JPS62186786A - L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan - Google Patents

L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan

Info

Publication number
JPS62186786A
JPS62186786A JP2802886A JP2802886A JPS62186786A JP S62186786 A JPS62186786 A JP S62186786A JP 2802886 A JP2802886 A JP 2802886A JP 2802886 A JP2802886 A JP 2802886A JP S62186786 A JPS62186786 A JP S62186786A
Authority
JP
Japan
Prior art keywords
tryptophan
transformed
dna
microbial strain
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2802886A
Other languages
Japanese (ja)
Inventor
Eiko Takinishi
滝西 英光
Hisao Takamatsu
久雄 高松
Kazunori Sakimoto
和範 崎元
Yoshihiro Yajima
矢島 善博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2802886A priority Critical patent/JPS62186786A/en
Publication of JPS62186786A publication Critical patent/JPS62186786A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a transformed microbial strain having high L-tryptophan productivity, by preparing a DNA molecule having a segment composed of mutually linked plural DNA fragments containing genetic information participating in biosynthesis of L-tryptophan and inserting the DNA molecule in a specific host microorganism. CONSTITUTION:The host cell is a microorganism belonging to Bacillus genus preferably resistant to tryptophan analogue. For example, plasmid pSD2961 is partially cut with a restriction enzyme HindIII and linked again with T4- phage ligase. E.coli C600 treated with calcium chloride is transformed with the obtained DNA by conventional method. A tryptophan-nonrequiring, ampicillin-resistant and tetracycline-sensitive transformant is selected from the transformed E.coli and a plasmid pSD3171 is separated from the transformant by conventional separation and purification technique. The objective transformed microbial strain can be produced therefrom.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は形質転換によシ、L −) IJブトファン生
産能が高められた微生物及びこれを用いたし−トリプト
ファンの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a microorganism with enhanced ability to produce L-)IJ butophane through transformation, and a method for producing sti-tryptophan using the microorganism.

〔従来技術゛及び発明刈解決しようとする問題点〕L−
トリプトファンは必須アミノ酸の一種として重要な化合
物であり特に栄養学的に不足し易い物質であるためその
経済的な製造法の開発が強く望まれており、そのため従
来より種々の方法が提案されているが、就中発酵法によ
る方法が注目を集め、その際特にその基礎となるL −
) IJブトファン生産性微生物の改良は重要な課題と
なっている。
[Prior art and problems to be solved by invention] L-
Tryptophan is an important compound as a type of essential amino acid, and is a substance that is particularly susceptible to nutritional deficiencies, so there is a strong desire to develop an economical method for producing it, and for this reason various methods have been proposed. However, the fermentation method is attracting attention, especially when the L −
) Improvement of IJ butophane-producing microorganisms has become an important issue.

有効な改良法として、Trp遺伝子を宿主菌の染色体D
NAに挿入(インテグレーション)することによシ遺伝
子増幅する方法があるが、この方法では遺伝子増幅の効
率が低い。そこで発明者らは、広い範囲にわたる宿主菌
を用いることができ、宿主菌内で導入遺伝子が安定に存
在し得るというインテグレーション法の長所を生かしさ
らに遺伝子増幅の効率を上げるべく研究を重ねた結果、
本発明をなすに至った。
As an effective improvement method, the Trp gene is transferred to chromosome D of the host bacterium.
There is a method of amplifying genes by insertion (integration) into NA, but this method has low gene amplification efficiency. Therefore, the inventors conducted repeated research to further improve the efficiency of gene amplification by taking advantage of the advantages of the integration method, in that a wide range of host bacteria can be used and the introduced gene can stably exist within the host bacteria.
The present invention has been accomplished.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、L−トリプトファンの生合成に関する
遺伝情報を有するDNA断片を複数個連結させた部分を
有するDNA分子を、バチルス属に属する微生物から選
ばれる宿主菌の染色体DNAに挿入することによシ、L
−)リットファン高生産性微生物が提供される。
According to the present invention, a DNA molecule having a portion in which a plurality of DNA fragments having genetic information related to the biosynthesis of L-tryptophan are linked is inserted into the chromosomal DNA of a host bacterium selected from microorganisms belonging to the genus Bacillus. Yoshi, L
-) Litfan high productivity microorganisms are provided.

本発明によれば、更にこれらのL−1リプトフアン高生
産性微生物を培地に培養して培養物中にL−トリプトフ
ァンを生成せしめ、これを採取すること全特徴とするL
−トリプトファンが経済的に得られる製造法が提供され
る。
According to the present invention, the L-1-lyptophan-producing microorganisms are further cultured in a medium to produce L-tryptophan in the culture, and the L-tryptophan is collected.
- A process for producing tryptophan economically is provided.

以下に本発明の微生物とその取得方法及びこれ全周いた
L −トIJブトファンの製造法について更に詳細に説
明する。
The microorganism of the present invention, the method for obtaining the microorganism, and the method for producing L-IJ butophane using the microorganism will be explained in more detail below.

本発明におけるL −トIJブトファンの生合成に関す
る遺伝情報を有するDNA断片は、適当な微生物の染色
体DNAから適当な制限酵素によって切シ出されたもの
が用いられるが、原則としてその由来については制限は
ない。一般には、L −) IJブトファン生産能を有
する微生物を用いるが、L−トリプトファン生合成系の
一部酵素の欠損等の理由によ、9.L−トリプトファン
生産能を有しない微生物を用いることも何らさしつかえ
ない。例えば、土壌や他の天然物から分離されるL −
トリプトファン生産能を有する野性法は勿論のこと、そ
れらを紫外線照射や化学物質による処理をして得られる
突然変異株或いは遺伝子組換え技術を用いて得られる組
み換えDNA等いずれでもよい。尚、この場合、DNA
断片は、L −トリプトファンの生合成に関する遺伝情
報以外のDNA部分を含むこともあり得るが、その部分
が、L−トリプトファンの生合成に悪影響を及ぼさない
限り用いることができる。また、DNA断片は、L−ト
リプトファンの生合成に関する遺伝情報のすべてを有す
る必要はなく、その一部分のみを有しているものでもか
まわない。
In the present invention, the DNA fragment having genetic information related to the biosynthesis of L-toIJbutophane is excised from the chromosomal DNA of an appropriate microorganism with an appropriate restriction enzyme, but as a general rule, there are no restrictions regarding its origin. There isn't. Generally, microorganisms having the ability to produce L-)IJbutophane are used; however, due to defects in some enzymes in the L-tryptophan biosynthesis system, etc. There is nothing wrong with using microorganisms that do not have the ability to produce L-tryptophan. For example, L − isolated from soil or other natural products
Any of the wild methods capable of producing tryptophan, mutant strains obtained by irradiating them with ultraviolet rays or treatment with chemical substances, or recombinant DNA obtained using genetic recombination techniques may be used. In this case, DNA
The fragment may contain DNA parts other than genetic information related to L-tryptophan biosynthesis, but can be used as long as such parts do not adversely affect L-tryptophan biosynthesis. Further, the DNA fragment does not need to have all of the genetic information regarding the biosynthesis of L-tryptophan, and may have only a part of it.

また、DNA断片は宿主菌の染色体DNAと相同性が高
いほうが望ましいが、DNA分子の他の部分と宿主菌の
染色体DNAの相同性が高い場合は、特に相同性が高い
必要はない。
Furthermore, it is desirable that the DNA fragment has high homology with the chromosomal DNA of the host bacterium, but if the other parts of the DNA molecule have high homology with the chromosomal DNA of the host bacterium, the homology does not need to be particularly high.

このようなL−トリプトファンの生合成に関する遺伝情
報を有する染色体DNA断片中有する微生物としては、
例えば、バチルス・アミロリクイファシェンス、バチル
ス・アミロリティカス、バチルス・アルカロフィラス、
バチルス・コアギユランス、バチルス・ライケニホルミ
ス、バチルス・ナラトウ、バチルス・スフチルス、バチ
ルス・ステアロサーモフィラス等のバチルス属に属する
微生物や、それらの変異株など、およびそれらを親株と
して遺伝子組み換えによって育種した株等が掲げられる
Microorganisms that have genetic information related to the biosynthesis of L-tryptophan in their chromosomal DNA fragments include:
For example, Bacillus amyloliquefacens, Bacillus amylolyticus, Bacillus arcalophilus,
Microorganisms belonging to the genus Bacillus such as Bacillus coagulans, Bacillus licheniformis, Bacillus naratou, Bacillus sphutilus, and Bacillus stearothermophilus, their mutant strains, and strains bred by genetic recombination using these as parent strains, etc. is listed.

また、これらDNAよりDNA断片を切出すのに用いら
れる制限酵素としては特に制限はないが、目的のDNA
断片中に切断部位が少ないほうが望ましく、例えば、E
coRl 、 BamHi 、  5alI、5acl
There are no particular restrictions on the restriction enzymes used to cut out DNA fragments from these DNAs, but
It is desirable to have fewer cleavage sites in the fragment; for example, E
coRl, BamHi, 5alI, 5acl
.

pvull、XhoI 1XbaI、Mbol 、 M
luI等があげられる。
pbull, XhoI 1XbaI, Mbol, M
Examples include luI.

本発明において、宿主菌内で自己複製しないベクターと
しては所謂宿主−村りター系として成り立つものであれ
ばいずれでもよく、例えば、Co IEI、psclo
l、pBR325及びpBR328等の大腸菌由来のプ
ラスミドがあげられる。形質転換菌の取得を容易にする
ため、宿主菌としてTrp遺伝子の一部が変異してトリ
プトファン要求性になった株、例えばバチルス5D−5
3(特開昭59−170047)。
In the present invention, vectors that do not self-replicate within host bacteria may be of any type as long as they can form a so-called host-return system, such as CoIEI, psclo
Examples include plasmids derived from Escherichia coli, such as pBR325 and pBR328. In order to facilitate the acquisition of transformed bacteria, strains in which part of the Trp gene has mutated to become tryptophan auxotrophic, such as Bacillus 5D-5, are used as host bacteria.
3 (Japanese Unexamined Patent Publication No. 59-170047).

VOTO531(東京大学応用微生物研究所)等を用い
ることができる。あるいは、導入するDNA分子に選択
可能な遺伝子マーカーを組み込むことによっても形質転
換菌を容易に選択できる。ただし、これらはあくまで選
択を容易にする方法であり、本発明においては必ずしも
必須の要件ではない。
VOTO531 (Institute of Applied Microbiology, University of Tokyo), etc. can be used. Alternatively, transformed bacteria can be easily selected by incorporating a selectable genetic marker into the introduced DNA molecule. However, these are merely methods to facilitate selection, and are not necessarily essential requirements in the present invention.

本発明の方法において用いる選択可能な遺伝子マーカー
とは、宿主菌内で発現するものであればいずれもよく、
−例をあげると次のようなものがある。薬剤耐性遺伝子
、アミノ酸生合成遺伝子、核酸生合成遺伝子、ビタミン
生合成遺伝子、その他の生体内物質の生合成遺伝子など
、薬剤耐性遺伝子の例としては、クロラムフェニコール
耐性、テトラサイクリン耐性、エリスロマイシン耐性、
カナマイシン耐性、ネオマイシン耐性、ストレプトマイ
シン耐性、ペニシリン耐性、リンコマイシン耐性などが
ある。
The selectable genetic marker used in the method of the present invention may be any gene marker as long as it is expressed within the host bacterium.
- Examples include: Examples of drug resistance genes include drug resistance genes, amino acid biosynthesis genes, nucleic acid biosynthesis genes, vitamin biosynthesis genes, and biosynthesis genes for other biological substances.
These include kanamycin resistance, neomycin resistance, streptomycin resistance, penicillin resistance, and lincomycin resistance.

DNA分子を導入すべき宿主菌としては、その染色体D
NAが導入するDNA分子と相同性を有するものであれ
ば原則として如何なるものでも良いが、実際上は本発明
の本来の目的である醗酵法によるL −トIJブトファ
ンの製造に適した微生物であることが必要であり、かか
る観点から病原菌及び工業的使用の際管理が繁雑なもの
や使用不能なものは除外される。実用的には培養が容易
で、工業的に実際に使用の実績もあるバチルス属に属す
る微生物が用いられる。好ましくは、トリプトファンの
生成蓄積により微生物固有のトリプトファン生合成のフ
ィードバック抑制機構の解除された菌、例工ば、トリプ
トファンアナログ(5−フルオロトリプトファン、5−
メチルトリプトファン等)耐性菌であり、代表的なもの
を例示すれば、例えば、特開昭48−18828、同4
9−2’0391、同49−85289、同51−64
921、同53−1358、同53−39517、同5
6−92796、同58−94391、同58−107
190、同58−107193、同58−107194
、同58−107195、同58−138389、同5
8−220693、同59−120091、同59−1
30181等に記載の菌が掲げられる。
The host bacterium into which the DNA molecule should be introduced should have its chromosome D.
In principle, any microorganism may be used as long as the NA has homology to the DNA molecule to be introduced, but in practice it is a microorganism suitable for the production of L-toIJ butophane by the fermentation method, which is the original purpose of the present invention. From this perspective, pathogenic bacteria and those that are difficult to manage or cannot be used for industrial use are excluded. Practically, microorganisms belonging to the genus Bacillus are used, which are easy to culture and have a track record of actual industrial use. Preferably, microorganisms in which the feedback inhibition mechanism of tryptophan biosynthesis inherent in microorganisms is released by producing and accumulating tryptophan, such as tryptophan analogs (5-fluorotryptophan, 5-
Methyltryptophan, etc.) resistant bacteria.
9-2'0391, 49-85289, 51-64
921, 53-1358, 53-39517, 5
6-92796, 58-94391, 58-107
190, 58-107193, 58-107194
, 58-107195, 58-138389, 5
8-220693, 59-120091, 59-1
The bacteria described in 30181 and the like are listed.

上記宿主菌の形質転換は、公知の方法、例えば、コンピ
ーテントセル法[J、Bacteria181,741
(1961)]或いはプロトプラスト法1: Mo1e
c、gen * Genet 。
The transformation of the host bacteria can be carried out using known methods, such as the competent cell method [J, Bacteria 181, 741
(1961)] or protoplast method 1: Mo1e
c, gen*Genet.

168.111(1979)E等によって行なわれる。168.111 (1979) E et al.

以下に本発明のL −) IJブトファン高生産性微生
物について、代表的な例を示し、更に具体的に説明する
。但しこれらは単なる例示であシ、本発明はこれらのみ
に限られない。
Representative examples of the L-)IJ butophane highly productive microorganism of the present invention will be shown below and explained in more detail. However, these are merely examples, and the present invention is not limited to these.

プラスミドpsD2961 (特願昭59−20704
5号参照)を制限酵素Hindllrで部分切断し、T
4ファージリガーゼを用いて再結合させる。このDNA
を用い、塩化カルシウム処理した大腸菌C600を常法
により形質転換し、トリプトファン非要求性でアンピシ
リン耐性、テトラサイクリン感受性の形質転換株を選択
した。これらの形質転換株よりプラスミドを常法により
分離精製し、第1図に示すようなプラスミドpsD31
71 ’に得た。このプラスミドを用いて各種トリプト
ファン要求株(trpA、trpB 、 trpC、t
rpDまたはtrpE等の突然変異株)を形質転換した
ところ、全てにトリプトファン非要求性の形質転換菌が
高頻度に出現することからこの短小化されたDNAもト
リプトファンの生合成を調整する遺伝情報を有すると考
えられる。
Plasmid psD2961 (Patent application 1986-20704)
(see No. 5) was partially cut with the restriction enzyme Hindllr, and T
4. Religate using phage ligase. this DNA
Escherichia coli C600 treated with calcium chloride was transformed using a conventional method, and a transformant strain that did not require tryptophan, was resistant to ampicillin, and was sensitive to tetracycline was selected. Plasmids were isolated and purified from these transformed strains by conventional methods, and plasmid psD31 as shown in Figure 1 was obtained.
Got it at 71'. Using this plasmid, various tryptophan auxotrophs (trpA, trpB, trpC, t
When mutant strains such as rpD or trpE) were transformed, non-tryptophan auxotrophic transformed bacteria frequently appeared in all of them, indicating that this shortened DNA also contains genetic information that regulates tryptophan biosynthesis. It is considered to have.

一方、psD3051 (特願昭60−3158号参照
)をgcoRIで部分切断、5allで完全切断し、E
coRISaIIで切断したpsD3171と混合し、
T47フージリガーゼを用いて結合させる。このDNA
を用いてバチルスズプチルスBD224 (trpC2
thr−5recE4)をコンピテントセル法により形
質転換し、クロラムフェニコール耐性でかつTrp非要
求性を示す形質転換菌を取得する。該形質転換菌から組
換えプラスミドを常法により分離精製し、制限酵素地図
を作成したところ、第2図のような制限酵素地図を持つ
プラスミドが得られた。このプラスミド(psD365
1と称する)にはpsD3051の5al(切断点とE
coRI切断点のうちの一方の間に約4.6メガダレト
ンのDNAが挿入されていた。この挿入DNAは各種、
トリプトファン要求株(t′rpA 、 trpB 5
trpc 、 trpD 、またばtrpE等の突然変
異株)を受容菌としてpsD3651を供与体DNAと
した時、全てにTrp非要求性の形質転換菌が高頻度に
出現せしめる。ことがらTrp遺伝子を含むと考えられ
る。次に、psD3171をEcoRIで切断し、同じ
(EeoRIで切断したpsD3651と混合し、T4
ファージリガーゼを用いて結合させる。このDNA i
用い、塩化カルシウム処理した大腸菌C600株を常法
により形質転換し、クロラムフェニコール耐性、アンピ
シリン耐性でかつTrp非要求性を示す株を取得した。
On the other hand, psD3051 (see Japanese Patent Application No. 60-3158) was partially cleaved with gcoRI, completely cleaved with 5all, and E
mixed with psD3171 cut with coRISaII,
Ligation is performed using T47 fusiligase. this DNA
using Bacillus subtilis BD224 (trpC2
thr-5recE4) is transformed by the competent cell method to obtain transformed bacteria that are resistant to chloramphenicol and exhibit no requirement for Trp. When the recombinant plasmid was isolated and purified from the transformed bacteria by a conventional method and a restriction enzyme map was prepared, a plasmid having a restriction enzyme map as shown in FIG. 2 was obtained. This plasmid (psD365
1) is the 5al (cutting point and E) of psD3051.
Approximately 4.6 megadaletons of DNA had been inserted between one of the coRI breakpoints. This inserted DNA is of various types.
Tryptophan auxotrophs (t'rpA, trpB 5
When psD3651 is used as a donor DNA and psD3651 is used as a recipient strain (mutant strains of trpc, trpD, or trpE, etc.), transformants that do not require Trp appear frequently in all of them. It is thought that the Trp gene is included in some cases. Next, psD3171 was cut with EcoRI, mixed with psD3651 cut with the same (EeoRI), and T4
Ligate using phage ligase. This DNA i
Escherichia coli strain C600 treated with calcium chloride was transformed using the above-described method to obtain a strain that was resistant to chloramphenicol, ampicillin, and non-requiring for Trp.

該形質転換菌からi換えプラスミドを常法により分離精
製し、制限酵素地図を作成したところ、第3図のような
制限酵素地図を持つプラスミドpsDT391が得られ
た。
When the i-transformed plasmid was isolated and purified from the transformed bacteria by a conventional method and a restriction enzyme map was prepared, plasmid psDT391 having a restriction enzyme map as shown in FIG. 3 was obtained.

次にpsDT391を用いて、IAM1521株由来の
5〜フルオロトリプトフアン耐性株バチルスアミロリク
イファシェンス5D30 (特開昭59−130181
号参照)を形質転換し、クロラムフェニコール耐性の形
質転換株を選択する。これらのクロラムフェニコール耐
性の形質転換株をアントラニル酸を含む液体培地中で培
養し、L −トIJブトファン生産性の向上した菌株を
選択し、バチルス5D1012を得た。この菌は工業技
術院微生物工業技術研究所に微工研菌寄第8622号と
して寄託されている。
Next, using psDT391, a 5- to fluorotryptophan-resistant strain Bacillus amyloliquefacens 5D30 derived from the IAM1521 strain (Japanese Patent Application Laid-Open No. 130181-1982)
) and select chloramphenicol-resistant transformants. These chloramphenicol-resistant transformants were cultured in a liquid medium containing anthranilic acid, and a strain with improved L-toIJ butophane productivity was selected to obtain Bacillus 5D1012. This bacterium has been deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology, as Microtechnology Research Institute No. 8622.

この菌株の菌学的性質は原株バチルス・アミロリクイフ
ァシェンス5D30とクロラムフェニコール耐性である
こと及びL−トリプトファンの生産能力が高いことを除
いて実質的には同じである。
The mycological properties of this strain are substantially the same as the original strain Bacillus amyloliquifacens 5D30, except that it is chloramphenicol resistant and has a high L-tryptophan production capacity.

得られた形質転換菌バチルス5D1012のL−)+7
プトフアンシンセターゼ活性の測定結果を示すと次のと
うりである。
L−)+7 of the obtained transformed bacterium Bacillus 5D1012
The measurement results of putophane synthetase activity are as follows.

菌          L−トリプトファンシンセター
ゼ活性5D30              100S
D1012             210これらの
菌に関してアントラニル酸(80ppm )存在下にお
けるスビディゼン最小培地で培養(37℃、1.5時間
)した時のL−トリプトファン蓄積結果を示す。
Fungus L-tryptophan synthetase activity 5D30 100S
D1012 210 The results of L-tryptophan accumulation when these bacteria were cultured (37°C, 1.5 hours) in subvidizen minimal medium in the presence of anthranilic acid (80 ppm) are shown.

菌   株         L−トリプトファン蓄積
(μg/−) バチルス嗜 アミロリクイ ファシェンス 5D−3034 バチルス 5D1012          73本発明方法に従
えば、バチルス5D1012 ’にアントラニル酸又は
その塩を含む培地で培養することにaすL−トリプトフ
ァンを生成せしめることができる。栄養培地中のアント
ラニル酸又はその塩の濃度には特に限定はないが目的L
 −トIJブトファンの収量、培養条件及び経済的観点
から一般には0.1〜3000mg/l、好ましくは1
00〜100100O/ Lの濃度とする。
Bacterial strain L-tryptophan accumulation (μg/-) Bacillus amyloliquifacens 5D-3034 Bacillus 5D1012 73 According to the method of the present invention, Bacillus 5D1012' can be cultured in a medium containing anthranilic acid or its salt. L-tryptophan can be produced. There is no particular limitation on the concentration of anthranilic acid or its salt in the nutrient medium;
- Generally 0.1 to 3000 mg/l, preferably 1
The concentration should be between 00 and 100100 O/L.

本発明方法において使用することのできる培地としては
、前記微生物が培養によシ増殖し得るものであれば任意
のものでよく、例えば、炭素源としては、ブドウ糖、糖
蜜、蔗糖、澱粉、澱粉糖化液、セルロース分解物等の糖
類、酢酸、エチルアルコール、グリセリンなど、窒素源
としては、アンモニア、硫安、塩安、硝安、燐安なとの
アンモニウム塩や尿素、硝酸塩等が適宜使用される。無
機塩としては燐酸、カリウム、マグネシウム、マンガン
等の塩類、例えば燐酸アンモニウム、燐酸カリウム、燐
酸ナトリウム、硫酸マグネシウム、硫酸第一鉄、硫酸マ
ンガン、苛性カリ等の工業的薬品で良く、他に微量元素
としてカルシウム、亜鉛、硼素、銅、コバルト、モリブ
デン等の塩類を添加してもよく、また微量有機栄養素と
してビタミン、アミノ酸、核酸関連物質等は菌の成育上
特に必要ではないが、これらを添加したり、肉エキス、
酵母エキス、コーンステイープリカー、ヘフトン等の有
機物を添加してもよい。アントラニル酸はナトリウム塩
、カリウム塩、アンモニウム塩等の水溶液や遊離酸のエ
タノール又はメタノール溶液として添加すれば良い。
The medium that can be used in the method of the present invention may be any medium as long as the microorganisms can be cultured and grown. For example, the carbon source may be glucose, molasses, sucrose, starch, or starch saccharification. As the nitrogen source, ammonium salts such as ammonia, ammonium sulfate, ammonium chloride, ammonium nitrate, ammonium phosphorus, urea, nitrates, etc. are used as appropriate. Examples of inorganic salts include salts such as phosphoric acid, potassium, magnesium, and manganese, as well as industrial chemicals such as ammonium phosphate, potassium phosphate, sodium phosphate, magnesium sulfate, ferrous sulfate, manganese sulfate, and caustic potash, as well as other trace elements. Salts such as calcium, zinc, boron, copper, cobalt, and molybdenum may be added, and trace organic nutrients such as vitamins, amino acids, and nucleic acid-related substances are not particularly necessary for the growth of bacteria, but these may be added. , meat extract,
Organic substances such as yeast extract, cornstarch liquor, and hefton may also be added. Anthranilic acid may be added as an aqueous solution of sodium salt, potassium salt, ammonium salt, etc., or an ethanol or methanol solution of the free acid.

本発明方法における培養は好気的条件下に、例えば通気
攪拌や往復振盪方法によって培養することができる。あ
るいは固定化菌体法なども用いることができるのはいう
までもない。培養条件は、特に限定はないが、一般的に
言えば、温度30〜45℃、PI(6,0〜8.0及び
15〜60時間程度の条件で実施する。
Culture in the method of the present invention can be carried out under aerobic conditions, for example, by aerated stirring or reciprocating shaking. It goes without saying that an immobilized bacterial cell method can also be used. Culture conditions are not particularly limited, but generally speaking, the culture is carried out at a temperature of 30 to 45°C, a PI of 6.0 to 8.0, and a period of 15 to 60 hours.

培養液又は培養物からの目的のL −) IJブトファ
ンの採取方法は慣用方法に従って行うことができる。例
えば、培養液を遠心分離し、その上清からイオン交換樹
脂処理法、活性炭処理法などの操作を適宜組み合せてL
 −ト17プトフアンを単離することができる。
The target L-)IJ butophane can be collected from the culture medium or culture according to a conventional method. For example, the culture solution is centrifuged, and the supernatant is treated with an ion exchange resin, activated carbon, etc. in an appropriate combination.
-17ptophan can be isolated.

実施例 以下に本発明の詳細な説明するが、本発明の範囲をこれ
らの実施例に限定するものでないことはいうまでもない
EXAMPLES The present invention will be described in detail below, but it goes without saying that the scope of the present invention is not limited to these Examples.

例  1 グルコース5%、硫安0.2%、K2HPO41゜4%
、KI(2PO40,6%、クエン酸ナトリウム・2H
2o1g、MgSO4・7H2o0.02%、FeSO
4・77H2O1pp及びMnSO41Ppm’含む液
体借地(、H7,0)2Aにアントラニル酸800 p
pm f添加し、これに上で得たバチルス5D1012
を植菌し、35℃で5tのジャーファーメンタ−で通気
攪拌培養した。
Example 1 Glucose 5%, Ammonium sulfate 0.2%, K2HPO41°4%
, KI (2PO40.6%, sodium citrate, 2H
2o1g, MgSO4・7H2o0.02%, FeSO
800 p of anthranilic acid in 2A of liquid (H7,0) containing 1 ppp of 4.77 H2O and 1 Ppm' of MnSO4.
Bacillus 5D1012 obtained above was added with pm f.
was inoculated and cultured with aeration and agitation at 35°C in a 5 t jar fermentor.

培養中、アントラニル酸濃度が50 ppmまで減少し
た時点でアントラニル酸濃度が約1000 ppmにな
るように適宜追加添加し、また培養途中グルコースを1
00g追加し、更にアンモニア水の添加により、借地の
、Hを7.0±0.4に保ちながら15時間培養した。
During the culture, when the anthranilic acid concentration decreased to 50 ppm, additional addition was made as appropriate to bring the anthranilic acid concentration to about 1000 ppm, and during the culture, glucose was added at 1 liter.
00g was added, and the culture was continued for 15 hours while maintaining the H of the borrowed area at 7.0±0.4 by adding ammonia water.

L −ト!Jブトファンの蓄積は9.99/lで平行運
転したバチルスアミロリクイファシェンス5D30株の
2.11倍を示した。
L-to! The accumulation of J-butophane was 2.11 times that of Bacillus amyloliquefaciens 5D30 strain operated in parallel at 9.99/l.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はpsD3171 、第2図はpsD3651及
び第3図はpsDT391のそれぞれ制限酵素地図を示
す。
FIG. 1 shows the restriction enzyme maps of psD3171, FIG. 2 shows the restriction enzyme maps of psD3651, and FIG. 3 shows the restriction enzyme maps of psDT391.

Claims (1)

【特許請求の範囲】 1)L−トリプトファンの生合成に関する遺伝情報を有
するDNA断片を複数個連結させた部分を有するDNA
分子を用い、該DNA分子をバチルス属に属する微生物
から選ばれる宿主菌の染色体DNAに挿入してなるL−
トリプトファン生産性形質転換菌。 2)宿主菌がトリプトファンアナログ耐性を有すること
を特徴とする特許請求の範囲第1項に記載のL−トリプ
トファン生産性形質転換菌。 3)特許請求の範囲第1項に記載の形質転換菌を培地に
培養して培養物中にL−トリプトファンを生成せしめこ
れを採取することを特徴とするL−トリプトファンの製
造法。 4)培地がアントラニル酸またはその塩を含むことを特
徴とする特許請求の範囲第3項に記載のL−トリプトフ
ァンの製造法。
[Scope of Claims] 1) DNA having a portion in which multiple DNA fragments having genetic information related to L-tryptophan biosynthesis are linked together
molecule and inserting the DNA molecule into the chromosomal DNA of a host bacterium selected from microorganisms belonging to the genus Bacillus.
Tryptophan-producing transformed bacteria. 2) The L-tryptophan-producing transformed bacterium according to claim 1, wherein the host bacterium has tryptophan analog resistance. 3) A method for producing L-tryptophan, which comprises culturing the transformed bacterium according to claim 1 in a medium to produce L-tryptophan in the culture and collecting the L-tryptophan. 4) The method for producing L-tryptophan according to claim 3, wherein the medium contains anthranilic acid or a salt thereof.
JP2802886A 1986-02-13 1986-02-13 L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan Pending JPS62186786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2802886A JPS62186786A (en) 1986-02-13 1986-02-13 L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2802886A JPS62186786A (en) 1986-02-13 1986-02-13 L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan

Publications (1)

Publication Number Publication Date
JPS62186786A true JPS62186786A (en) 1987-08-15

Family

ID=12237289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2802886A Pending JPS62186786A (en) 1986-02-13 1986-02-13 L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan

Country Status (1)

Country Link
JP (1) JPS62186786A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010334A1 (en) * 2001-07-10 2003-02-06 Apogene Biotechnologie Gmbh & Co. Kg Method for identifying reading frame mutations

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010334A1 (en) * 2001-07-10 2003-02-06 Apogene Biotechnologie Gmbh & Co. Kg Method for identifying reading frame mutations
US7368235B2 (en) 2001-07-10 2008-05-06 Apogene Biotechnologie Gmbh & Co. Kg Method for identifying reading frame mutations

Similar Documents

Publication Publication Date Title
CN101679936B (en) Method for producing glucuronic acid by glucuronic acid fermentation
Boyd et al. The effect of carbohydrates on the tryptophanase activity of bacteria
IE810305L (en) Modified microorganisms
JPS62186786A (en) L-tryptophan-producing microbial strain produced by transformation and production of l-tryptophan
JP2722504B2 (en) Novel microorganism and method for producing d-biotin using the same
JPS5820188A (en) Novel microorganism and preparation of glutathione with the same
JP2579595B2 (en) Novel microorganism and method for producing 2,6-naphthalenedicarboxylic acid using the microorganism
JPS6262156B2 (en)
CA1097240A (en) Process for production of l-serine
JPS5894391A (en) Preparation of l-tryptophan by fermentation
JPH0638751A (en) Production of n-acylneuraminic acid aldolase
JPS62195280A (en) Production of microorganism capable of producing l-tryptophan by transformation and l-tryptophan
JPH01112980A (en) Production of transformant microorganism and 5-hydroxy-l-tryptophan
JPS6188873A (en) Preparation of transformed microorganism and l-tryptophan
JPS6152276A (en) L-tryptophan-producing microorganism and preparation of l-tryptophan using said microorganism
JPS6057833B2 (en) Method for producing L-tryptophan
JPH0314436B2 (en)
JPS61199794A (en) Production of l-truptophane through fermentation process
JPS62195294A (en) Production of l-tryptophan by fermentation method
JPH0789948B2 (en) 2 ▲ '▼ -Method for producing deoxycytidine
GB2052504A (en) Process for the preparation of adenosine-5'-triphosphate by fermentation
JPH07188A (en) New microorganism and production of d-malic acid using the microorganism
JPS58107194A (en) Preparation of l-tryptophan by fermentation
JPS6152277A (en) 5-hydroxyl-l-tryptophan-producing microorganism and preparation of 5-hydroxy-l-tryptophan using said microorganism
JPH04287690A (en) Production of indigo by enzymatic method