JPS62197342A - Manufacture of fiber reinforced inorganic product - Google Patents

Manufacture of fiber reinforced inorganic product

Info

Publication number
JPS62197342A
JPS62197342A JP3751086A JP3751086A JPS62197342A JP S62197342 A JPS62197342 A JP S62197342A JP 3751086 A JP3751086 A JP 3751086A JP 3751086 A JP3751086 A JP 3751086A JP S62197342 A JPS62197342 A JP S62197342A
Authority
JP
Japan
Prior art keywords
fibers
fiber
strength
acrylic
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3751086A
Other languages
Japanese (ja)
Inventor
高田 貴
健一 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3751086A priority Critical patent/JPS62197342A/en
Publication of JPS62197342A publication Critical patent/JPS62197342A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高重合度アクリロニトリル(以下、ANと略
す)系重合体からなる耐熱性や耐薬品性に優れた高強度
・高弾性率アクリル系繊維を補強繊維とする繊維強化無
機質製品のr!A造法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a high-strength, high-modulus acrylic material with excellent heat resistance and chemical resistance, which is made of a highly polymerized acrylonitrile (hereinafter abbreviated as AN) polymer. r! of fiber-reinforced inorganic products using fibers as reinforcing fibers! Regarding A construction method.

(従来の技術) 従来、繊維強化無機質製品、たとえばアスベス  ・ト
セメント板、硅酸カルシウム板、軽量気泡コンクリート
板(ALC>などの建築田無1M貿板は、オートクレー
ブで高温下に水蒸気谷生を施すことによって製造されて
いる。
(Prior Technology) Conventionally, fiber-reinforced inorganic products such as asbestos cement boards, calcium silicate boards, lightweight cellular concrete boards (ALC), and other 1M trade boards have been produced by subjecting them to steam gradation at high temperatures in an autoclave. Manufactured by.

この石灰質や硅@質などからなる水硬性無敗物質を上記
高温下で水蒸気養生すると、該水硬性無機物質はオート
クレーブ中で水熱反応によって、110〜140°Cで
は11大トバモライト、150〜400’Cではゾノト
ライトと呼ばれる高結晶性の水和物を形成することはよ
く知られている。
When this hydraulic undefeated material consisting of calcareous or siliceous material is steam-cured at the above-mentioned high temperature, the hydraulic inorganic material becomes 11 large tobermorite, 150 to 400' It is well known that C forms a highly crystalline hydrate called xonotlite.

そして、上記水和物からなる硬化体は断熱性に優れ、熱
的に安定でおり、加えて乾燥収縮が少なく、化学的抵抗
性が大きく、屋根材、床材、外壁および間仕切りなどの
建築材料として広く利用されている。
The cured product made of the above hydrate has excellent insulation properties, is thermally stable, has little drying shrinkage, and has high chemical resistance, and can be used as building materials such as roofing materials, flooring materials, exterior walls, and partitions. It is widely used as

これらの建築用熱は質製品には、アスベストや鉄筋など
の補強材によって補強されているのが普通であるが、ア
スベストを補強材料とする場合は、天然素材でおるアス
ベストの価格変動に伴って製品の価格変動があり、特に
近年は該アスベストが健康、衛生上有害であることが明
白になったために、その使用が忌避ないし制限されるJ
:うになり、このアスベストに代って各種の繊維、特に
高強度で耐薬品性の合成繊維が使用されようとしている
These construction heat products are normally reinforced with reinforcing materials such as asbestos and reinforcing steel, but when asbestos is used as a reinforcing material, the price of asbestos, which is a natural material, increases. There are fluctuations in product prices, and especially in recent years, it has become clear that asbestos is harmful to health and hygiene, so its use has been avoided or restricted.
Various types of fibers, especially high-strength, chemical-resistant synthetic fibers, are being used to replace asbestos.

これらの合成繊維の中でアクリル系繊維もアスベスト代
替繊維の1つであるが、従来のアクリル系繊維は、常温
付近では比較的安定した耐アルカリ性を示すが、100
’Cを越える高温になると、その耐アルカリ性は急激に
低下し、強度の低下が甚だしくなる。
Among these synthetic fibers, acrylic fibers are one of the asbestos alternative fibers, but conventional acrylic fibers exhibit relatively stable alkali resistance near room temperature, but
When the temperature exceeds 'C, the alkali resistance rapidly decreases and the strength decreases significantly.

特開昭61−6159@公報には、硅酸質または石灰質
原料にアクリル系超短繊維を混入し、高温下に水蒸気養
生を行い、該アクリル系短繊維を加水分解し、前記無機
質材料に対する結合性を高める方法が提案されている。
In JP-A-61-6159@, acrylic ultra-short fibers are mixed into silicic acid or calcareous raw materials, steam-cured at high temperatures, the acrylic short fibers are hydrolyzed, and bonded to the inorganic material. A method to increase sex has been proposed.

また、特開昭60−122764@および同60−16
6250M各公報には、ヒドラジンや電子線照射によっ
て架橋し、耐熱性を付与したアクリル系短繊維を同様に
硅酸質または石灰質原料に混入し、水蒸気養生する方法
が提案されている。
Also, JP-A-60-122764@ and JP-A-60-16
6250M publications propose a method in which short acrylic fibers crosslinked with hydrazine or electron beam irradiation to impart heat resistance are similarly mixed into siliceous or calcareous raw materials, and then steam-cured.

しかしながら、これらの提案になる方法は、従来、商業
的に多量に生産されている汎用アクリル系繊維の水硬性
物質に対する親和性を改良したり、該繊維の耐熱性改良
のために架橋など化学的改質を施すものであって、引張
強度や弾性率などの機械的強度は必ずしも大きくなく、
その水硬性無機物質に対する補強効果は格別大きなもの
ではなかった。
However, these proposed methods have conventionally been used to improve the affinity of general-purpose acrylic fibers, which are commercially produced in large quantities, for hydraulic substances, or to use chemical methods such as crosslinking to improve the heat resistance of the fibers. It undergoes modification, and mechanical strength such as tensile strength and elastic modulus is not necessarily large.
Its reinforcing effect on hydraulic inorganic substances was not particularly large.

一方、本発明者らににる提案も含めて、最近、高重合度
AN系手合体からなる高強度、特に高弾性率アクリル系
繊維をセメントなどの水硬性物質の補強繊維とする提案
がなされ、注目されているが、このような高重合度重合
体からなり、高強度アクリル系gi維の場合も、高温条
件下の水蒸気養生を行うとその機械的特性が失われて、
その優れた補強効果が十分に繊維補強無機質製品に反映
されないという問題がある。
On the other hand, there have recently been proposals, including those made by the present inventors, to use high-strength, especially high-modulus acrylic fibers made of highly polymerized AN-based fibers as reinforcing fibers for hydraulic materials such as cement. However, even in the case of high-strength acrylic GI fibers made of such highly polymerized polymers, their mechanical properties are lost when steam-cured under high-temperature conditions.
There is a problem in that the excellent reinforcing effect is not sufficiently reflected in fiber-reinforced inorganic products.

(発明の解決しようとする問題点) 本発明の目的は、上記高重合度ANN系重合体らなる高
強度・高弾性率アクリル系繊維を補強繊維とする繊維補
強無機質製品の製造において、該アクリル系繊維の水蒸
気養生による物性の低下を防止すると共に、該水蒸気養
生によって無機質製品を構成する水硬性無機物質を高結
晶性の水和物、特に11大トバモライトに転化せしめ、
優れた機械的特性を右する繊維補強無機質製品を製造す
る方法を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide fiber-reinforced inorganic products using high-strength, high-modulus acrylic fibers made of the above-mentioned high degree of polymerization ANN polymer as reinforcing fibers. In addition to preventing the deterioration of physical properties of the fibers due to steam curing, the steam curing converts hydraulic inorganic substances constituting the inorganic product into highly crystalline hydrates, especially 11-sized tobermorite,
The object of the present invention is to provide a method for producing fiber-reinforced inorganic products that exhibit excellent mechanical properties.

°(問題点を解決するための手段) このような本発明の目的は、前記特許請求の範囲に記載
したにうに、 極限粘度が少なくとも2.5以上である高重合度アクリ
ロニトリル系重合体からなり、10g/d以上の引張強
1m J>よび180g/d以上の引張弾性率を有する
高強度・高弾性率アクリル系繊維と水硬牲無は物質とか
らなるスラリー状物またはペースト状物を成形し、次い
で110〜160’Cの温度条イ1下に水蒸気む生を行
うにJ:って達成することができる。
(Means for Solving the Problems) The object of the present invention is to provide a highly polymerized acrylonitrile polymer having an intrinsic viscosity of at least 2.5, as described in the claims. , molding a slurry or paste-like material consisting of high-strength, high-modulus acrylic fibers with a tensile strength of 10 g/d or more and a tensile modulus of 180 g/d or more and a hydraulically free material. Then, by carrying out steam heating under a temperature column 1 of 110 to 160'C, this can be achieved.

