JPH03274275A - Device for forming thin film utilizing organometallic gas - Google Patents

Device for forming thin film utilizing organometallic gas

Info

Publication number
JPH03274275A
JPH03274275A JP7616990A JP7616990A JPH03274275A JP H03274275 A JPH03274275 A JP H03274275A JP 7616990 A JP7616990 A JP 7616990A JP 7616990 A JP7616990 A JP 7616990A JP H03274275 A JPH03274275 A JP H03274275A
Authority
JP
Japan
Prior art keywords
substrate
thin film
gas
impurities
organometallic gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7616990A
Other languages
Japanese (ja)
Other versions
JP2758247B2 (en
Inventor
Yoshihiko Kusakabe
嘉彦 草壁
Hiroshi Onishi
寛 大西
Minoru Kobayashi
実 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2076169A priority Critical patent/JP2758247B2/en
Publication of JPH03274275A publication Critical patent/JPH03274275A/en
Application granted granted Critical
Publication of JP2758247B2 publication Critical patent/JP2758247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high quality thin film with high adhesion by utilizing an organometallic gas capable of being decomposed at low temp., controlling the temp., pressure, etc., of the atmosphere on a substrate, preventing the generation of impurities such as carbides due to the secondary reaction, depositing and reforming the thin film. CONSTITUTION:An organometallic gas such as W(CO)6 and its carrier gas 1 such as He, H2 and Cl2 are introduced from a supply tank 3 into a reaction chamber 2 evacuated by a vacuum pump 11. The organometallic gas is decomposed on a substrate 9 heated to a specified temp. on a susceptor 10 provided with a heater to deposit a thin film of W, etc., thereon. The surface layer of the substrate 9 is heated by a heater 15 such as a lamp to reform the deposited thin film. In this thin film forming device, the temp. of the substrate 9 and atmosphere and the amt. of impurities such as the carbide, oxide, etc., of W are monitored by a monitoring device 17 provided with a temp.-measuring terminal 13 and a quadruple gravimetric analyzer 16. The flow rate, pressure, temp., etc., of the gas are controlled by a controller 7 based on the measured result to prevent the generation of impurities. Consequently, a thin film of high purity W, etc., free of impurities is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば高密度集積回路の配線、電極、バリ
アメタルなどに使用される金属原子やキャパシタ、絶縁
体等に使用されるSi、Ga等の半導体原子を低温プロ
セスで制御性良く堆積させ、高品質の薄膜を形成する有
機金属利用薄膜形成装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to metal atoms used in wiring, electrodes, barrier metals, etc. of high-density integrated circuits, Si, Ga used in capacitors, insulators, etc. This invention relates to an organometallic thin film forming apparatus that deposits semiconductor atoms such as in a low-temperature process with good controllability to form a high-quality thin film.

〔従来の技術〕[Conventional technology]

高密度集積回路の実現には、熱及び薄膜中に混入した不
純物による素子への悪影響を避けろ為、低温度での高品
質薄膜の作製法が強く要求されている。これに応えろ新
技術として、比較的低温において分解蒸殖して薄膜を形
成する有機金属ガスを利用した化学蒸着(CVD)法が
提案されている。この技術では、比較的低温でガスが分
解する為、低温でも高品質の導体、誘電体及び絶縁体薄
膜を作製できるという優れた特徴を備えている。
To realize high-density integrated circuits, there is a strong demand for a method for producing high-quality thin films at low temperatures in order to avoid adverse effects on elements due to heat and impurities mixed into the thin films. In response to this, a chemical vapor deposition (CVD) method has been proposed as a new technology that uses organometallic gases to form thin films through decomposition and evaporation at relatively low temperatures. This technology has the excellent feature of being able to produce high-quality conductors, dielectrics, and insulator thin films even at low temperatures because the gas decomposes at relatively low temperatures.

一般に、CVD法による薄膜形成では基板温度を上げる
と形成される膜の品質が向上するとともに、基板との密
着力も増大する。しかし、有機金属ガスをヒータ加熱に
より熱分解して基板上に金属薄膜を作製する場合、基板
温度に追従して雰囲気温度も上昇する。この結果気相中
において有機金属ガス自身が分解し、その後の2次反応
により炭化物や酸化物等の不純物を形成するため、高品
質の導体、誘電体及び絶縁体薄膜を作製する上で必要な
構成原子を、不純物を含むことなく基板上に供給し堆積
させることができむいという問題点がある。また、気相
中における有機金属ガスの励起分解を利用した薄膜形成
でも、堆積した膜の品質向上の為にヒータ加熱或いはそ
れ以外のエネルギー源による基板加熱を併用しているが
、上述した有機金属ガスの性質を考慮したプロセス制御
を行っていなかった為、有機金属ガスを利用して高品質
の薄膜を作製することが困難であった。
Generally, when forming a thin film using the CVD method, increasing the substrate temperature improves the quality of the formed film and also increases the adhesion to the substrate. However, when producing a metal thin film on a substrate by thermally decomposing an organometallic gas by heating with a heater, the ambient temperature also rises following the substrate temperature. As a result, the organometallic gas itself decomposes in the gas phase, and impurities such as carbides and oxides are formed through subsequent secondary reactions, which are necessary for producing high-quality conductors, dielectrics, and insulator thin films. There is a problem in that it is difficult to supply and deposit constituent atoms on a substrate without containing impurities. In addition, in thin film formation using excitation decomposition of organometallic gas in the gas phase, heating the substrate with a heater or other energy source is also used in order to improve the quality of the deposited film. It has been difficult to produce high-quality thin films using organometallic gases because the process has not been controlled in consideration of gas properties.

