JPS622002B2 - - Google Patents

Info

Publication number
JPS622002B2
JPS622002B2 JP53145880A JP14588078A JPS622002B2 JP S622002 B2 JPS622002 B2 JP S622002B2 JP 53145880 A JP53145880 A JP 53145880A JP 14588078 A JP14588078 A JP 14588078A JP S622002 B2 JPS622002 B2 JP S622002B2
Authority
JP
Japan
Prior art keywords
powder
magnetic
iron
cobalt
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53145880A
Other languages
Japanese (ja)
Other versions
JPS5573803A (en
Inventor
Toshinobu Sueyoshi
Akinari Hayashi
Shigeo Hirai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP14588078A priority Critical patent/JPS5573803A/en
Publication of JPS5573803A publication Critical patent/JPS5573803A/en
Publication of JPS622002B2 publication Critical patent/JPS622002B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は磁気テープ、磁気デイスクなどの高
密度磁気記録媒体としての用途を有する磁性合金
粉末の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnetic alloy powder, which has applications as high-density magnetic recording media such as magnetic tapes and magnetic disks.

磁性金属鉄粉末は保磁力や飽和磁化量が大き
く、磁気特性が従来の酸化物系磁性粉末に較べて
優れたものとして実用化されつつあるが、この鉄
粉末中に他種の金属を含ませた合金磁性粉末とす
ることにより、鉄粉末単独の場合の保磁力ないし
飽和磁化量をより大きくしたりあるいは逆に小さ
くして記録装置に適合した適切な値となし、また
耐酸化性や熱安定性を向上させるなどの試みがあ
る。
Magnetic metallic iron powder has large coercive force and saturation magnetization, and is being put into practical use as having superior magnetic properties compared to conventional oxide-based magnetic powder. By using an alloyed magnetic powder, the coercive force or saturation magnetization can be made larger or smaller than that of iron powder alone to achieve an appropriate value suitable for the recording device, and it also improves oxidation resistance and thermal stability. There are attempts to improve sexuality.

この種の磁性合金粉末を製造する方法として、
従来蓚酸水溶液中に鉄塩とともにコバルト塩やニ
ツケル塩などの異種金属塩を添加して鉄と鉄以外
の金属との共沈物を得、これを加熱還元して磁性
合金粉末とする方法などが知られているが、いず
れも合金粉末の組成が不均一となりやすく、また
針状性に優れる良好な形状の合金粉末を得にくい
などの問題があり、磁気記録媒体用として使用し
たときの磁気特性に欠ける憾みがあつた。
As a method for producing this kind of magnetic alloy powder,
Conventionally, methods include adding different metal salts such as cobalt salts and nickel salts to an oxalic acid aqueous solution together with iron salts to obtain a coprecipitate of iron and metals other than iron, which is then heated and reduced to produce magnetic alloy powder. However, in both cases, the composition of the alloy powder tends to be non-uniform, and it is difficult to obtain alloy powder with a good shape with excellent acicularity. I felt a sense of regret.

この発明者らは、針状の磁性金属鉄粉末の製造
法の一つとして知られているα―FeOOHやα―
Fe2O3などの酸化鉄粉末を還元ガスで加熱還元す
る方法において、被還元物としてのα―FeOOH
粉末もしくはα―Fe2O3粉末に予め鉄以外の金属
を特定手段で含ませた変性酸化鉄粉末を使用し、
これを加熱還元してみたところ、粒子形状に優れ
かつ合金組成が均一な磁性合金粉末が得られるこ
とを知り、この発明に到達したものである。
The inventors discovered α-FeOOH and α-
In the method of heating and reducing iron oxide powder such as Fe 2 O 3 with reducing gas, α-FeOOH as the reductant is
Using modified iron oxide powder, which is made by pre-impregnating powder or α-Fe 2 O 3 powder with a metal other than iron using a specific method,
When this was thermally reduced, it was found that a magnetic alloy powder with excellent particle shape and uniform alloy composition could be obtained, leading to the development of the present invention.

すなわちこの発明はα―FeOOH粉末もしくは
α―Fe2O3粉末の内部にコバルト、ニツケル、ク
ロム、マンガンなどの鉄以外の金属を均一に固溶
させてなる変性酸化鉄粉末を還元ガスで加熱還元
して磁性合金粉末とすることを特徴とする。
In other words, this invention heat-reduces modified iron oxide powder, which is made by uniformly dissolving metals other than iron, such as cobalt, nickel, chromium, and manganese, in α-FeOOH powder or α-Fe 2 O 3 powder with reducing gas. It is characterized in that it is made into a magnetic alloy powder.

この発明において使用する変性酸化鉄粉末は、
水熱反応法によるかあるいは有機溶媒中での加熱
処理法によつて製造できる。水熱反応法は鉄以外
の金属塩を少なくとも含ませた水媒体中にα―
FeOOH粉末もしくはα―Fe2O3粉末を分散させ
てオートクレーブ中で加熱処理する方法であり、
また有機溶媒中での加熱処理法は鉄以外の金属塩
を溶解させた有機溶媒中にα―FeOOH粉末もし
くはα―Fe2O3粉末を分散させこれを有機溶媒の
沸点以下の温度下で加熱処理する方法である。
The modified iron oxide powder used in this invention is
It can be produced by a hydrothermal reaction method or a heat treatment method in an organic solvent. In the hydrothermal reaction method, α-
This is a method in which FeOOH powder or α-Fe 2 O 3 powder is dispersed and heat treated in an autoclave.
In addition, the heat treatment method in an organic solvent involves dispersing α-FeOOH powder or α-Fe 2 O 3 powder in an organic solvent in which a metal salt other than iron is dissolved, and then heating it at a temperature below the boiling point of the organic solvent. It is a method of processing.

これらの方法に用いられる鉄以外の金属塩とし
ては一般に水もしくは有機溶媒に溶解するハロゲ
ン化物、炭酸塩、硫酸塩などの無機塩や有機金属
塩が用いられるが、水熱反応法では水不溶性の金
属塩、たとえばコバルト塩では塩基性炭酸コバル
ト、四三酸化コバルト、一酸化コバルト、水酸化
コバルト、蓚酸コバルトなども使用できる。
The metal salts other than iron used in these methods generally include inorganic salts and organic metal salts such as halides, carbonates, and sulfates that are soluble in water or organic solvents, but in hydrothermal reaction methods, water-insoluble metal salts are used. Metal salts such as cobalt salts such as basic cobalt carbonate, tricobalt tetroxide, cobalt monoxide, cobalt hydroxide, and cobalt oxalate can also be used.

鉄以外の金属塩の金属の種類としてはコバル
ト、ニツケル、クロム、マンガンのほか亜鉛、カ
ドニウム、鉛、錫、アルミニウムなど種々のもの
があり、これらの金属塩は目的に応じて単独でも
しくは混合系で用いられる。たとえば金属鉄粉末
単独の場合の保磁力をより大きくする場合はコバ
ルト塩などを、保磁力と熱安定性とを向上させよ
うとするならマンガン塩などを、保磁力および飽
和磁化量をある程度低くしたいと望むならニツケ
ル塩、クロム塩などを、また耐酸化性を向上させ
る場合はアルミニウム塩、クロム塩などを、それ
ぞれ選定使用すればよい。
There are various types of metal salts other than iron, such as cobalt, nickel, chromium, manganese, as well as zinc, cadmium, lead, tin, and aluminum, and these metal salts can be used singly or as a mixture depending on the purpose. used in For example, if you want to increase the coercive force of metallic iron powder alone, use cobalt salt, etc., and if you want to improve coercive force and thermal stability, use manganese salt, etc., to lower the coercive force and saturation magnetization to a certain extent. If desired, nickel salts, chromium salts, etc. may be used, and if oxidation resistance is desired, aluminum salts, chromium salts, etc. may be selected and used.

これら金属塩の使用量は、目的とする磁性合金
粉末中に含ませるべき鉄以外の金属の量に応じて
決められる。一般的には上記鉄以外の金属の含有
量が合金粉末中0.5〜50重量%、好ましくは1〜
20重量%となるような割合で使用するのがよい。
The amount of these metal salts to be used is determined depending on the amount of metal other than iron to be included in the intended magnetic alloy powder. Generally, the content of metals other than iron in the alloy powder is 0.5 to 50% by weight, preferably 1 to 50% by weight.
It is best to use it in a proportion of 20% by weight.

有機溶媒中での加熱処理法における有機溶媒の
種類としては、金属塩を溶解させ得るアルコール
類、グリコール類、エーテル類、脂肪酸、半乾性
油、脂肪酸エステル、オキシカルボン酸など多岐
に亘るが、もつとも好ましい溶媒は高沸点のアル
キレングリコールもしくはポリアルキレングリコ
ールのようなグリコール類またはこのグリコール
のモノアルキルエーテルもしくはジアルキルエー
テルのようなエーテル類である。
The types of organic solvents used in the heat treatment method in organic solvents are wide-ranging, including alcohols, glycols, ethers, fatty acids, semi-drying oils, fatty acid esters, and oxycarboxylic acids that can dissolve metal salts. Preferred solvents are high-boiling glycols such as alkylene glycols or polyalkylene glycols or ethers such as mono- or dialkyl ethers of these glycols.

これらの加熱処理法で得られる変性酸化鉄粉末
はα―FeOOH粉末もしくはα―Fe2O3粉末の内
部に鉄以外の金属が均一に固溶されたものであ
り、また原料として針状のα―FeOOH粉末もし
くはα―Fe2O3粉末を使用することによりその針
状形態がほとんどそのまま保持されたものとな
る。この良好な粒子形状はとくに有機溶媒中で加
熱処理したものにおいて顕著である。
The modified iron oxide powder obtained by these heat treatment methods is α-FeOOH powder or α-Fe 2 O 3 powder in which metals other than iron are uniformly dissolved in solid solution. - By using FeOOH powder or α-Fe 2 O 3 powder, the needle-like shape can be maintained almost as it is. This good particle shape is particularly noticeable in those heat-treated in an organic solvent.

この発明においては上記の変性酸化鉄粉末を水
素、一酸化炭素などの還元ガスを使用して加熱還
元する。この加熱還元はα―Fe2O3粉末などの未
変性の酸化鉄粉末から磁性金属鉄粉末を得るため
の公知の加熱還元法に準じて行なえばよく、還元
温度は通常300〜450℃程度である。
In this invention, the above-mentioned modified iron oxide powder is heated and reduced using a reducing gas such as hydrogen or carbon monoxide. This thermal reduction can be carried out in accordance with the known thermal reduction method for obtaining magnetic metallic iron powder from unmodified iron oxide powder such as α-Fe 2 O 3 powder, and the reduction temperature is usually around 300 to 450°C. be.

このようにして得られるこの発明の合金磁性粉
末は、被還元物である変性酸化鉄粉末が鉄以外の
金属を粉末内部に均一に固溶させたものであるた
め、各粉末の合金組成も均一化され、また上記変
性酸化鉄粉末の良好な粒子形状によつて加熱還元
後の合金粉末の粒子形状も著るしく改善されたも
のとなる。
The alloy magnetic powder of the present invention obtained in this way has a uniform solid solution of metals other than iron in the modified iron oxide powder as the reductant, so the alloy composition of each powder is also uniform. Furthermore, due to the favorable particle shape of the modified iron oxide powder, the particle shape of the alloy powder after thermal reduction is also significantly improved.

以上詳述した通り、この発明法によれば粉末の
合金組成が均一でかつ粒子形状に優れる磁性合金
粉末を得ることができるから、磁性金属鉄粉末の
保磁力、飽和磁化量、耐酸化性、熱安定性などの
諸特性が合金粉末中に含ませるべき鉄以外の金属
の種類に応じて適度に改良された磁気特性に優れ
る磁性合金粉末を提供できる。
As detailed above, according to the method of the present invention, it is possible to obtain a magnetic alloy powder with a uniform powder alloy composition and excellent particle shape. It is possible to provide a magnetic alloy powder which has excellent magnetic properties and whose various properties such as thermal stability are appropriately improved depending on the type of metal other than iron to be included in the alloy powder.

以下にこの発明の実施例を参考例とともに記載
してより具体的に説明する。なお以下において部
とあるのは重量部を示すものとする。
Examples of the present invention will be described below together with reference examples to explain them more specifically. Note that parts hereinafter refer to parts by weight.

参考例 粒径0.7μおよび軸比(長軸/短軸比)15/1
のα―FeOOH粉末を使用し、これを電気炉中で
水素ガスを10/分の速度で流通しながら400℃
で2時間加熱還元し、還元終了後、空気中での発
火を防ぐため一旦有機溶剤(トルエン)に浸して
から取り出して磁性金属鉄粉末を得た。
Reference example Particle size 0.7μ and axial ratio (major axis/minor axis ratio) 15/1
α-FeOOH powder of
After the reduction was completed, it was immersed in an organic solvent (toluene) to prevent ignition in the air and then taken out to obtain magnetic metal iron powder.

この鉄粉末の粒径は0.6μ、軸比は12/1、飽
和磁化量は140emu/g、保磁力は1200エルステ
ツドであつた。またこの鉄粉末を使用して後述す
る実施例1の場合と同様にして磁気テープをつく
り、このテープの磁気特性を調べたところ、保磁
力1100エルステツド、残留磁束密度3200ガウス、
残留磁束密度/最大残留磁束密度(Br/Bm)は
0.75であつた。
The particle size of this iron powder was 0.6 μ, the axial ratio was 12/1, the saturation magnetization was 140 emu/g, and the coercive force was 1200 oersted. In addition, a magnetic tape was made using this iron powder in the same manner as in Example 1, which will be described later, and the magnetic properties of this tape were investigated, and it was found that the coercive force was 1100 oersted, the residual magnetic flux density was 3200 gauss,
Residual magnetic flux density/maximum residual magnetic flux density (Br/Bm) is
It was 0.75.

実施例 1 ポリエチレングリコール200ml中に塩化コバル
ト六水和物5gを溶解し、これに参考例に記載の
α―FeOOH粉末11gを分散させ、撹拌下200℃
で6時間加熱処理した。次いで水洗しろ過した後
100℃で2時間乾燥してコバルト含有酸化鉄粉末
を得た。
Example 1 5 g of cobalt chloride hexahydrate was dissolved in 200 ml of polyethylene glycol, 11 g of α-FeOOH powder described in the reference example was dispersed therein, and the mixture was heated at 200°C with stirring.
The mixture was heat-treated for 6 hours. After washing with water and filtering
It was dried at 100°C for 2 hours to obtain cobalt-containing iron oxide powder.

この粉末はα―FeOOH粉末の内部にコバルト
原子が均一に固溶されたものであつて、粒径0.8
μ、軸比12/1、コバルト原子含量5重量%であ
つた。
This powder has cobalt atoms uniformly dissolved inside α-FeOOH powder, and has a particle size of 0.8
μ, an axial ratio of 12/1, and a cobalt atom content of 5% by weight.

このコバルト含有酸化鉄粉末を1g分取し、電
気炉中で水素ガスを1/分の速度で流通しなが
ら400℃で2時間加熱還元した。還元終了後、空
気中での発火を防ぐため一亘有機溶剤(トルエ
ン)に浸してから取り出して磁性合金粉末とし
た。
1 g of this cobalt-containing iron oxide powder was collected and reduced by heating at 400° C. for 2 hours in an electric furnace while flowing hydrogen gas at a rate of 1/min. After completion of the reduction, it was immersed in an organic solvent (toluene) for a while to prevent ignition in the air, and then taken out to obtain a magnetic alloy powder.

この磁性合金粉末は金属鉄に均一に合金化され
た金属コバルトを5重量%含有し、粒径0.7μお
よび軸比10/1であつて粒子形状に非常に優れる
ものであつた。飽和磁化量は150emu/g、保磁
力は1300エルステツドであつた。
This magnetic alloy powder contained 5% by weight of metallic cobalt uniformly alloyed with metallic iron, had a particle size of 0.7 μm, an axial ratio of 10/1, and had an excellent particle shape. The saturation magnetization was 150 emu/g and the coercive force was 1300 oersted.

次にこのようにして得られた磁性合金粉末300
部、VAGH(U.C.C.社製塩化ビニル―酢酸ビニ
ル共重合体)90部およびメチルイソブチルケトン
480部を常法により撹拌混合して磁性塗料を調製
し、これを厚さ18μのポリエステルフイルム上に
乾燥厚が21μとなるように塗布乾燥して磁性層を
形成し、鏡面加工などの常用の処理を施こした
後、所定巾に裁断して磁気テープをつくつた。
Next, the magnetic alloy powder 300 obtained in this way
90 parts of VAGH (vinyl chloride-vinyl acetate copolymer manufactured by UCC) and methyl isobutyl ketone
A magnetic paint is prepared by stirring and mixing 480 parts by a conventional method, and this is coated on a polyester film with a thickness of 18 μm to a dry thickness of 21 μm to form a magnetic layer. After the treatment, it was cut into a predetermined width to make magnetic tape.

このテープの保磁力は1200エルステツド、残留
磁束密度は3150ガウス、残留磁束密度/最大残留
磁束密度(Br/Bm)は0.75であり、磁気特性に
優れる磁気テープであることが判つた。
This tape had a coercive force of 1200 oersted, a residual magnetic flux density of 3150 Gauss, and a residual magnetic flux density/maximum residual magnetic flux density (Br/Bm) of 0.75, and was found to be a magnetic tape with excellent magnetic properties.

実施例 2 ポリエチレングリコール200ml中に塩化亜鉛4
gを溶解し、これに参考例に記載のα―FeOOH
粉末11gを分散させ、撹拌下200℃で6時間加熱
処理した。次いで水洗しろ過した後100℃で2時
間乾燥して亜鉛含有酸化鉄粉末を得た。
Example 2 Zinc chloride 4 in 200ml polyethylene glycol
g, and add α-FeOOH described in the reference example to this.
11 g of powder was dispersed and heat treated at 200° C. for 6 hours while stirring. Next, it was washed with water, filtered, and dried at 100°C for 2 hours to obtain zinc-containing iron oxide powder.

この粉末はα―FeOOH粉末の内部に亜鉛原子
が均一に固溶されたものであつて、粒径1.0μ、
軸比15/1、亜鉛原子含量10重量%であつた。
This powder has zinc atoms uniformly dissolved inside the α-FeOOH powder, with a particle size of 1.0μ,
The axial ratio was 15/1, and the zinc atomic content was 10% by weight.

この亜鉛含有酸化鉄粉末を1g分取し、実施例
1と全く同様の手段で加熱還元して磁性合金粉末
とした。この合金粉末は金属鉄に均一に合金化さ
れた金属亜鉛を10重量%含有し、粒径0.8μ、軸
比12/1という粒子形状に優れるものであつた。
またその飽和磁化量は135emu/g、保磁力は880
エルステツドであつた。
One gram of this zinc-containing iron oxide powder was taken out and heated and reduced in exactly the same manner as in Example 1 to obtain a magnetic alloy powder. This alloy powder contained 10% by weight of metallic zinc uniformly alloyed with metallic iron, and had an excellent particle shape with a particle size of 0.8 μm and an axial ratio of 12/1.
Its saturation magnetization is 135emu/g, and its coercive force is 880.
It was Elsted.

さらにこの磁性合金粉末を使用して実施例1と
全く同様にしてつくつた磁気テープの磁気特性を
調べたところ、保磁力865エルステツド、残留磁
束密度3000ガウス、残留磁束密度/飽和残留磁束
密度(Br/Bm)0.75であり、磁気特性に優れる
磁気テープが得られることが判つた。
Furthermore, when we investigated the magnetic properties of a magnetic tape made in exactly the same manner as in Example 1 using this magnetic alloy powder, we found that the coercive force was 865 oersted, the residual magnetic flux density was 3000 Gauss, and the residual magnetic flux density/saturated residual magnetic flux density (Br/ Bm) 0.75, and it was found that a magnetic tape with excellent magnetic properties could be obtained.

実施例 3 粒径0.7μ、軸比15/1のα―Fe2O3粉末1.4Kg
を、水2000mlに塩化コバルト六水和物98gとクエ
ン酸ソーダ700gとを溶解した水溶液中に分散さ
せ、これをオートクレーブ中に仕込み、200℃で
3時間水熱反応させた。反応終了後生成した沈殿
物をろ別、水洗し、乾燥してコバルト含有酸化鉄
粉末を得た。
Example 3 1.4 kg of α-Fe 2 O 3 powder with a particle size of 0.7μ and an axial ratio of 15/1
was dispersed in an aqueous solution prepared by dissolving 98 g of cobalt chloride hexahydrate and 700 g of sodium citrate in 2000 ml of water, which was charged into an autoclave and subjected to a hydrothermal reaction at 200° C. for 3 hours. After the reaction was completed, the resulting precipitate was filtered, washed with water, and dried to obtain cobalt-containing iron oxide powder.

この粉末はα―Fe2O3粉末の内部にコバルト原
子が均一に固溶されたものであつて、粒径0.7
μ、軸比15/1、コバルト原子含量1.5重量%で
あつた。
This powder has cobalt atoms uniformly dissolved inside α-Fe 2 O 3 powder, and has a particle size of 0.7.
μ, axial ratio of 15/1, and cobalt atomic content of 1.5% by weight.

このコバルト含有酸化鉄粉末を1g分取し、実
施例1と全く同様の手段で加熱還元して磁性合金
粉末とした。この合金粉末は金属鉄に均一に合金
化された金属コバルトを1.5重量%含有し、粒径
0.6μ、軸比12/1という粒子形状に優れるもの
であつた。またその飽和磁化量は150emu/g、
保磁力は1250エルステツドであつた。
One gram of this cobalt-containing iron oxide powder was taken out and heated and reduced in exactly the same manner as in Example 1 to obtain a magnetic alloy powder. This alloy powder contains 1.5% by weight of metallic cobalt uniformly alloyed with metallic iron, and has a particle size of
The particles had an excellent particle shape of 0.6μ and an axial ratio of 12/1. Also, its saturation magnetization is 150emu/g,
The coercive force was 1250 oersted.

さらにこの磁性合金粉末を使用して実施例1と
全く同様にしてつくつた磁気テープの磁気特性を
調べたところ、保磁力1200エルステツド、残留磁
束密度2900ガウス、残留磁束密度/飽和残留磁束
密度(Br/Bm)は0.75であり、磁気特性に非常
に優れるものであつた。
Furthermore, when we investigated the magnetic properties of a magnetic tape made in exactly the same manner as in Example 1 using this magnetic alloy powder, we found that the coercive force was 1200 Oersted, the residual magnetic flux density was 2900 Gauss, and the residual magnetic flux density/saturated residual magnetic flux density (Br/ Bm) was 0.75, indicating very excellent magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 1 α―FeOOH粉末もしくはα―Fe2O3粉末の
内部にコバルト、ニツケル、クロム、マンガンな
どの鉄以外の金属を均一に固溶させてなる変性酸
化鉄粉末を還元ガスで加熱還元して磁性合金粉末
とすることを特徴とする磁性合金粉末の製造法。
1 Modified iron oxide powder, which is made by uniformly dissolving metals other than iron such as cobalt, nickel, chromium, and manganese in α-FeOOH powder or α-Fe 2 O 3 powder, is heated and reduced with reducing gas to make it magnetic. A method for producing magnetic alloy powder, characterized in that it is an alloy powder.
JP14588078A 1978-11-25 1978-11-25 Production of magnetic alloy powder Granted JPS5573803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14588078A JPS5573803A (en) 1978-11-25 1978-11-25 Production of magnetic alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14588078A JPS5573803A (en) 1978-11-25 1978-11-25 Production of magnetic alloy powder

Publications (2)

Publication Number Publication Date
JPS5573803A JPS5573803A (en) 1980-06-03
JPS622002B2 true JPS622002B2 (en) 1987-01-17

Family

ID=15395175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14588078A Granted JPS5573803A (en) 1978-11-25 1978-11-25 Production of magnetic alloy powder

Country Status (1)

Country Link
JP (1) JPS5573803A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109827A (en) * 1980-02-05 1981-08-31 Mitsui Toatsu Chem Inc Manufacture of iron compound particle for magnetic recording medium
JPS5848612A (en) * 1981-09-18 1983-03-22 Mitsui Toatsu Chem Inc Production of ferromagnetic iron powder
DE3228669A1 (en) * 1982-07-31 1984-02-02 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING NEEDLE-SHAPED FERROMAGNETIC METAL PARTICLES, ESSENTIALLY IRON

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882395A (en) * 1972-02-04 1973-11-02
JPS4911760A (en) * 1972-03-17 1974-02-01
JPS4922630A (en) * 1972-06-24 1974-02-28
JPS5297357A (en) * 1976-02-13 1977-08-16 Sony Corp Method of making magnetic alloy powder containing iron and copper as main constituents
JPS52121799A (en) * 1976-04-05 1977-10-13 Toda Kogyo Corp Method of manufacturing needleetype crystallalloy magneticcparticle powder
JPS52122213A (en) * 1976-04-05 1977-10-14 Hitachi Ltd Production of ferromagnetic metal powder
JPS52134858A (en) * 1976-05-07 1977-11-11 Kanto Denka Kogyo Kk Method of making magnetic recording magnetic powder containing iron as main constituent
JPS5562105A (en) * 1978-10-30 1980-05-10 Hitachi Maxell Ltd Production of magnetic alloy powder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882395A (en) * 1972-02-04 1973-11-02
JPS4911760A (en) * 1972-03-17 1974-02-01
JPS4922630A (en) * 1972-06-24 1974-02-28
JPS5297357A (en) * 1976-02-13 1977-08-16 Sony Corp Method of making magnetic alloy powder containing iron and copper as main constituents
JPS52121799A (en) * 1976-04-05 1977-10-13 Toda Kogyo Corp Method of manufacturing needleetype crystallalloy magneticcparticle powder
JPS52122213A (en) * 1976-04-05 1977-10-14 Hitachi Ltd Production of ferromagnetic metal powder
JPS52134858A (en) * 1976-05-07 1977-11-11 Kanto Denka Kogyo Kk Method of making magnetic recording magnetic powder containing iron as main constituent
JPS5562105A (en) * 1978-10-30 1980-05-10 Hitachi Maxell Ltd Production of magnetic alloy powder

Also Published As

Publication number Publication date
JPS5573803A (en) 1980-06-03

Similar Documents

Publication Publication Date Title
JPS5814729B2 (en) Kiyoji Seifun Matsuno Seizou Hohou
GB1585419A (en) Process of producing cobalt-containing feromagnetic iron oxide powder
US4475946A (en) Ferromagnetic metal particles of iron alloyed with Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Si, P, Mo, Sn, Sb and Ag coated with mono- or dialkoxysilanes
KR880001711B1 (en) Manufacturing method of a magnetic substance
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
JPS622002B2 (en)
JPS608605B2 (en) Oxidation treatment method for metal magnetic powder for magnetic recording media
JPS6135243B2 (en)
JPS5835241B2 (en) Method for producing alloy magnetic powder mainly composed of iron and copper
JPS6242858B2 (en)
JPH0122968B2 (en)
JPS6129122B2 (en)
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JP2002050508A (en) Method of manufacturing magnetic powder
JPS6018609B2 (en) Ferromagnetic powder and its manufacturing method
JPS64801B2 (en)
JPH032321B2 (en)
JPS608607B2 (en) Manufacturing method of magnetic powder
JPH02162703A (en) Manufacture of metallic magnetic powder
JPS6048885B2 (en) magnetic recording medium
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPH0450724B2 (en)
JPS5853495B2 (en) magnetic recording medium
JP2731014B2 (en) Metal magnetic powder and magnetic recording medium using the same
JPS6350842B2 (en)