本発明の繊維補強無機質製品を構成する補強繊維は、前
記極限粘度が少なくとも2.5、好ましくは3.0以上
のAN系重合体からなる引張強度が10g/d以上、好
ましくは12g/d以上、引張弾性率が1800/d以
上、好ましくは200q/a以上の高強度・高弾性率繊
維である。
The reinforcing fibers constituting the fiber-reinforced inorganic product of the present invention are made of an AN-based polymer having an intrinsic viscosity of at least 2.5, preferably 3.0 or more, and have a tensile strength of 10 g/d or more, preferably 12 g/d or more. , a high strength/high elastic modulus fiber having a tensile modulus of 1800/d or more, preferably 200q/a or more.

本発明に特定するアクリル系繊維の引張強度および引張
弾性率を満足する繊維は、このアクリル系m維を構成す
るAN系重合体の極限粘度が2゜5以上であることによ
ってはじめて製造可能であることに加えて、高温下にお
ける耐アルカリ性に優れ、高温条件下の水蒸気養生が可
能な繊維とする、すなわち該無機質水硬性メ(!を機物
質を硅酸′fIおよび石灰質からなる高結晶性の水和物
、特に11大トバモライトとすることを可能とする上で
手数である。
Fibers that satisfy the tensile strength and tensile modulus of acrylic fibers specified in the present invention can only be produced when the intrinsic viscosity of the AN polymer constituting the acrylic fibers is 2°5 or more. In addition, the fiber has excellent alkali resistance under high temperature conditions and can be cured in steam under high temperature conditions. It is a hassle to make it possible to form hydrates, especially 11-sized tobermorite.

このような高重合度AN系ポリマを用いて、引張強度1
0g/d以上、引張弾性率180q/d以上のアクリル
系繊維の製造法の1態様としては、紡糸方法として、前
記AN系重合体の紡糸原液を紡糸口金孔から一旦空気、
窒素、アルゴン、ヘリラムなどの不活性雰囲気中に吐出
し、この吐出ポリマを不活性雰囲気の微小空間を経由せ
しめた後に該紡糸原液の凝固剤中に導いて凝固させる、
いわゆる乾・湿式紡糸法を採用する必要がある。
Using such a high polymerization degree AN-based polymer, tensile strength of 1
One embodiment of the method for producing acrylic fibers with a tensile modulus of 0 g/d or more and a tensile modulus of 180 q/d or more includes a spinning method in which the spinning stock solution of the AN-based polymer is once passed through a spinneret hole with air,
Discharging the polymer into an inert atmosphere such as nitrogen, argon, helium, etc., passing the discharged polymer through a microspace in the inert atmosphere, and then introducing it into the coagulant of the spinning stock solution to coagulate it.
It is necessary to employ so-called dry/wet spinning methods.

ざらに具体的には、 上記AN系ポリマをジメチルスル
ホキシド(DMSO> 、ジメチルアセタミド(DMA
C>、ジメチルアセタミド(DM・F)、などの有機溶
剤、塩化力ルシュウム、塩化亜鉛、ロダンソーダなどの
無機塩濃厚水溶液、硝酸などの無機系溶剤に溶解して、
溶液粘度が2000ポイズ以上、好ましくは3,000
〜10゜OOOポイズ、ポリマWA度が5〜20%の紡
糸原液を作成する。この紡糸原液を紡糸口金面と凝固浴
液面との間の距離を1〜20mm、好ましくは3〜’l
Qmmの範囲内に設定し、該紡糸口金孔から紡糸口金面
と凝固浴液面とで形成される微小空間に吐出した後、凝
固浴に導き凝固させ、次いで得られた凝固繊維糸条を常
法により、水洗、脱溶媒、1次延伸、乾燥・緻密化、2
次延伸、熱処理などのあと処理工程を経由せしめて延伸
繊維糸条とする。この乾・湿式紡糸によって得られる繊
維糸条は、延伸性が極めて優れているが、好ましくは2
次延伸方法として、150〜270’Cの乾熱下に1.
1倍、好ましくは1.5倍以上延伸し、全有効延伸倍率
が少なくとも10倍、好ましくは12倍以上になるよう
に延伸し、その繊度を0゜1〜10デニール(d)、好
ましくは0.5〜5dの範囲内するのがよい。
More specifically, the AN-based polymer was mixed with dimethyl sulfoxide (DMSO) and dimethyl acetamide (DMA).
C>, dissolved in an organic solvent such as dimethylacetamide (DM・F), a concentrated aqueous solution of an inorganic salt such as ruthium chloride, zinc chloride, and rhodan soda, or an inorganic solvent such as nitric acid.
Solution viscosity is 2,000 poise or more, preferably 3,000 poise
A spinning dope having a poise of ~10°OOO and a polymer WA degree of 5 to 20% is prepared. The distance between the spinneret surface and the coagulation bath liquid level is 1 to 20 mm, preferably 3 to 100 mm.
Qmm is set within the range of By the method, washing with water, desolvation, primary stretching, drying and densification, 2
The fibers are then subjected to post-processing steps such as drawing and heat treatment to form drawn fiber threads. The fiber yarn obtained by this dry/wet spinning has extremely excellent drawability, but preferably
As the next stretching method, 1.
Stretched 1 times, preferably 1.5 times or more, and stretched so that the total effective stretching ratio is at least 10 times, preferably 12 times or more, and the fineness is 0°1 to 10 denier (d), preferably 0. It is preferable to set it within the range of .5 to 5d.

かくして得られる繊維は、通常引張強度が10CI/d
以上、引張弾性率が1800/d以上、結節強度が2.
2CI/d以上の機械的物性を有し、X線結品配向度で
93%以上の高度の配向を示す。
The fibers thus obtained usually have a tensile strength of 10 CI/d.
The tensile modulus is 1800/d or more, and the knot strength is 2.
It has mechanical properties of 2 CI/d or more, and exhibits a high degree of orientation of 93% or more in terms of X-ray crystal orientation.

なお、本発明の補強用アクリル系繊維を構成するAN系
重合体としては、少なくともAN95モル%と5モル%
以下の該ANに対して共重合性を有する七ツマ、たとえ
ばアクリル酸、メタクリル酸、イタコン酸、などのジカ
ルボン酸およびそれらの低級アルキルエステル類、ヒド
ロキシメチルアクリレート、ヒドロキシエチルアクリレ
ート、ヒドロキシメチルメタクリレートなどのカルボン
酸の水酸基を含有するヒドロキシアルキルアクリレート
、アクリルアミド、メタクリルアミド、α−クロルアク
リロニトリル、ヒドロキシエチルアクリル酸、アリルス
ルホン酸、メタクリルスルホン酸などとの共重合体があ
る。
The AN polymer constituting the reinforcing acrylic fiber of the present invention includes at least 95 mol% AN and 5 mol% AN.
The following seven substances are copolymerizable with the AN, such as dicarboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and their lower alkyl esters, hydroxymethyl acrylate, hydroxyethyl acrylate, and hydroxymethyl methacrylate. There are copolymers of carboxylic acid with hydroxyl group-containing hydroxyalkyl acrylates, acrylamide, methacrylamide, α-chloroacrylonitrile, hydroxyethyl acrylic acid, allylsulfonic acid, methacrylsulfonic acid, and the like.

得られた繊維は、長さ0.5〜15mmにカットされ、
配合組成物重量当り0.1〜5重ω%、好ましくは0.
5〜3%の範囲内で水硬性無機物質に混合される。該補
強繊維の配合量が上記範囲外になると、水硬性無機物質
に対する分散性で低下し、充分な該アクリル系繊維の補
強効果が繊維補強無機質製品に反映されなくなるので好
ましくない。
The obtained fibers were cut into lengths of 0.5 to 15 mm,
0.1 to 5% ω per weight of the blended composition, preferably 0.
It is mixed with the hydraulic inorganic substance in the range of 5 to 3%. If the blending amount of the reinforcing fiber is outside the above range, the dispersibility with respect to the hydraulic inorganic substance will decrease, and the sufficient reinforcing effect of the acrylic fiber will not be reflected in the fiber-reinforced inorganic product, which is not preferable.

水硬性能は物質に対するアクリル系繊維の分散性向上の
ために、上記アクリル系繊維を界面活性剤や樹脂エマル
ジョンおよび高分子凝集剤で処理、付着させることがで
きる。
In order to improve the hydraulic performance of the acrylic fibers in substances, the acrylic fibers can be treated with a surfactant, a resin emulsion, or a polymer flocculant to be attached.

本発明の繊維強化無機製品を構成する水硬性無機物質と
しては、石灰T1および硅酸貿などの水硬性を右する無
機物であって、たとえば砂石、硅ソウ土、高炉スラブ、
フライアッシュ、石灰、石膏およびポルトランドセメン
トなどの各種セメンl−類を代表例として挙げることが
できる。
Hydraulic inorganic substances constituting the fiber-reinforced inorganic product of the present invention include inorganic substances that affect hydraulic properties, such as lime T1 and silicic acid, such as sandstone, silica clay, blast furnace slabs,
Typical examples include various cements such as fly ash, lime, gypsum, and Portland cement.

また、得られる繊維補強無機質製品に多孔性を与え、軽
量化するために、パーライト、シラスバルーン、ガラス
バルーンなどを適宜混合してもJ:いことは勿論である
Furthermore, in order to impart porosity to the resulting fiber-reinforced inorganic product and reduce its weight, pearlite, shirasu balloons, glass balloons, etc. may of course be mixed as appropriate.

さらに、補強繊維の抄造性おにびペーストの流動性を改
良、向上させるために、本パルプ、アクリル系繊維や芳
香族ポリアミド繊維などから作成したフィブリル化繊維
、無機繊維などおよびその他の充填材を添加、配合する
ことができる。
Furthermore, in order to improve and improve the fluidity of the reinforcing fiber paste, we added this pulp, fibrillated fibers made from acrylic fibers, aromatic polyamide fibers, etc., inorganic fibers, and other fillers. Can be added or blended.

そして、このJ:うな高強度高弾性率アクリル系繊維を
補強繊維として前記水硬性無機物質に配合したスラリー
状またはペースト状配合物は所望の形状に成形する、た
とえばハヂエツク法といわれている水硬性無機物質と補
強繊維とを混合し、jlられたスラリーを抄造して所望
の形状に成形する方法または水硬性能)幾物質のペース
トに該補強繊維を配合し、この配合物を金型に注入して
所望の形状に成形する方法などを適用することができる
Then, the slurry-like or paste-like compound, in which the high-strength, high-modulus acrylic fibers are blended with the hydraulic inorganic material as reinforcing fibers, is molded into a desired shape, for example, by a hydraulic process called the hydraulic process. A method in which an inorganic substance and reinforcing fibers are mixed and the resulting slurry is made into paper and molded into a desired shape, or hydraulic performance) The reinforcing fibers are blended into a paste of several substances, and this blend is injected into a mold. A method of molding it into a desired shape can be applied.

本発明の特徴は、このようにして得られた成形物を11
0〜160’C1好ましくは120〜150℃の温度条
件下に水蒸気養生を行う点にある。
The feature of the present invention is that the molded product thus obtained is
Steam curing is carried out under a temperature condition of 0 to 160'C1, preferably 120 to 150C.

すなわち、160’Cを越える温度で水蒸気養生を行う
と、該成形物中に配合された補強繊維のアクリル系繊維
が劣化し易く、該アクリル系繊維の卓越した強度特性を
製品に十分に反映させることが困難になるし、他方、1
10’Cよりも低い容重温度では、水硬性前は物質を高
結晶性の11大トバモライトに転換することが困難にな
り、結果として得られる繊維補強無機質製品の性能、特
に耐熱性や寸法安定性の点で実用性能が不充分にな4る
ために好ましくはない。
In other words, if steam curing is performed at a temperature exceeding 160'C, the acrylic fibers that are the reinforcing fibers blended into the molded product are likely to deteriorate, and the excellent strength characteristics of the acrylic fibers cannot be sufficiently reflected in the product. On the other hand, 1
At bulk temperatures lower than 10'C, it becomes difficult to convert the material into highly crystalline 11 tobermorite prior to hydraulic setting, and the performance of the resulting fiber-reinforced mineral products, especially the heat resistance and dimensional stability, is affected. This is not preferable because the practical performance becomes insufficient in terms of 4.

水蒸気養生の時間としては、上記善生温度によって相違
するが、3〜15時間の範囲内がよい。
The time for steam curing varies depending on the above-mentioned storage temperature, but is preferably within the range of 3 to 15 hours.

(発明の効果) 本発明になる繊維補強無機¥1製品の製造法は、高重合
度AN系重合体からむる卓越した高強度物性を41する
アクリル系繊維の当該繊維物性を実質的に損うことなく
、該繊維補強無機質製品の補強効果に反映させることが
でき、得られる繊維補強無機質製品は高温水蒸気養生に
よって高結晶性の水和物を形成し、曲げ強度などの強度
物性はもちろん、耐熱性、耐衝撃性ならびに寸法安定性
などに極めて優れている。
(Effect of the invention) The manufacturing method of the fiber-reinforced inorganic ¥1 product of the present invention substantially impairs the fiber properties of the acrylic fiber, which has the excellent high strength properties of the high polymerization degree AN polymer. This can be reflected in the reinforcing effect of the fiber-reinforced inorganic product, and the resulting fiber-reinforced inorganic product forms a highly crystalline hydrate through high-temperature steam curing, improving not only strength properties such as bending strength but also heat resistance. It has excellent properties such as hardness, impact resistance, and dimensional stability.

したがって、建築資材用、土木資材用などの多くの用途
にその優れた性能を活用することができる。
Therefore, its excellent performance can be utilized in many applications such as building materials and civil engineering materials.

以下、実施例により本発明の効果をざらに具体的に説明
する。
EXAMPLES Hereinafter, the effects of the present invention will be explained in detail using Examples.

なお、本発明において、極限粘度、セメント板の曲げ強
度および乾燥収縮量は次の測定法により測定した値であ
る。
In the present invention, the intrinsic viscosity, bending strength and drying shrinkage of the cement board are values measured by the following measuring method.

極限粘度ニア5mqの乾燥AN系ポリマをフラスコに入
れ、0.1Nのチオシアン酸ソーダをS有するDMF2
5mlを加えて、完全に溶解する。
A dry AN-based polymer with an intrinsic viscosity of near 5 mq was placed in a flask, and DMF2 containing 0.1N sodium thiocyanate in S was added.
Add 5 ml and dissolve completely.

得られたポリマ溶液をオストワルド粘度計を用いて20
℃で比粘度を測定し、次式にしたがって極限粘度を算出
する。
The resulting polymer solution was measured using an Ostwald viscometer at 20
The specific viscosity is measured at °C, and the intrinsic viscosity is calculated according to the following formula.

極限粘度= [+ 、32X(比粘度)”−1]/ 0.198曲げ
強1哀:セメント板から試験片を切出しJIS−に−6
911に規定されている測定法に準じて測定した。
Intrinsic viscosity = [+,32
The measurement was performed according to the measurement method specified in 911.

乾燥収縮量:セメント板から試験片を切出し、J l5
−A−5/l 18に規定されている測定法に準じて、
105°Cで乾燥したときの長さ変化率をもって示した
Amount of drying shrinkage: Cut a test piece from a cement board, J l5
-A-5/l According to the measurement method specified in 18,
The rate of change in length is shown when dried at 105°C.

実施例1〜3、比較例1〜2 AN100%をDMSO中で溶液手合し、第1表に示す
極限粘度の異なるAN系ポリマを作成した。1qられた
ポリマ溶液をその溶液粘度ガ3000ポイズ(45°C
)になるようにポリマ濃度を調整し、紡糸原液を作成し
た。
Examples 1 to 3, Comparative Examples 1 to 2 100% AN was dissolved in DMSO to create AN-based polymers having different intrinsic viscosities shown in Table 1. The viscosity of the polymer solution was 3000 poise (at 45°C).
) The polymer concentration was adjusted to give a spinning stock solution.

これらの紡糸原液を用いてそれぞれ湿式および乾・湿式
紡糸を行った。凝固浴としては、いずれの方法において
も20℃、55%DMSO水溶液を使用した。また、乾
・湿式紡糸の場合の紡糸口金と凝固浴液面との間の距離
は5mmに設定し、凝固液面から集束ガイドまでの距離
は/loommとした。
Wet spinning and dry/wet spinning were performed using these spinning stock solutions, respectively. As a coagulation bath, a 55% DMSO aqueous solution at 20° C. was used in all methods. Further, in the case of dry/wet spinning, the distance between the spinneret and the coagulation bath liquid level was set to 5 mm, and the distance from the coagulation liquid level to the focusing guide was /loommm.

得られた未延伸繊維糸条は熱水中で5倍に延伸した俊、
水洗し、油剤を付与し、180〜200°Cの乾熱チュ
ーブ中で最高延伸倍率の90%で二次延伸し、第1表に
示す約2デニールのアクリル系繊維を得た。 繊維長5
mmにカットした第1表に示すアクリル系繊維10Q、
本パルプ10g、Ca (OH>2100おにびAl1
(504>3100を水101に添加し、攪拌した後、
ポルトランドセメント330 gn 73よびシリカ粉
末130crを加え、再1ull拌した。次いで低速攪
拌下でアニオン性ポリアクリルアミド系高分子凝集剤2
oppmを添加しセメントスラリーを作成した。
The obtained undrawn fiber yarn was drawn 5 times in hot water,
The fibers were washed with water, applied with an oil agent, and subjected to secondary stretching at a maximum stretching ratio of 90% in a dry heat tube at 180 to 200°C to obtain acrylic fibers of about 2 denier shown in Table 1. Fiber length 5
Acrylic fiber 10Q shown in Table 1 cut into mm,
10g of this pulp, Ca (OH>2100 Onibi Al1
(After adding 504>3100 to water 101 and stirring,
330 gn 73 of Portland cement and 130 cr of silica powder were added and stirred again to 1 µl. Next, anionic polyacrylamide-based polymer flocculant 2 was added under low-speed stirring.
oppm was added to create a cement slurry.

得られたセメントスラリーを50メツシユの金網を敷い
た20cmx25cmの金型内に移して戸第1表 過した後、100KQ/cm2り圧力で1分間プレスし
て厚さ約5mmのセメン1〜板を成形した。
The obtained cement slurry was transferred into a 20 cm x 25 cm mold lined with a 50 mesh wire mesh, and after passing through the first surface, it was pressed at a pressure of 100 KQ/cm2 for 1 minute to form a cement plate with a thickness of about 5 mm. Molded.

このセメント板を70’Cの水中で前養生した後、オー
トクレーブに移し、140’Cで5時間水蒸気養生を行
い、比重が約1.6のセメント硬化板を得た。このセメ
ント硬化板から試験片を切出し、湿潤状態で曲げ強度を
測定した。その結果を第1表に示した。
After pre-curing this cement board in water at 70'C, it was transferred to an autoclave and steam-cured at 140'C for 5 hours to obtain a hardened cement board with a specific gravity of about 1.6. A test piece was cut from this hardened cement board, and its bending strength was measured in a wet state. The results are shown in Table 1.

表から本発明方法によって得られた繊維補強無機質製品
のセメント硬化板は曲げ強度において明白に優れている
とか判る。
It can be seen from the table that the fiber-reinforced inorganic cement hardened plates obtained by the method of the present invention are clearly superior in bending strength.

実施例4〜5、比較例3 実施例2で得られたアクリル系繊維を使用し、実施例1
と同様にしてセメント板を成形した後、120〜180
℃の温度範囲内で養生温度を変更してオートクレーブで
水蒸気養生を行った。得られたセメント硬化板の曲げ強
度を第2表に示した。
Examples 4 to 5, Comparative Example 3 Using the acrylic fiber obtained in Example 2, Example 1
After forming the cement board in the same manner as above,
Steam curing was performed in an autoclave while changing the curing temperature within the temperature range of ℃. The bending strength of the obtained cement hardened plates is shown in Table 2.

第2表から、本発明に規定する水蒸気た生の温度範囲を
満足する場合には、得られたセメント硬化板の曲げ強度
が大ぎく、乾燥収縮量も各温度で第2表 大差がなく、寸法安定性にも優れていることが判る。
From Table 2, when the steam temperature range specified in the present invention is satisfied, the bending strength of the obtained cement cured board is large, and the amount of drying shrinkage does not differ much at each temperature as shown in Table 2. It can be seen that it also has excellent dimensional stability.

Claims (1)

【特許請求の範囲】[Claims] (1)極限粘度が少なくとも2.5以上である高重合度
アクリロニトリル系重合体からなり、10g/d以上の
引張強度および180g/d以上の引張弾性率を有する
高強度・高弾性率アクリル系繊維と水硬性無機物質とか
らなるスラリー状物またはペースト状物を成形し、次い
で110〜160℃の温度条件下に水蒸気養生を行うこ
とを特徴とする繊維強化無機質製品の製造法。
(1) High-strength, high-modulus acrylic fiber made of a highly polymerized acrylonitrile polymer with an intrinsic viscosity of at least 2.5 and having a tensile strength of 10 g/d or more and a tensile modulus of 180 g/d or more 1. A method for producing a fiber-reinforced inorganic product, which comprises forming a slurry or paste-like product consisting of a hydraulic inorganic material and a hydraulic inorganic substance, and then curing with steam at a temperature of 110 to 160°C.
JP3751086A 1986-02-24 1986-02-24 Manufacture of fiber reinforced inorganic product Pending JPS62197342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3751086A JPS62197342A (en) 1986-02-24 1986-02-24 Manufacture of fiber reinforced inorganic product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3751086A JPS62197342A (en) 1986-02-24 1986-02-24 Manufacture of fiber reinforced inorganic product

Publications (1)

Publication Number Publication Date
JPS62197342A true JPS62197342A (en) 1987-09-01

Family

ID=12499529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3751086A Pending JPS62197342A (en) 1986-02-24 1986-02-24 Manufacture of fiber reinforced inorganic product

Country Status (1)

Country Link
JP (1) JPS62197342A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262332A (en) * 1975-11-17 1977-05-23 Asahi Chemical Ind Method of manufacturing hardened cement products containing polymer
JPS56109854A (en) * 1980-02-04 1981-08-31 Mitsubishi Chem Ind Manufacture of calcium silicate formed body
JPS578805A (en) * 1980-06-18 1982-01-18 Hitachi Ltd Address stopping circuit
JPS6021905A (en) * 1983-07-15 1985-02-04 Toray Ind Inc Acrylic fiber having high strength and elastic modulus and its manufacture
JPS616160A (en) * 1984-06-19 1986-01-11 東レ株式会社 Fiber reinforced hydraulic substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262332A (en) * 1975-11-17 1977-05-23 Asahi Chemical Ind Method of manufacturing hardened cement products containing polymer
JPS56109854A (en) * 1980-02-04 1981-08-31 Mitsubishi Chem Ind Manufacture of calcium silicate formed body
JPS578805A (en) * 1980-06-18 1982-01-18 Hitachi Ltd Address stopping circuit
JPS6021905A (en) * 1983-07-15 1985-02-04 Toray Ind Inc Acrylic fiber having high strength and elastic modulus and its manufacture
JPS616160A (en) * 1984-06-19 1986-01-11 東レ株式会社 Fiber reinforced hydraulic substance

Similar Documents

Publication Publication Date Title
US4772328A (en) Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
JPH0140785B2 (en)
EP0383348A1 (en) Carbon fiber-reinforced hydraulic composite material
JP3108431B2 (en) Molding
JPH09295877A (en) Staple fiber-reinforced concrete
JPS6127340B2 (en)
JPS62197342A (en) Manufacture of fiber reinforced inorganic product
JP3166180B2 (en) Fiber-reinforced hydraulic molded article and method for producing the same
JPS63282144A (en) Production of fiber reinforced inorganic product
JPH04300229A (en) Formed article or hydraulic inorganic material and its production
JPH06115989A (en) Acrylic fiber-reinforced hydraulic inorganic molded product and its production
JPH04254460A (en) Water hardening inorganic molded body and its manufacture
JP2004137119A (en) Cement-based fiber composite material
JPH0193448A (en) Acrylic sulfide fiber for reinforcing hydraulic substance
JPS6345155A (en) Acrylic flame-resistant fiber for reinforcing hydraulic substance
JPS63162559A (en) Manufacture of carbon fiber reinforced hydraulic composite material
JPS616161A (en) Cement product containing acrylic fiber as reinforcement fiber
JP3280636B2 (en) Manufacturing method of molded product
JPH04175252A (en) Acrylic synthetic fiber and its production
JPH1112015A (en) Production of high strength hardened cement having excellent water resistance
JPS62182141A (en) Hydraulic composition
JP4364343B2 (en) Kneaded molded hydraulic material reinforcing material and kneaded molded body
JPS61151051A (en) Fiber reinforced cement material
JPH06115997A (en) Acrylic fiber-reinforced hydraulic inorganic molded product and its production
JP3090759B2 (en) Method for producing hydraulic molded product