例えば第2図は滝らのPresent and Fut
ureMaterials Processing (
1990)P2O3−P210の論文に示されたヒータ
加熱とレーザ照射による光励起作用を利用した従来の有
機金属ガスを利用した光励起薄膜形成装置を示す構成図
である。図において、1は成膜用ガスを移送するキャリ
アガス、2は薄膜形成が行われる反応チャンバ 3は成
膜用ガスの供給槽、5は成膜用ガスの供給量を制御する
マスフローコントローラ、8は反応チャンバ2への成膜
用ガスの供給口、9は薄膜形成対象となる基板、10は
基板9を加熱するためのヒータ付きサセプタ、11は反
応チャンバ2の排気を行う真空ポンプ、12は真空ポン
プ11の排気口、19は紫外レーザ発振器、20は紫外
レーザ発振器19から照射された紫外レーザ光、21は
紫外レーザ光20を成膜用ガスの解離に必要にエネルギ
ー密度に整形する為のシリンドリカルテレスコープ、2
2は反応チャンバ2内の成膜用ガス雰囲気と大気とを遮
断しつつ紫外レーザ光20な反応チャンバ2に導入する
為の窓、23は成膜ガスの分解による窓22への分解物
の蒸着を制御するためのパージガスの供給口、24はパ
ージガスの供給量を制御するマスフローコントローラで
ある。
For example, Figure 2 shows Taki et al.'s Present and Fut.
ureMaterials Processing (
1990) is a configuration diagram showing a conventional photoexcited thin film forming apparatus using an organometallic gas that utilizes the photoexcitation effect of heater heating and laser irradiation as shown in the paper P2O3-P210. In the figure, 1 is a carrier gas for transporting the film-forming gas, 2 is a reaction chamber in which thin film formation is performed, 3 is a supply tank for film-forming gas, 5 is a mass flow controller that controls the supply amount of film-forming gas, and 8 9 is a supply port for film-forming gas to the reaction chamber 2; 9 is a substrate on which a thin film is to be formed; 10 is a susceptor with a heater for heating the substrate 9; 11 is a vacuum pump that evacuates the reaction chamber 2; 12 is a An exhaust port of the vacuum pump 11, 19 an ultraviolet laser oscillator, 20 an ultraviolet laser beam irradiated from the ultraviolet laser oscillator 19, and 21 an ultraviolet laser beam 20 for shaping the ultraviolet laser beam 20 into the energy density required for dissociation of the film-forming gas. Cylindrical telescope, 2
2 is a window for introducing ultraviolet laser light 20 into the reaction chamber 2 while blocking the atmosphere from the film-forming gas atmosphere in the reaction chamber 2, and 23 is a window for depositing decomposed products on the window 22 by decomposing the film-forming gas. A purge gas supply port 24 is a mass flow controller that controls the supply amount of purge gas.

次に動作について説明する。Next, the operation will be explained.

紫外レーザ発振器19から照射された紫外レーザ光20
は、シリンドリカルテレスコープ21により成膜用ガス
の解離に必要なエネルギー密度以上に整形され、窓22
を通して反応チャンバ2に導入される。紫外レーザ光2
0は、ヒータ付′きサセプタ10の向きを変えることに
より、基板9に対し平行又は垂直に照射される。
Ultraviolet laser light 20 irradiated from the ultraviolet laser oscillator 19
is shaped by the cylindrical telescope 21 to have an energy density higher than that required for dissociation of the film-forming gas, and the window 22
is introduced into the reaction chamber 2 through. Ultraviolet laser beam 2
0 is irradiated parallel or perpendicular to the substrate 9 by changing the orientation of the susceptor 10 with a heater.

