株式会社 ALD / CVD process to recover ruthenium precursor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371328B2 (en) * 1997-07-17 2003-01-27 株式会社高純度化学研究所 Method for producing bis (alkylcyclopentadienyl) ruthenium complex and method for producing ruthenium-containing thin film using the same

Also Published As

Publication number Publication date
JP2003342286A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP5104499B2 (en) Carbonyl bis (diene) ruthenium complex, method for producing the same, and method for producing a thin film
JP4517565B2 (en) Ruthenium complex, method for producing the same, and method for producing the thin film
US7619093B2 (en) Organometallic compounds and mixtures thereof
KR20080061381A (en) Organometallic compounds and methods of use thereof
JP2007526250A (en) Organometallic compounds with high nucleation density
JP4696454B2 (en) Novel organic iridium compound, method for producing the same, and method for producing the film
US7667065B2 (en) High nucleation density organometallic compounds
JP2006036780A (en) Method for producing ruthenium complex
KR101770438B1 (en) Ruthenium complex mixture, method for producing same, composition for forming film, ruthenium-containing film and method for producing same
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
KR101126141B1 (en) Organoiridium compound, process for producing the same, and process for producing film
EP1471567B1 (en) Organometallic iridium compounds, processes for producing the same, and processes for producing thin films
JP4553642B2 (en) Organic iridium compound, process for producing the same, and process for producing film
TWI227239B (en) Ruthenium complex, process for producing the same and process for producing thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4517565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees