JPS62176842A - Laminated board and manufacture thereof - Google Patents

Laminated board and manufacture thereof

Info

Publication number
JPS62176842A
JPS62176842A JP61016765A JP1676586A JPS62176842A JP S62176842 A JPS62176842 A JP S62176842A JP 61016765 A JP61016765 A JP 61016765A JP 1676586 A JP1676586 A JP 1676586A JP S62176842 A JPS62176842 A JP S62176842A
Authority
JP
Japan
Prior art keywords
laminate
base material
thermosetting resin
fluororesin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61016765A
Other languages
Japanese (ja)
Other versions
JPH0694206B2 (en
Inventor
捷夫 菅原
昭雄 高橋
正博 小野
晃 永井
信宏 佐藤
和嶋 元世
奈良原 俊和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61016765A priority Critical patent/JPH0694206B2/en
Publication of JPS62176842A publication Critical patent/JPS62176842A/en
Publication of JPH0694206B2 publication Critical patent/JPH0694206B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プリント回路用基板に係り、特に低誘電率で
多層化に好適な熱膨張係数の小さい積層板及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a printed circuit board, and particularly to a laminate having a low dielectric constant and a low coefficient of thermal expansion suitable for multilayering, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

計算機の高速処理に伴い、信号伝播速度の向上を図る一
手段として、比誘電率の小さなプリント回路板を使用す
る方法がある。このためプリント回路板用として比誘電
率の低い積層用材料が要求されている。
As computers become faster at processing speed, one way to improve signal propagation speed is to use a printed circuit board with a low dielectric constant. For this reason, there is a demand for laminated materials with low dielectric constants for printed circuit boards.

従来、一般にプリント回路板用材料として、補強材であ
るガラスクロスに熱硬化性樹脂を組合せた積層板又はこ
れに銅箔を張着した金属箔張積層板が使用されている。
BACKGROUND ART Conventionally, as materials for printed circuit boards, a laminate in which a thermosetting resin is combined with a glass cloth as a reinforcing material, or a metal foil-clad laminate in which a copper foil is attached to the laminate has been used.

しかし、通常のガラスクロスの比誘電率は5〜6であり
、一方熱硬化性樹脂の比誘電率は五〇〜4.5であるか
ら、これらを組合せて積層板を製造した場合、全体とし
ての比誘電率は4.0〜aS@度である。また、比誘電
率の小さいガラスクロスとして石英ガラスが注目されて
いる。この比誘電率は五7であシ、従来の熱硬化性樹脂
と組合せて積層板を製造した場合、全体として比誘・1
率は五5ぐらいまで小さくするととが可能である。
However, the dielectric constant of normal glass cloth is 5 to 6, while that of thermosetting resin is 50 to 4.5, so when a laminate is manufactured by combining these, the overall The dielectric constant of is 4.0 to aS@degree. Furthermore, quartz glass is attracting attention as a glass cloth with a low dielectric constant. This relative permittivity is 57, and when a laminate is manufactured in combination with a conventional thermosetting resin, the relative permittivity is 1 as a whole.
It is possible to reduce the ratio to about 55.

一方、更に比誘電率の小さい積層板用材料として、比誘
電率の小さいふっ素系樹脂をガラスクロスと組合せたも
のが開発されている。この組合せの比誘電率は2.6と
従来の積層板に比べてかなシ小さくなっている。しかし
、ふっ素系樹脂は熱可塑性であるため、積層板の熱膨張
係数が20X10=/℃と従来の積層板の10〜15X
10″″@/℃より大きくなる。このため実装密度の高
い多層プリント回路板用として使用すると、導体の接続
信頼性が悪くなるという問題が生じる。
On the other hand, as a material for laminates having an even lower dielectric constant, a material in which a fluororesin having a lower dielectric constant is combined with glass cloth has been developed. The dielectric constant of this combination is 2.6, which is significantly smaller than that of conventional laminates. However, since fluororesin is thermoplastic, the thermal expansion coefficient of the laminate is 20X10=/℃, which is 10 to 15 times that of conventional laminates.
It becomes larger than 10″″@/℃. For this reason, when used for multilayer printed circuit boards with high packaging density, a problem arises in that the connection reliability of the conductors deteriorates.

また、他の材料とふっ素糸材料を併用して低熱膨張化を
図った積層材料にすると、ふっ素系樹脂は他の材料との
親和性が極めて悪いため、ふっ素系樹脂層と他の材料と
の界面ではく離を生じ易くなる。
In addition, if other materials and fluorocarbon fibers are used together to create a laminated material with low thermal expansion, fluorocarbon resin has extremely poor affinity with other materials. Peeling is likely to occur at the interface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このため、密着性あるいは接着性を上げるため特殊な表
面処理又は特殊な接着剤を必要とし、ふっ素系樹脂を併
用した積層板の製造工程拡複雑となシ製品も極めて高価
なものとなる。
For this reason, a special surface treatment or a special adhesive is required to improve adhesion or adhesion, and the manufacturing process of a laminate using fluororesin is complicated and the product is also extremely expensive.

本発明の目的は、ふっ素系樹脂の比誘電率が小さいとい
う利点を生かしながら、熱膨張係数が小さく、かつ曲げ
強度が高い実用的なプリント回路板用積層板及びその製
造方法を提供することにある。
An object of the present invention is to provide a practical laminate for printed circuit boards that has a small coefficient of thermal expansion and high bending strength while taking advantage of the low dielectric constant of fluororesin, and a method for manufacturing the same. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明の第1の発明は積層板に関
する発明であって、補強材に熱硬化性樹脂を含浸した基
材にふっ素系樹脂を積層した積層板において、該基材層
とふっ素系樹脂層との間が接着処理しないで熱融着され
ておシ、かつ高い曲げ強度をもつものであることを特徴
とする。
To summarize the present invention, a first invention of the present invention relates to a laminate, and in a laminate in which a fluororesin is laminated on a base material whose reinforcing material is impregnated with a thermosetting resin, the base material layer and the fluororesin layer are heat-sealed without any adhesive treatment, and have high bending strength.

また、本発明の第2の発明は積層板の製造方法に関する
発明であって、補強材に熱硬化性樹脂を含浸した基材に
ふっ素系樹脂を積層して積層板を製造する方法において
、基材中の熱硬化性樹脂が硬化する前にふっ素樹脂が溶
融する加熱条件で成形を行う工程を包含することを特徴
とする。
A second invention of the present invention relates to a method for manufacturing a laminate, which includes a method for manufacturing a laminate by laminating a fluororesin on a base material in which a reinforcing material is impregnated with a thermosetting resin. It is characterized by including the step of performing molding under heating conditions such that the fluororesin melts before the thermosetting resin in the material hardens.

ふっ素系樹脂は一般に他の材料との接着性が乏しいため
、単に加圧加熱成形しても、熱硬化性樹脂を含浸した基
材との接着性が悪く実用的な積層板とならない。
Fluorine-based resins generally have poor adhesion to other materials, so even if they are simply pressurized and heat-molded, the adhesion to a base material impregnated with a thermosetting resin is poor and a practical laminate cannot be obtained.

本発明者らは、前記構成の実用的な積層板を得るため、
その製造条件について種々検討した。その結果、基材中
の熱硬化性樹脂が未硬化の状態(プリプレグ状)におけ
る熱硬化性樹脂が硬化する前に、ふっ素系樹脂が熱溶融
するような加熱条件で成形すれば、基材とふっ素系樹脂
との接着力が大きくなシ、実用できる積層板が得られる
ことを見出した。そして、前記層構成をとることによっ
て、低誘電率化と低熱膨張化、更に積層板の高強度化の
両立が達成される。
In order to obtain a practical laminate with the above configuration, the present inventors
Various manufacturing conditions were investigated. As a result, if the thermosetting resin in the base material is in an uncured state (prepreg state) and is molded under heating conditions such that the fluororesin melts before the thermosetting resin hardens, the base material It has been found that a laminate with high adhesion to fluororesin and which can be used for practical purposes can be obtained. By adopting the above-mentioned layer structure, it is possible to achieve both a low dielectric constant, low thermal expansion, and high strength of the laminate.

本発明の基材としては、一般に積層材料に使用されてい
るものがほとんど使用できる。例えば、補強用材料とし
てはEliOl、A/、03等を成分とするEガラス、
0ガラス、Aガラス、Sガラス、Dガラス、YM−!S
1−ムガラス及び石英を使用したQガラス等の各種ガラ
スクロス及びシート、また、有機補強材としては芳香族
ポリアミド(アラミド)クロス及びシート等が使用でき
る。
As the base material of the present invention, most of those commonly used for laminated materials can be used. For example, E-glass containing EliOl, A/, 03, etc. as a reinforcing material,
0 glass, A glass, S glass, D glass, YM-! S
Various glass cloths and sheets such as Q glass using 1-mu glass and quartz, and aromatic polyamide (aramid) cloths and sheets as organic reinforcing materials can be used.

本発明の熱硬化性樹脂としては、ふっ素系樹脂が溶融す
る温度に耐えかつプリプレグ化できる樹脂であれば良く
特に限定されるものではない。例エバ、エポキシ、フェ
ノール、ポリエステル、ポリイミド、トリアジン、メラ
ミン等の一般的に積層用として用いられているものを使
用することができる。ふっ素系樹脂としては、融点分示
すものであれば良く、例えば、ポリ四ふり化エチレン、
四ふつ化エチレン−六ふつ化プロピレン共重合体、四ふ
つ化エチレン−エチレン共重合体、四ふつ化エチレンル
バーフルオロアルキルビニルエーテル共重合体、ポリ三
ふつ化塩化エチレン等が使用できる。
The thermosetting resin of the present invention is not particularly limited as long as it can withstand the temperature at which the fluororesin melts and can be made into a prepreg. For example, materials commonly used for lamination, such as Eva, epoxy, phenol, polyester, polyimide, triazine, and melamine, can be used. The fluororesin may be one that has a melting point, such as polytetrafluoroethylene,
Tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene rubber fluoroalkyl vinyl ether copolymer, polytrifluoroethylene chloride, and the like can be used.

また、本発明の積層板においては、上記ふっ素系樹脂を
介して両面に金属箔が張着されていてもよい。
Further, in the laminate of the present invention, metal foil may be adhered to both surfaces via the fluororesin.

以下、本発明の積層板の構造を図面に基づいて説明する
Hereinafter, the structure of the laminate of the present invention will be explained based on the drawings.

第1図及び第2図は、本発明のふっ素系樹脂と基材から
成る積層板の例の断面図である。各図において、符号1
は熱硬化性樹脂と補強材から成る基材、2はふっ素系樹
脂を意味する。
FIGS. 1 and 2 are cross-sectional views of examples of laminates made of the fluororesin and base material of the present invention. In each figure, the symbol 1
2 means a base material made of a thermosetting resin and a reinforcing material, and 2 means a fluororesin.

第3図及び第4図は、本発明の両面に金属箔を張着した
ふっ素系樹脂と基材から成る積層板の例の断面図である
。各図において、符号1及び2は前記と同義であシ、3
は金属箔を意味する。
FIGS. 3 and 4 are cross-sectional views of an example of a laminate made of a fluororesin and a base material with metal foil pasted on both sides according to the present invention. In each figure, numerals 1 and 2 have the same meanings as above, 3
means metal foil.

〔実施例〕〔Example〕

以下、本発明を実施例により更に具体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The invention is not limited to these examples.

実施例1 4.4′−ジシアナミド ジフェニルメタン80重量部
と、5.5’−ジメチル−4,4′−ジシアナミドジフ
ェニルメタン20重量部を、1o o重ffi部Oジメ
チルホルムアミドに溶解し、120℃で50分間反応さ
せて樹脂をBステージ化し、固形分重量50%のフェス
を作成した。このフェスを厚す0.111IIのガラス
クロスに含浸させ、150〜155℃で5分間加熱して
溶媒(ジメチルホルムアミド)を除去し、プリプレグシ
ートを得た。このシートの上下に厚さ25μ飢の四ふり
化エチレン−六ふつ化プロピレン共重合体膜(融点25
0〜280℃)を厚さ55μmの電解銅箔で挾んで熱板
をあらかじめ500℃に調整したプレスにて圧力say
/、tで60分間加熱加圧した。更に圧力を1o ok
g/crt?まで上げて、300℃から室温まで30分
間かけて冷却して銅箔張り積層板を作成した。この加熱
条件で、成形する積層板内の温度は前記の含ふっ素共重
合体膜が溶融する250℃以上の温度になるのに2〜3
分を要するが、この時間内ではプリプレグシート中の熱
硬化性樹脂はまだ完全な硬化はしていない。グリプレグ
中の熱硬化性樹脂が完全に硬化するのにはこの加熱条件
で約10分を要する。
Example 1 80 parts by weight of 4.4'-dicyanamide diphenylmethane and 20 parts by weight of 5.5'-dimethyl-4,4'-dicyanamide diphenylmethane were dissolved in 10 parts by weight of dimethylformamide and heated at 120°C. The resin was B-staged by reacting for 50 minutes, and a festival with a solid content of 50% was created. A glass cloth having a thickness of 0.111 II was impregnated with this face and heated at 150 to 155° C. for 5 minutes to remove the solvent (dimethylformamide) to obtain a prepreg sheet. On the top and bottom of this sheet are 25μ thick ethylene tetrafluoride-propylene hexafluoride copolymer films (melting point 25
0 to 280°C) between 55 μm thick electrolytic copper foils and press the hot plate with a press adjusted to 500°C in advance.
/, t for 60 minutes. Further increase the pressure to 1o ok
g/crt? The temperature was raised to 300° C. and cooled down to room temperature over 30 minutes to produce a copper foil-clad laminate. Under these heating conditions, the temperature inside the laminated plate to be formed is 2 to 3 degrees Celsius to reach a temperature of 250°C or higher, at which the fluorine-containing copolymer film melts.
Although it takes several minutes, the thermosetting resin in the prepreg sheet has not yet been completely cured within this time. It takes about 10 minutes under these heating conditions for the thermosetting resin in the Gripreg to completely harden.

比較例1゜ 実施例1で示した積層板の構成の試料を熱板をあらかじ
め200℃にセットしたプレスにて圧力50に9/cm
”で120分間加熱加圧した。次に、温度を200℃か
ら500℃まで50分間かけて上げ、500℃で・60
分間放置した。更にプレス圧を100kg/、”まで上
げて、son℃から室温まで50分間かけて冷却して銅
箔張シ積層板を作成した。この加熱条件では、プリプレ
グ中の熱硬化性樹脂は四ふつ化エチレン−六ふつ化プロ
ピレン共重合体膜が溶融する以的に完全硬化している。
Comparative Example 1゜A sample with the laminated plate structure shown in Example 1 was heated to a pressure of 50 9/cm using a press with a hot plate set at 200°C in advance.
Then, the temperature was increased from 200℃ to 500℃ over 50 minutes, and at 500℃
Leave it for a minute. Furthermore, the press pressure was increased to 100 kg/," and the copper foil-clad laminate was created by cooling from 10°C to room temperature over 50 minutes. Under these heating conditions, the thermosetting resin in the prepreg changed to tetrafluorocarbon. The ethylene-propylene hexafluoride copolymer film is completely cured as it melts.

比較例λ 実施例1で示したプリプレグシートのみを温度200℃
、プレス圧50に97備冨で120分間、加熱加圧成形
によって完全に硬化したシートを得た。このシートの上
下に厚さ25μ情の四ぶつ化エチレン−六ふつ化プロピ
レン共重合体膜を厚さ55μ常の電解鋼箔でそれぞれ挾
んで熱板をあらかじめ500℃に調整したプレスにて圧
力50kII/cMPで60分間加熱加圧した。更にプ
レス圧を100ゆ/錦雪まで上げて500℃から室温ま
で3o分間かけて冷却して銅箔張シ積層板を作成した。
Comparative Example λ Only the prepreg sheet shown in Example 1 was heated to 200°C.
A completely cured sheet was obtained by heat and pressure molding at a press pressure of 50 to 97 degrees for 120 minutes. Tetrabutylene-hexafluoride propylene copolymer membranes with a thickness of 25μ are sandwiched between electrolytic steel foils with a thickness of 55μ on the top and bottom of this sheet, and a pressure of 50kII is applied using a press with a hot plate adjusted to 500℃ in advance. /cMP for 60 minutes. Further, the press pressure was increased to 100 Yu/Nishikiyuki and the mixture was cooled from 500° C. to room temperature over 30 minutes to produce a copper foil-clad laminate.

比較例工 実施例1で示したプリプレグシートのみを温度200℃
、プレス圧50ゆ/備2で120分間加熱加圧成形によ
って完全に硬化したシートを得九。
Comparative Example Work Only the prepreg sheet shown in Example 1 was heated to 200°C.
A completely cured sheet was obtained by heat-pressing molding for 120 minutes at a press pressure of 50 Y/cm.

次に、ふっ素樹脂との密着性を高めるように表面を粗化
するためこのシートを酸素プラズマ処理した。酸素プラ
ズマ処理条件を以下に示す。
Next, this sheet was subjected to oxygen plasma treatment to roughen the surface so as to improve adhesion to the fluororesin. The oxygen plasma treatment conditions are shown below.

まず、反応容器を減圧にし、次に酸素ガスを導入し、容
器内の圧力を16@Hgに保つようにした。
First, the pressure in the reaction vessel was reduced, and then oxygen gas was introduced to maintain the pressure inside the vessel at 16@Hg.

次に、RF電極に1工56 MHgl、SOWの高周波
電力を印加して試料の各面を2分ずつ計4分間グッズマ
処理を行った。
Next, a high frequency power of 56 MHgl and SOW was applied to the RF electrode to perform Goodsma treatment on each side of the sample for 2 minutes each for a total of 4 minutes.

このプラズマ処理を行ったシートの上下を厚さ25μ惰
の四ふり化エチレン−六ふつ化プロピレン共重合体膜で
挾み、更にこの共重合体膜を、厚さ55μ気の電解鋼箔
でそれぞれ挾んで、比較例2で示した加熱加圧条件で銅
箔張り積層板を作成した。
The plasma-treated sheet was sandwiched between the top and bottom of the 25μ thick ethylene tetrafluoride-propylene hexafluoride copolymer membrane, and each of the copolymer membranes was sandwiched between 55μ thick electrolytic steel foil. Then, a copper foil-clad laminate was produced under the heating and pressing conditions shown in Comparative Example 2.

実施例2 実施例1で示したプリプレグシート10枚のそれぞれの
間と、プリプレグシートの上下に、厚さ25μ愼の四ふ
つ化エチレン−六ふり化プロピレン共重合体膜を取付け
、更にこの上下を厚さ55μ鴨の電解鋼箔で挾んで、実
施例1で示した加熱加圧条件で銅箔張シ積層板を作成し
た。
Example 2 Tetrafluoroethylene-hexafluoropropylene copolymer membranes with a thickness of 25 μm were attached between each of the 10 prepreg sheets shown in Example 1 and on the top and bottom of the prepreg sheets, and the top and bottom were further coated. A copper foil-clad laminate was produced under the heating and pressing conditions shown in Example 1 by sandwiching it between electrolytic steel foils having a thickness of 55 μm.

比較例4゜ 実施例1で示したプリプレグシートを10枚重ねこの上
下に厚さ55μ惰の電解鋼箔で挾み、熱板をあらかじめ
200℃にセットしたプレスに入れて圧力sokg7’
、、意で120分間加熱加圧成形した。
Comparative Example 4゜10 prepreg sheets shown in Example 1 were stacked and sandwiched between electrolytic steel foils with a thickness of 55μ on the top and bottom, and the hot plate was placed in a press set at 200℃ in advance at a pressure of 7'.
. . . It was heated and press-molded for 120 minutes.

このようにして作成した本発明の実施例及び比較例、更
には、既成のテフロン/ガラスクロス銅箔張シ積層板に
ついて、幾つかの特性の比較検討を行った。第1表にそ
の結果を示す。
Comparative studies were conducted on several properties of the Examples and Comparative Examples of the present invention produced in this way, as well as the existing Teflon/glass cloth copper foil-clad laminates. Table 1 shows the results.

畳・・・基材とふっ素系樹脂シートの間ではく離した。Tatami: Peeling occurred between the base material and the fluororesin sheet.

前記第1表によって明かなように、本発明によれば積層
板中の基材とふっ素系樹脂層の密着強度を極めて大きく
できる効果がある。
As is clear from Table 1, the present invention has the effect of extremely increasing the adhesion strength between the base material and the fluororesin layer in the laminate.

なお、ふっ素系樹脂層を厚くし体積分率を大きくすれば
、比誘電率は小さくなることは当然であり、その使用目
的に合った厚さを選んで成凰すれば良い。また、加熱加
圧の条件は、使用する基材中の熱硬化性樹脂の硬化特性
、ふっ素系樹脂の融点等によって種々異なシ、熱硬化性
樹脂が硬化する前にふっ素系樹脂が溶融するような条件
を選べば良い。
Incidentally, if the thickness of the fluororesin layer is increased and the volume fraction thereof is increased, the dielectric constant will naturally decrease, and the thickness may be selected to suit the purpose of use. In addition, the heating and pressurizing conditions vary depending on the curing characteristics of the thermosetting resin in the base material used, the melting point of the fluororesin, etc. You just have to choose the conditions that are right for you.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、従来のテフロン
/ガラスクロス系積層板に比べ、熱膨張係数が小さくか
つ曲げ強度の大きい積層板を提供することができるので
多層板の信頼性を高める効果がある。また、従来のふっ
素系樹脂を併用した低誘電率積層板の製造法よりも簡便
な方法でふっ素系樹脂とこれ以外の基材との接着性を大
幅に改良することができるので、ふっ素系樹脂を併用し
た低誘電率の積層板を経済的に生産することができる効
果もある。
As explained above, according to the present invention, it is possible to provide a laminate with a smaller coefficient of thermal expansion and greater bending strength than conventional Teflon/glass cloth laminates, thereby increasing the reliability of the multilayer board. effective. In addition, it is possible to significantly improve the adhesion between fluorine-based resins and other base materials using a simpler method than the conventional manufacturing method of low dielectric constant laminates that uses fluorine-based resins. There is also the effect that a laminate with a low dielectric constant can be economically produced using the combination of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明のふっ素系樹脂と基材から
成る積層板の例の断面図、第3図及び第4図は、本発明
の両面に金属箔を張着したふっ素系樹脂と基板から成る
積層板の例の断面図である。 1:熱硬化性樹脂と補強材から成る基材、2:ふっ素系
樹脂、S:金属箔
1 and 2 are cross-sectional views of an example of a laminate made of a fluororesin and a base material according to the present invention, and FIGS. FIG. 2 is a cross-sectional view of an example of a laminate made of resin and a substrate. 1: Base material made of thermosetting resin and reinforcing material, 2: Fluorine resin, S: Metal foil

Claims (1)

【特許請求の範囲】 1、補強材に熱硬化性樹脂を含浸した基材にふつ素系樹
脂を積層した積層板において、該基材層とふつ素系樹脂
層との間が接着処理しないで熱融着されており、かつ高
い曲げ強度をもつものであることを特徴とする積層板。 2、該積層板が、該ふつ素系樹脂を介して両面に金属箔
が張着されたものである特許請求の範囲第1項記載の積
層板。 3、補強材に熱硬化性樹脂を含浸した基材にふつ素系樹
脂を積層して積層板を製造する方法において、基材中の
熱硬化性樹脂が硬化する前にふつ素樹脂が溶融する加熱
条件で成形を行う工程を包含することを特徴とする積層
板の製造方法。
[Claims] 1. In a laminate in which a fluorocarbon resin is laminated on a base material whose reinforcing material is impregnated with a thermosetting resin, no adhesive treatment is applied between the base material layer and the fluorocarbon resin layer. A laminate plate characterized by being heat-sealed and having high bending strength. 2. The laminate according to claim 1, wherein the laminate has metal foil adhered to both sides via the fluorine-based resin. 3. In the method of manufacturing a laminate by laminating a fluorocarbon resin on a base material whose reinforcing material is impregnated with a thermosetting resin, the fluorocarbon resin melts before the thermosetting resin in the base material hardens. A method for manufacturing a laminate, comprising a step of forming under heating conditions.
JP61016765A 1986-01-30 1986-01-30 Laminated board and manufacturing method thereof Expired - Lifetime JPH0694206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61016765A JPH0694206B2 (en) 1986-01-30 1986-01-30 Laminated board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61016765A JPH0694206B2 (en) 1986-01-30 1986-01-30 Laminated board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62176842A true JPS62176842A (en) 1987-08-03
JPH0694206B2 JPH0694206B2 (en) 1994-11-24

Family

ID=11925315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61016765A Expired - Lifetime JPH0694206B2 (en) 1986-01-30 1986-01-30 Laminated board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0694206B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365308A (en) * 1991-07-12 1994-11-15 Fuji Photo Film Co., Ltd. Paper mask unit for photographic printer
US5923411A (en) * 1997-06-27 1999-07-13 Eastman Kodak Company Photographic printer with mechanism for placing contact print slide at paper print gate
JP2009531194A (en) * 2006-03-28 2009-09-03 シーアールシー フォー アドバンスト コンポジット ストラクチャーズ リミテッド Welding of functional members to polymer composite members
CN107509308A (en) * 2017-06-29 2017-12-22 安徽升鸿电子有限公司 The high frequency FPC of 6.5≤Dk≤10 is made using turning ion implanting plating mode
WO2020059606A1 (en) * 2018-09-18 2020-03-26 Agc株式会社 Laminate, printed board, and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831742A (en) * 1981-08-18 1983-02-24 日立電線株式会社 Copper lined laminated board
JPS59232846A (en) * 1983-06-15 1984-12-27 松下電工株式会社 Laminated board for electric wiring board and manufacture thereof
JPS62162539A (en) * 1986-01-13 1987-07-18 松下電工株式会社 Multilayer printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831742A (en) * 1981-08-18 1983-02-24 日立電線株式会社 Copper lined laminated board
JPS59232846A (en) * 1983-06-15 1984-12-27 松下電工株式会社 Laminated board for electric wiring board and manufacture thereof
JPS62162539A (en) * 1986-01-13 1987-07-18 松下電工株式会社 Multilayer printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365308A (en) * 1991-07-12 1994-11-15 Fuji Photo Film Co., Ltd. Paper mask unit for photographic printer
US5923411A (en) * 1997-06-27 1999-07-13 Eastman Kodak Company Photographic printer with mechanism for placing contact print slide at paper print gate
JP2009531194A (en) * 2006-03-28 2009-09-03 シーアールシー フォー アドバンスト コンポジット ストラクチャーズ リミテッド Welding of functional members to polymer composite members
CN107509308A (en) * 2017-06-29 2017-12-22 安徽升鸿电子有限公司 The high frequency FPC of 6.5≤Dk≤10 is made using turning ion implanting plating mode
WO2020059606A1 (en) * 2018-09-18 2020-03-26 Agc株式会社 Laminate, printed board, and method for manufacturing same

Also Published As

Publication number Publication date
JPH0694206B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
JPS62176842A (en) Laminated board and manufacture thereof
JPH0442416B2 (en)
TW202330259A (en) Copper clad plate and manufacturing method thereof
JP3356010B2 (en) Manufacturing method of metal foil-clad laminate
JPS59232846A (en) Laminated board for electric wiring board and manufacture thereof
JPS58128846A (en) Manufacture of polyimide group resin one-sided copper lined laminated board
JPH03278494A (en) Printed circuit board
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JPS60239228A (en) Manufacture of laminated plate for electric application
JPS6347125A (en) Manufacture of multilayer printed interconnection board
JPS63173638A (en) Laminated board
JPH07212044A (en) Manufacture of rigid/flexible composite wiring board
JPS61285230A (en) Laminated board of glass cloth base material and resin
JPH1067027A (en) Release film
JPH0459137B2 (en)
JPH05102628A (en) Printed circuit board
JPH03166930A (en) Electric laminated sheet
JPS59149084A (en) Method of producing laminated board
JPS63224936A (en) Laminated board
JPS6347134A (en) Manufacture of multilayer printed wiring board
JP4081874B2 (en) Double-sided metal laminate
JPH0657440B2 (en) Laminated board for multilayer printed wiring board
JPS6347127A (en) Manufacture of mulilayer printed interconnection board
JPH0771839B2 (en) Laminated board manufacturing method