ヒータによる熱分解のみを利用する場合、有機金属ガス
は基板9上において加熱され分解堆積して薄膜を形成す
る。従来の技術では、高品質で密着力の強い膜を得るた
め、基板9の表面での有機金属ガスの分解速度及び堆積
物のマイグレーション効果が太きく tx、ることを期
待して、ヒータ付きサセプタ10により基板9を加熱す
るようにしていた。また、光励起による気相中での有機
金属ガスの励起分解を利用する場合は、気相中において
形成した励起種が拡散により基板9上に堆積し薄膜を形
成するが、この場合も基板9の加熱むしでは付着力の強
い高品質の薄膜が得られず、上記のよう々ヒータによる
基板9の加熱を併用するようにしていた。その場合、基
板9の温度の上昇により雰囲気温度が上昇し、このため
気相中において炭化物flどの不純物が形成し、膜中に
混入するという問題点を無視していた。即ち、膜質改善
のためヒータ加熱、又はレーザ照射加熱等で基板9の温
度を上げると、それに追随して雰囲気温度も上昇し、あ
る温度以上に々ると有機金属ガスを構成する原子より成
る炭化物又は酸化物等の不純物が気相中において形成さ
れる。従来の技術では、上述の膜質改善の為にヒータ温
度を上げることにより雰囲気温度が上昇し、気相中にお
いて炭化物等の不純物が発生しても、雰囲気温度を制御
できkL・、或いは不純物の発生を制御する為のプロセ
スが装置に盛り込まれていなかったため、膜中への不純
物の混入を避ける方法がなかった。
When only thermal decomposition by a heater is used, the organometallic gas is heated and decomposed and deposited on the substrate 9 to form a thin film. In the conventional technology, in order to obtain a film with high quality and strong adhesion, a susceptor with a heater is used in order to increase the decomposition rate of organometallic gas and the migration effect of deposits on the surface of the substrate 9. 10 was used to heat the substrate 9. Furthermore, when using excitation decomposition of organometallic gas in the gas phase by photoexcitation, the excited species formed in the gas phase are deposited on the substrate 9 by diffusion to form a thin film, but in this case as well, the excitation species formed in the gas phase are deposited on the substrate 9 to form a thin film. Since a high-quality thin film with strong adhesion cannot be obtained using a heating knife, heating of the substrate 9 using a heater as described above has been used in combination. In this case, the problem that the ambient temperature increases due to the increase in the temperature of the substrate 9, and therefore impurities such as carbide fl are formed in the gas phase and mixed into the film has been ignored. That is, when the temperature of the substrate 9 is raised by heater heating or laser irradiation heating to improve the film quality, the ambient temperature also rises, and when the temperature exceeds a certain temperature, carbide consisting of atoms constituting an organometallic gas is formed. Or impurities such as oxides are formed in the gas phase. In conventional technology, the ambient temperature rises by increasing the heater temperature to improve the film quality, and even if impurities such as carbides are generated in the gas phase, the ambient temperature can be controlled. Because the equipment did not have a process to control this, there was no way to avoid contamination of the film with impurities.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の有機金属ガス利用薄膜形成装置は上記のように構
成されているので、有機金属ガスが基板9上の雰囲気中
において、ヒータ加熱による熱分解或いは光子エネルギ
ー等による励起分解を起こし、基板9に吸着して薄膜を
形成する前駆物質やその2次反応により発生する炭化物
などの不純物を制御するという概念を持たないため、膜
中への不純物の混入を避ける手だてがなかった。しかも
、有機金属ガスが基板9上へ拡散し分解堆積した膜の品
質を上げるために、薄膜作製温度の低温化をある程度犠
牲にして基板9をさらに加熱をする方法を併用する結果
、気相中において2次反応による炭化物等の不純物をさ
らに発生することとkす、高品質薄膜の作製を困難にし
ている等の課題があった。
Since the conventional thin film forming apparatus using organometallic gas is configured as described above, the organometallic gas is thermally decomposed by heater heating or excited and decomposed by photon energy in the atmosphere above the substrate 9, and the organometallic gas is decomposed onto the substrate 9. Since there is no concept of controlling impurities such as precursors that are adsorbed to form a thin film or carbides generated by secondary reactions thereof, there is no way to avoid contamination of impurities into the film. Moreover, in order to improve the quality of the film deposited by decomposition and diffusion of the organometallic gas onto the substrate 9, a method is used in which the substrate 9 is further heated at the expense of lowering the thin film manufacturing temperature to some extent. In this method, there are problems such as further generation of impurities such as carbides due to secondary reactions, and making it difficult to produce high-quality thin films.

この発明は、上記のよう紅課題を解消するためになされ
たもので、低温で分解可能な有機金属ガスを利用して基
板上の雰囲気を制御し、気相中の環境を2次反応による
不純物発生のない状態に保持し、薄膜の堆積と改質をお
こなうことにより、期待通りの膜品質を得ることのでき
る有機金属ガス利用薄膜形成装置を得ることを目的とし
ている。
This invention was made in order to solve the above-mentioned problem, and it controls the atmosphere on the substrate by using an organic metal gas that can be decomposed at low temperatures, and the environment in the gas phase is freed from impurities due to secondary reactions. The purpose of the present invention is to obtain a thin film forming apparatus using an organometallic gas that can obtain the expected film quality by maintaining a state in which no gas is generated and depositing and modifying the thin film.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る有機金属利用薄膜形成装置は、基板が収
容され有機金属ガスを基板上或いは気相中において分解
し薄膜を形成させる為の第1の基板加熱装置と、その薄
膜の品質を向上させるための第2の基板加熱装置と、反
応チャンバ内の気相中での2次反応の結果形成される炭
化物等の不純物や温度に応じて反応を制御する反応制御
装置とを備えたものである。
The organometallic thin film forming apparatus according to the present invention includes a first substrate heating device in which a substrate is accommodated and for decomposing an organometallic gas on the substrate or in a gas phase to form a thin film, and a first substrate heating device that improves the quality of the thin film. and a reaction control device that controls the reaction according to temperature and impurities such as carbides formed as a result of the secondary reaction in the gas phase in the reaction chamber. .

〔作 用〕[For production]

この発明における有機金属ガス利用薄膜形成装置は、有
機金属ガスを基板上或いは気相中で分解し薄膜を堆積さ
せる有機金属ガス分解系、堆積した薄膜の品質を向上さ
せるため基板表面のみを加熱する薄膜改質系及び気相中
での2次反応の結果形成される炭化物などの不純物をモ
ニターし反応を制御する反応制御系とで構成される。
The thin film forming apparatus using organometallic gas in this invention is an organometallic gas decomposition system that decomposes an organometallic gas on a substrate or in the gas phase to deposit a thin film, and heats only the substrate surface to improve the quality of the deposited thin film. It consists of a thin film reforming system and a reaction control system that monitors impurities such as carbides formed as a result of secondary reactions in the gas phase and controls the reaction.

有機金属ガス分解系では、有機金属ガスを基板表面或い
は気相中において熱、光或いは電子のエネルギーで分解
堆積させる。この場合、反応制御系により、解離分子に
よる炭化物々どの不純物の発生しない雰囲気温度、エネ
ルギー強度及び圧力条件下で、解離分子を不活性化或い
は反応性を下げるガスを流した状態で熱、光及び電子等
のエネルギー源を作用させる。この結果、2次反応によ
り発生する炭化物などの不純物を含まず、有機金属ガス
を構成する不純物原子の少ない或いは全く含まない励起
種を基板吸着の前駆物質として利用できるため、炭素々
どの有機金属ガスを構成する原子を不純物として含まな
い薄膜の作製が可能となる。さらに高品質の付着力の強
い薄膜は、制御系により気相中での不純物の発生を制御
した状態で、薄膜改質系による基板表面加熱を併用すれ
ば実現できる。以上に示したように反応制御系により不
純物を発生しない状態に維持して、有機金属ガス分解系
と薄膜改質系とを交互に作用させることにより期待通り
の品質の高付着力薄膜を得ることが可能となる。
In an organometallic gas decomposition system, an organometallic gas is decomposed and deposited on the surface of a substrate or in a gas phase using heat, light, or electron energy. In this case, the reaction control system is operated under atmospheric temperature, energy intensity, and pressure conditions that do not generate impurities such as carbides caused by the dissociated molecules, and while a gas that inactivates the dissociated molecules or lowers their reactivity is flown. Apply an energy source such as electrons. As a result, excited species that do not contain impurities such as carbides generated by secondary reactions and contain few or no impurity atoms constituting organometallic gases can be used as precursors for substrate adsorption, making it possible to use organometallic gases such as carbon. It becomes possible to produce a thin film that does not contain atoms constituting it as impurities. Furthermore, a high-quality thin film with strong adhesion can be achieved by controlling the generation of impurities in the gas phase using a control system, and by using a thin film modification system to heat the substrate surface. As shown above, the reaction control system maintains a state in which no impurities are generated, and the organometallic gas decomposition system and thin film modification system work alternately to obtain a highly adhesive thin film of the expected quality. becomes possible.

〔実施例〕 以下、この発明の一実施例を図について説明する。〔Example〕 An embodiment of the present invention will be described below with reference to the drawings.

第1図の実施例は、有機金属ガスとしてW(CO)6 
〔タングステンカルボニル〕を利用したCVD法による
高純度W膜の作製な付象とした場合の有機金属ガス利用
薄膜形成装置を示す。図中、1.2,3.9.10.1
1.12は、第2図の同一符号部分と対応するため説明
を省略する。
The embodiment of FIG. 1 uses W(CO)6 as the organometallic gas.
A thin film forming apparatus using an organometallic gas is shown in which a high-purity W film is produced by a CVD method using [tungsten carbonyl]. In the figure, 1.2, 3.9.10.1
1.12 corresponds to the same reference numerals in FIG. 2, so the explanation will be omitted.

第1図において、4はキャリアガス1及び有機金属ガス
の供給を制御する自動開閉バルブ、7は全体的ね制御を
行う反応制御装置で、この実施例ではCVD制御装置7
が用いられている。6はCVD制御装置7により制御さ
れる圧力調整装置、10は有機金属ガスを熱分解するた
めの第1の基板加熱装置としてのヒータ付きサセプタ、
13は基板9の温度及び雰囲気温度を測定のための温度
測定端子、14はCVD制御装置7により制御されヒー
タ付きサセプタ10に電力を供給する電力供給装置、1
5は反応チャンバ2内に設けられた薄膜改質用の第2の
基板加熱装置で基板9の表面層を加熱する。16は反応
チャンバ2内の炭化物などの不純物の発生を検出する4
電極重量分析計、17は不純物及び温度のモニター装置
、18はCVD制御装置7により制御され第2の基板加
熱装置15に電力を供給する電力供給装置、25は第2
の基板加熱装置15の熱を反応室に導入する窓である。
In FIG. 1, 4 is an automatic opening/closing valve that controls the supply of carrier gas 1 and organometallic gas, and 7 is a reaction control device that performs overall control. In this embodiment, CVD control device 7
is used. 6 is a pressure adjustment device controlled by the CVD control device 7; 10 is a susceptor with a heater as a first substrate heating device for thermally decomposing the organometallic gas;
13 is a temperature measurement terminal for measuring the temperature of the substrate 9 and the ambient temperature; 14 is a power supply device that is controlled by the CVD control device 7 and supplies power to the heater-equipped susceptor 10;
A second substrate heating device 5 for thin film modification provided in the reaction chamber 2 heats the surface layer of the substrate 9 . 16 detects the occurrence of impurities such as carbides in the reaction chamber 2;
17 is an impurity and temperature monitoring device; 18 is a power supply device that is controlled by the CVD control device 7 and supplies power to the second substrate heating device 15; 25 is a second substrate heating device 15;
This window introduces heat from the substrate heating device 15 into the reaction chamber.

次に動作について説明する。Next, the operation will be explained.

反応チャンバ2内に供給された有機金属ガスW(co)
6は、ヒータによる熱分解、或いは有機金属ガスの分解
に適正なエネルギー密度又は波長を持ったレーザ光或い
は電子ビーム等による励起分解、或いはヒータ加熱と励
起分解とを併用して行い、基板9上にW膜を形成する。
Organometallic gas W(co) supplied into the reaction chamber 2
6 is performed by thermal decomposition using a heater, excitation decomposition using a laser beam or electron beam having an appropriate energy density or wavelength for decomposing the organometallic gas, or a combination of heater heating and excitation decomposition. A W film is formed on the surface.

ここでは有機金属ガスを分解して基板9上に薄膜を堆積
させるエネルギー源としてヒータ付きサセプタ10によ
るヒータ加熱のみを用い、その堆積した薄膜を基板9と
の付着力の強い高品質の薄膜に加熱改質するための熱源
としてランプ光加熱による第2の基板加熱装置15を用
いる方法を例として説明する。
Here, only heater heating by a heater-equipped susceptor 10 is used as an energy source to decompose the organometallic gas and deposit a thin film on the substrate 9, and the deposited thin film is heated to form a high-quality thin film with strong adhesion to the substrate 9. A method using the second substrate heating device 15 using lamp light heating as a heat source for reforming will be described as an example.

まず、この方法のヒータ加熱により有機金属ガスを分解
堆積させる部分の詳細を説明する。ヒータ付きサセプタ
10により基板9を、有機金属ガスが気相中において炭
化物々どの不純物を形成せず基板9上で分解堆積して薄
膜を作製可能む温度に加熱する。この時、41極重量分
析計16の検出に応じて、W炭化物などの不純物が発生
しkい環境にCVD制御装置7による雰囲気温度及び基
板9の温度の制御を行う。これと共に圧力調整装置6に
よる反応チャンバ2内の圧力の制御及びCVD制御装置
7によるマスフローコントローラ5によるガス供給量の
制御を行う。これらの制御によって有機金属ガスを構成
する原子を起因とするW炭化物及びW酸化物等の不純物
の形成を避けることができる。例えば、基板9上の雰囲
気温度の加熱温度400℃以上、圧力2 Torr以上
の条件下では、W炭化物及びW酸化物等の不純物が発生
するため、成膜に必要な前駆物質のみを単独で基板90
表面上に供給することが不可能となる。しかしこの場合
、キャリアガス1としてHeガスを用い圧力を2 To
rr未満に下げることにより、不純物の発生を避けるこ
とができる。この時有機金属ガスW(CO)6は、不純
物が発生しない状態に制御した状態で、基板9の加熱の
効果で雰囲気が加熱されることにより配位子COを解離
する。
First, details of the part of this method in which the organometallic gas is decomposed and deposited by heating with a heater will be explained. The substrate 9 is heated by the susceptor 10 with a heater to a temperature at which the organometallic gas can be decomposed and deposited on the substrate 9 to form a thin film without forming impurities such as carbides in the gas phase. At this time, in accordance with the detection by the 41 pole gravimetric analyzer 16, the CVD control device 7 controls the ambient temperature and the temperature of the substrate 9 to create an environment where impurities such as W carbides are unlikely to be generated. At the same time, the pressure in the reaction chamber 2 is controlled by the pressure regulator 6, and the gas supply amount by the mass flow controller 5 is controlled by the CVD control device 7. By these controls, it is possible to avoid the formation of impurities such as W carbides and W oxides caused by atoms constituting the organometallic gas. For example, under conditions of a heating temperature of 400° C. or higher and a pressure of 2 Torr or higher in the atmosphere above the substrate 9, impurities such as W carbide and W oxide are generated. 90
It becomes impossible to feed on the surface. However, in this case, He gas is used as the carrier gas 1 and the pressure is set to 2 To
The generation of impurities can be avoided by lowering the temperature below rr. At this time, the organometallic gas W(CO) 6 dissociates the ligand CO by heating the atmosphere due to the effect of heating the substrate 9 under a controlled state in which impurities are not generated.

この結果、基板9に吸着して薄膜を形成する前駆物質と
なる未分解W(CO)6、或いは励起5W(Co)X(
x=0〜5)のみを基板9上に供給することが可能とな
る。この励起種は成膜用ガスW(Co)6よりその構成
分子中に不純物原子の原因となるC及びOの割合が少な
い。また、従来の問題点である励起種の2次反応の結果
形成されていたW炭化物及びW酸化物の発生も、上記し
た反応の制御或いはキャリアガス1の種類を選択するこ
とにより避けることができる。キャリアガス1としては
、解離した励起種の濃度を薄め励起種同士の反応性を下
げるHe等の不活性ガス、或いは解離した配位子を還元
して不活性化するH2 。
As a result, undecomposed W(CO)6 or excited 5W(Co)X(
x=0 to 5) can be supplied onto the substrate 9. This excited species has a smaller proportion of C and O, which cause impurity atoms, in its constituent molecules than the film-forming gas W(Co)6. Furthermore, the generation of W carbides and W oxides that are formed as a result of the secondary reaction of excited species, which is a conventional problem, can be avoided by controlling the reaction described above or by selecting the type of carrier gas 1. . The carrier gas 1 is an inert gas such as He, which dilutes the concentration of dissociated excited species and reduces the reactivity between the excited species, or H2, which reduces and inactivates dissociated ligands.

C’2 、 HC1等のハロゲン系のガスが適当である
Halogen gases such as C'2 and HC1 are suitable.

この結果、低温で高品質の薄膜の作製に必要tx未分解
有機金属ガス或いはその励起種を、炭化物々どの不純物
を発生することなく基板9の表面上に供給し分解堆積さ
せることが可能となる。
As a result, it becomes possible to supply and decompose and deposit the tx undecomposed organometallic gas or its excited species on the surface of the substrate 9 without generating impurities such as carbides, which are necessary for the production of high-quality thin films at low temperatures. .

また、実施例では有機金属ガスを分解して基板s上に薄
膜を堆積させるための第1の基板加熱装置として、ヒー
タ付きサセプタ10による加熱を利用する方法について
説明したが、ヒータ加熱以外のエネルギー供給源として
、基板9の吸収波長域のレーザ光及びランプ光加熱装置
を単独に又はヒータ加熱と併用すると効果的である。さ
らに、電子ビーム及びイオンビーム等の基板加熱源を用
いてもよい。また、有機金属ガスによる吸収のないレー
ザ光等を利用したパルス加熱により選択的に基板9の表
面のみを瞬間加熱して気相中への伝熱量を下げ、さらに
圧力調整装置6により圧力を下げ、気相中ガス温度の伝
熱を抑制することにより、反応チャンバ2内に供給され
た励起種がさらに分解反応を起こして発生するW炭化物
等の不純物を避けることができ、より高品質の薄膜を形
成することが可能と々る。
In addition, in the embodiment, a method was described in which heating by the heater-equipped susceptor 10 was used as the first substrate heating device for decomposing the organometallic gas and depositing a thin film on the substrate s. As a supply source, it is effective to use a laser beam in the absorption wavelength range of the substrate 9 and a lamp light heating device alone or in combination with heater heating. Additionally, substrate heating sources such as electron beams and ion beams may be used. In addition, only the surface of the substrate 9 is selectively instantaneously heated by pulse heating using a laser beam or the like that is not absorbed by organometallic gas to reduce the amount of heat transferred into the gas phase, and the pressure is further lowered by the pressure regulator 6. By suppressing the heat transfer of gas temperature in the gas phase, it is possible to avoid impurities such as W carbide generated by further decomposition reaction of the excited species supplied into the reaction chamber 2, resulting in a higher quality thin film. It is possible to form.

さらに、光励起、電子ビーム励起及びイオンビーム励起
等による分解堆積を利用する方法もある。
Furthermore, there are also methods that utilize decomposition deposition using optical excitation, electron beam excitation, ion beam excitation, and the like.

励起の方法として光照射による光分解を適用する場合、
W(CO)6の光の吸収波長が約3000m以下の領域
に存在するため、この領域の光を用いる必要がある。こ
の光照射をパルス化することで励起種の発生量を精密制
御することが可能とtlる。また、光照射による熱分解
の効果を利用する場合は上記の波長域は関係せずそのエ
ネルギー密度がI W / cm以上であればよい。こ
の時もレザをパルス化することで励起種の発生量の精密
制御が可能である。さらにこのことは電子ビームやイオ
ンビームな利用する場合にもあてはまる。この時形成さ
れる励起種は、基板9の温度を上げずども基板9上へ拡
散し堆積するが、W炭化物々どの不純物が発生しないよ
う雰囲気温度及び圧力条件などを制御し、ヒータ加熱を
併用すると、高品質の膜を制御性よく形成させることも
可能と々る。
When applying photolysis by light irradiation as an excitation method,
Since the absorption wavelength of light of W(CO)6 exists in a region of about 3000 m or less, it is necessary to use light in this region. By pulsing this light irradiation, it is possible to precisely control the amount of excited species generated. Further, when utilizing the effect of thermal decomposition caused by light irradiation, the above wavelength range is not relevant as long as the energy density is I W /cm or more. At this time as well, by pulsing the laser, it is possible to precisely control the amount of excited species generated. Furthermore, this also applies to the use of electron beams and ion beams. The excited species formed at this time diffuse and deposit on the substrate 9 without raising the temperature of the substrate 9, but the atmospheric temperature and pressure conditions are controlled so that impurities such as W carbide are not generated, and heater heating is also used. This makes it possible to form high-quality films with good controllability.

次に、高品質で高付着力を有する薄膜を作製する為に基
板9の加熱を要する場合、有機金属ガスを利用すると、
前述したようにある温度以上に雰囲気温度があがるとW
炭化物などの不純物を発生する。w(co)6の場合、
雰囲気温度が400℃以上でこの状態となるため、有機
金属ガスを流した状態でこの温度以上の基板9加熱によ
り薄膜の堆積と改質とを同時におこなうと、膜中に不純
物を混入することと々り真に高品質の薄膜の作製ができ
ない。従って、Wの堆積と改質を同時ではなく交互にお
こ?、Cい、これとガスの供給とを同期させパルス化し
て制御することで、さらに高品質、高付着力のW膜が得
られる。この時もヒータ加熱以外に薄膜改質用の第2の
基板加熱装置15として、基板9の吸収波長域のレーザ
光及びランプ光加熱を単独又はヒータ加熱と併用すると
効果的である。また、有機金属ガスに吸収されない波長
を持つレーザ光等を利用したパルス加熱により選択的に
基板9の表面のみを瞬間加熱するとさらに効果的である
。さらに、電子ビーム及びイオンビーム等の基板加熱源
を用いてもよい。
Next, if the substrate 9 needs to be heated in order to produce a thin film with high quality and high adhesion, if an organometallic gas is used,
As mentioned above, when the ambient temperature rises above a certain temperature, W
Generates impurities such as carbides. In the case of w(co)6,
This state occurs when the ambient temperature is 400°C or higher, so if the thin film is deposited and modified at the same time by heating the substrate 9 above this temperature while an organic metal gas is flowing, impurities may be mixed into the film. Therefore, it is not possible to produce truly high-quality thin films. Therefore, the deposition and modification of W should not be carried out simultaneously but alternately. By synchronizing this with the gas supply and controlling it in a pulsed manner, a W film of even higher quality and higher adhesion can be obtained. Also at this time, in addition to heater heating, it is effective to use laser light and lamp light heating in the absorption wavelength range of the substrate 9 alone or in combination with heater heating as the second substrate heating device 15 for thin film modification. Furthermore, it is even more effective to instantaneously heat only the surface of the substrate 9 selectively by pulse heating using a laser beam or the like having a wavelength that is not absorbed by the organometallic gas. Additionally, substrate heating sources such as electron beams and ion beams may be used.

以上のようにこの実施例による方法は、CVD制御装置
7等の反応制御装置により雰囲気を、炭化物々どの不純
物を発生し々い環境となるように制御を行い、高品質成
膜に最適々未分解有機金属ガス或いはその励起種のみを
基板上に供給し分解堆積させ薄膜を作製する。さらに膜
の改質のための加熱が必要な場合は、反応制御装置によ
りガスの供給と雰囲気とを制御して、有機金属ガスの分
解堆積とその改質を交互に行うことで、高品質、高付着
力の薄膜を作製することができる。
As described above, in the method according to this embodiment, the atmosphere is controlled by a reaction control device such as the CVD control device 7 so as to be an environment where impurities such as carbides are likely to be generated, which is optimal for high-quality film formation. Only the decomposed organometallic gas or its excited species is supplied onto the substrate and decomposed and deposited to form a thin film. Furthermore, if heating is required to modify the film, a reaction control device controls the gas supply and atmosphere to alternately perform decomposition and deposition of organometallic gas and its modification, resulting in high quality, Thin films with high adhesion can be produced.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、この発明によれば、従来共通
の基板加熱装置として用いられていた有機金属ガスを分
解堆積させるための第1の基板加熱装置と、形成された
薄膜を改質するための基板の表面層を加熱する第2の基
板加熱装置とを分けて設けこれらを不純物や温度に応じ
てそれぞれ制御するように構成したので、気相中におい
て有機金属ガスを不純物を形成することkく、高品質の
成膜に最適な有機金属ガス或いはその励起種のみを基板
上で分解堆積させることができ、しかも改質加熱の効果
を付加することで、W炭化物等の不純物を混入しない期
待通りの高品質、高付着力を有する薄膜を提供できると
いう効果が得られる。
As explained above, according to the present invention, there is provided a first substrate heating device for decomposing and depositing an organometallic gas, which has been conventionally used as a common substrate heating device, and a first substrate heating device for modifying the formed thin film. A second substrate heating device that heats the surface layer of the substrate is provided separately and is configured to control each of them according to impurities and temperature, so that it is possible to form impurities using organometallic gas in the gas phase. It is possible to decompose and deposit only the organometallic gas or its excited species that is optimal for high-quality film formation on the substrate, and by adding the effect of reforming heating, it is expected that impurities such as W carbide will not be mixed in. The effect is that it is possible to provide a thin film of high quality and high adhesion.

【図面の簡単な説明】 第1図はこの発明の一実施例による有機金属ガス利用薄
膜形成装置を示す構成図、第2図は従来の有機金属ガス
を利用した光励起薄膜形成装置を示す構成図である。 2は反応チャンバ 3は有機金属ガスの供給槽、7はC
VD制御装置、9は基板、10はヒータ付きサセプタ、
13は温度測定端子、15は第2の基板加熱装置、16
は41極重量分析計。 なお、図中同一符号は同一 または相当部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a block diagram showing a thin film forming apparatus using organometallic gas according to an embodiment of the present invention, and Fig. 2 is a block diagram showing a conventional photoexcited thin film forming apparatus using organometallic gas. It is. 2 is a reaction chamber, 3 is an organometallic gas supply tank, and 7 is a C
VD control device, 9 is a substrate, 10 is a susceptor with a heater,
13 is a temperature measurement terminal, 15 is a second substrate heating device, 16
is a 41 pole gravimetric analyzer. Note that the same symbols in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  反応チャンバ内で有機金属ガスを分解して基板上に膜
を堆積させる有機金属ガス利用薄膜形成装置において、
上記有機金属ガスを分解堆積させるための第1の基板加
熱装置と、上記基板の表面層を加熱するための第2の基
板加熱装置と、上記第1及び第2の基板加熱装置を上記
反応チャンバ内の不純物の発生量及び温度に応じてそれ
ぞれ制御する反応制御装置とを設けたことを特徴とする
有機金属ガス利用薄膜形成装置。
In a thin film forming apparatus using an organometallic gas, which decomposes an organometallic gas in a reaction chamber and deposits a film on a substrate,
A first substrate heating device for decomposing and depositing the organometallic gas, a second substrate heating device for heating the surface layer of the substrate, and the first and second substrate heating devices are connected to the reaction chamber. 1. An apparatus for forming a thin film using an organometallic gas, characterized in that it is provided with a reaction control device that controls the amount and temperature of impurities in the organometallic gas.
JP2076169A 1990-03-26 1990-03-26 Organic metal gas thin film forming equipment Expired - Fee Related JP2758247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076169A JP2758247B2 (en) 1990-03-26 1990-03-26 Organic metal gas thin film forming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076169A JP2758247B2 (en) 1990-03-26 1990-03-26 Organic metal gas thin film forming equipment

Publications (2)

Publication Number Publication Date
JPH03274275A true JPH03274275A (en) 1991-12-05
JP2758247B2 JP2758247B2 (en) 1998-05-28

Family

ID=13597588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076169A Expired - Fee Related JP2758247B2 (en) 1990-03-26 1990-03-26 Organic metal gas thin film forming equipment

Country Status (1)

Country Link
JP (1) JP2758247B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401316A (en) * 1992-10-15 1995-03-28 Tokyo Electron Limited Method and apparatus for hydrophobic treatment
JP2002057126A (en) * 2000-08-10 2002-02-22 Fujitsu Ltd Semiconductor device and method of manufacturing the same
KR100434546B1 (en) * 2002-04-22 2004-06-05 삼성전자주식회사 Vacuum chamber
KR100459900B1 (en) * 2002-04-26 2004-12-03 삼성전자주식회사 Atomic layer deposition-analysis apparatus
KR100710929B1 (en) * 2002-07-10 2007-04-23 동경 엘렉트론 주식회사 Film forming apparatus
CN103603038A (en) * 2013-12-10 2014-02-26 吉林大学 Photo-assisted MOCVD (metal-organic chemical vapor deposition) reactor with horizontal porous spray device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134929A (en) * 1984-07-26 1986-02-19 Res Dev Corp Of Japan Growing device of semiconductor device
JPS62207868A (en) * 1986-03-07 1987-09-12 Nippon Engeruharudo Kk Formation of thin metallic film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134929A (en) * 1984-07-26 1986-02-19 Res Dev Corp Of Japan Growing device of semiconductor device
JPS62207868A (en) * 1986-03-07 1987-09-12 Nippon Engeruharudo Kk Formation of thin metallic film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5401316A (en) * 1992-10-15 1995-03-28 Tokyo Electron Limited Method and apparatus for hydrophobic treatment
JP2002057126A (en) * 2000-08-10 2002-02-22 Fujitsu Ltd Semiconductor device and method of manufacturing the same
KR100434546B1 (en) * 2002-04-22 2004-06-05 삼성전자주식회사 Vacuum chamber
KR100459900B1 (en) * 2002-04-26 2004-12-03 삼성전자주식회사 Atomic layer deposition-analysis apparatus
KR100710929B1 (en) * 2002-07-10 2007-04-23 동경 엘렉트론 주식회사 Film forming apparatus
CN103603038A (en) * 2013-12-10 2014-02-26 吉林大学 Photo-assisted MOCVD (metal-organic chemical vapor deposition) reactor with horizontal porous spray device

Also Published As

Publication number Publication date
JP2758247B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US5483919A (en) Atomic layer epitaxy method and apparatus
US6150265A (en) Apparatus for forming materials
US11511316B2 (en) Plasma annealing method and device for the same
JPH03274275A (en) Device for forming thin film utilizing organometallic gas
EP0240306B1 (en) Method for forming deposited film
Sato et al. Growth rate of GaAs epitaxial films grown by MOCVD
JP2726149B2 (en) Thin film forming equipment
US5468688A (en) Process for the low temperature creation of nitride films on semiconductors
JPH0427136A (en) Thin film formation device utilizing organic metal gas
US4895737A (en) Metal-organic chemical vapor deposition
US4933207A (en) Laser and thermal assisted chemical vapor deposition of mercury containing compounds
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
JPS63317675A (en) Plasma vapor growth device
JP2789922B2 (en) Method of forming gold film by CVD method
JPH05186295A (en) Method for growing crystal
JPS63223174A (en) Formation of metallic film
JPS63312978A (en) Thin film forming device
JPH0529228A (en) Atomic layer crystal deposition method and device
JPS6251212A (en) Metal-organic chemical vapor deposition
JPH02248035A (en) Epitaxy method
JPH0669028B2 (en) Photo CVD thin film forming apparatus
Bruno et al. On the use of the plasma in III‐V semiconductor processing
JPH06199595A (en) Method for synthesizing diamond
JPS63179073A (en) Manufacture of gallium nitride film
JPH01313395A (en) Method for growing silicon in vapor phase

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees