WO2020059606A1 - Laminate, printed board, and method for manufacturing same - Google Patents

Laminate, printed board, and method for manufacturing same Download PDF

Info

Publication number
WO2020059606A1
WO2020059606A1 PCT/JP2019/035758 JP2019035758W WO2020059606A1 WO 2020059606 A1 WO2020059606 A1 WO 2020059606A1 JP 2019035758 W JP2019035758 W JP 2019035758W WO 2020059606 A1 WO2020059606 A1 WO 2020059606A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
laminate
metal foil
tfe
Prior art date
Application number
PCT/JP2019/035758
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
渉 笠井
達也 寺田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020207036348A priority Critical patent/KR20210058748A/en
Priority to CN201980060574.9A priority patent/CN112703107B/en
Priority to JP2020548406A priority patent/JP7400722B2/en
Publication of WO2020059606A1 publication Critical patent/WO2020059606A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means

Definitions

  • the present invention relates to a laminate having a metal foil, a printed board, and a method for manufacturing a printed board using the laminate.
  • a metal foil / insulating resin laminate having an insulating resin layer on the surface of a metal foil is used as a printed circuit board by processing the metal foil by etching or the like to form a transmission circuit.
  • Excellent transmission characteristics are required for printed circuit boards used for transmitting high-frequency signals, and fluoropolymers such as polytetrafluoroethylene, which have low relative permittivity and low dielectric loss tangent, are attracting attention as insulating resins used for insulating resin layers. ing.
  • multilayering of printed boards by joining printed boards via a prepreg or the like is being studied.
  • a laminated body (printed circuit board) having dimensional stability and heat stability is produced by heating and pressing an insulating resin layer containing a fluoropolymer having essentially no tackiness and a prepreg containing no fluoropolymer. It is not easy to do. Specifically, swelling occurs at the interface between the insulating resin layer and the fiber reinforced resin layer formed from the prepreg due to the heating in the solder reflow step (the step of placing a solder paste on the printed board and heating) in the mounting step of the printed board. Or the printed circuit board is warped by the heating, and the warpage causes peeling at the interface between the metal foil and the insulating resin layer.
  • the present invention relates to a laminate and a printed board in which swelling at the interface between a resin layer containing a tetrafluoroethylene-based polymer and a fiber-reinforced resin layer formed from a prepreg and peeling at the interface between a metal foil and a resin layer are suppressed by heating.
  • I will provide a.
  • INDUSTRIAL APPLICABILITY The present invention can produce a printed board in which swelling of the interface between the resin layer containing the tetrafluoroethylene-based polymer and the fiber-reinforced resin layer formed from the prepreg and peeling of the interface between the metal foil and the resin layer are suppressed by heating. Provide a way.
  • the present invention has the following aspects.
  • a metal foil, a first resin layer derived from a resin material containing a tetrafluoroethylene-based polymer, and a second resin layer derived from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass are arranged in this order.
  • a transmission circuit made of a metal material, a first resin layer derived from a tetrafluoroethylene-based polymer, and a second resin layer derived from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass are arranged in this order.
  • the laminate of the present invention swelling of the interface between the first resin layer and the second resin layer due to heating and separation of the interface between the metal foil and the first resin layer are suppressed.
  • swelling of the interface between the first resin layer and the second resin layer due to heating and separation of the interface between the metal foil and the first resin layer are suppressed.
  • ADVANTAGE OF THE INVENTION According to the manufacturing method of the printed board of this invention, the printed board which suppressed the expansion
  • the storage elastic modulus of a polymer is a value measured based on ISO 6721-4: 1994 (JIS K 7244-4: 1999).
  • Polymer melt viscosity is based on ASTM D1238, using a flow tester and a 2 ⁇ -8L die, applying a polymer sample (2 g) heated in advance at the measurement temperature for 5 minutes to a load of 0.7 MPa. Is a value measured while maintaining the measurement temperature.
  • Melting point of polymer is the temperature corresponding to the maximum value of the melting peak measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • Powder D50 is a volume-based cumulative 50% diameter determined by a laser diffraction / scattering method.
  • the particle size distribution is measured by a laser diffraction / scattering method, a cumulative curve is determined with the total volume of the particle population being 100%, and the particle diameter at the point where the cumulative volume becomes 50% on the cumulative curve.
  • "Powder D90" is a volume-based cumulative 90% diameter determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, a cumulative curve is determined with the total volume of the particle population being 100%, and the particle diameter at the point where the cumulative volume becomes 90% on the cumulative curve.
  • the “warp rate of the laminate” is a value measured by cutting a square test piece of 180 mm square from the laminate and measuring the test piece according to a measurement method specified in JIS C 6471: 1995 (IEC 249-1: 1982). is there.
  • “Relative permittivity (20 GHz) and dielectric loss tangent (20 GHz)” are determined by the SPDR (split post dielectric resonator) method under the environment of 23 ° C. ⁇ 2 ° C. and 50 ⁇ 5% RH in a frequency range of 20 GHz.
  • the first resin layer derived from a resin material containing a tetrafluoroethylene-based polymer refers to a layer or film of a resin material containing a TFE-based polymer in a lamination process.
  • the second resin layer derived from the prepreg means a resin layer formed by heating and pressing the prepreg in a lamination process.
  • the reason why the expansion of the interface between the first resin layer and the second resin layer and the separation of the interface between the metal foil and the first resin layer due to heating in the laminate of the present invention are not necessarily clear is not clear. It can be considered as follows. Since the first resin layer in the present invention contains a TFE-based polymer having excellent heat resistance, it plays a role as a heat insulating layer in a short-time and local heating in the solder reflow step. That is, when the thickness of the first resin layer is 1.0 ⁇ m or more, the heating of the second resin layer in the solder reflow step is suppressed, and the interface between the first resin layer and the second resin layer is suppressed. Swelling is suppressed.
  • the laminate having the first resin layer tends to have low dimensional stability against heating in the solder reflow step.
  • the dimensional stability of the laminate is reduced, warpage occurs at the time of heating, and the interface between the metal foil and the resin layer is easily peeled.
  • the thickness of the first resin layer is not more than 20 ⁇ m, thereby suppressing a decrease in dimensional stability of the laminate. Therefore, warpage of the laminate due to heating is suppressed, and peeling of the interface between the metal foil and the first resin layer is suppressed.
  • the laminate of the present invention has a metal foil, a first resin layer, and a second resin layer in this order.
  • the layer structure of the laminate of the present invention is, for example, metal foil / first resin layer / second resin layer, metal foil / first resin layer / second resin layer / first resin layer / metal Foil.
  • Metal foil / first resin layer / second resin layer indicates that the metal foil, the first resin layer, and the second resin layer are laminated in this order, and the other layer configurations are the same. It is.
  • FIG. 1 is a cross-sectional view showing an example of the laminate of the present invention.
  • the laminate 10 has a metal foil 12, a first resin layer 14 in contact with the metal foil 12, and a second resin layer 16 in contact with the first resin layer 14.
  • the thickness of the metal foil is preferably 2 to 30 ⁇ m, particularly preferably 3 to 25 ⁇ m.
  • the thickness of the first resin layer is preferably at least 2 ⁇ m, more preferably at least 5 ⁇ m.
  • the thickness of the first resin layer is 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably less than 10 ⁇ m.
  • swelling of the interface between the first resin layer and the second resin layer due to heating can be suppressed.
  • the thickness of the first resin layer is 2 ⁇ m or more, the transmission loss in the high frequency region is greatly improved without depending on the structure (thickness and the like) and type of the second resin layer.
  • the thickness of the first resin layer is equal to or less than the upper limit, warpage of the laminate due to heating is suppressed, and peeling of the interface between the metal foil and the first resin layer is suppressed.
  • the thickness of the second resin layer is preferably 30 to 2000 ⁇ m, more preferably 10 to 1000 ⁇ m, and particularly preferably 100 to 500 ⁇ m.
  • the ratio of the thickness of the metal foil to the thickness of the first resin layer is preferably 1 or more, and more preferably 2 to 10.
  • the ratio of the thickness of the second resin layer to the thickness of the first resin layer is preferably 1 or more, and more preferably 2 to 1000.
  • the ratio is equal to or more than the lower limit, warpage of the laminate due to heating is further suppressed, and peeling of the interface between the metal foil and the first resin layer is further suppressed.
  • swelling of the interface between the first resin layer and the second resin layer due to heating is further suppressed. Further, the transmission characteristics as a printed circuit board are further improved.
  • the laminate of the present invention preferably has a warpage of 5% or less, more preferably 3% or less, and particularly preferably 1% or less. In this case, peeling of the interface between the metal foil and the first resin layer due to heating is further suppressed. Further, it is excellent in handleability when processing the laminate into a printed board and transmission characteristics of the obtained printed board.
  • the relative permittivity (20 GHz) of the substrate portion (the first resin layer and the second resin layer) of the laminate is preferably 5.5 or less, particularly preferably 3.6 or less.
  • the dielectric loss tangent (20 GHz) of the substrate portion is preferably 0.02 or less, particularly preferably 0.003 or less. Within this range, both the electrical characteristics (low relative dielectric constant, low dielectric loss tangent, etc.) and bonding properties of the substrate portion are excellent, and the laminate can be suitably used for a printed circuit board or the like that requires excellent transmission characteristics.
  • Examples of the material of the metal foil in the laminate of the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
  • Examples of the metal foil include a rolled copper foil and an electrolytic copper foil.
  • an antirust layer such as an oxide film such as chromate
  • a heat-resistant layer and the like may be formed.
  • the surface of the metal foil may be treated with a silane coupling agent. In this case, the entire surface of the metal foil may be treated with the silane coupling agent, or a part of the surface of the metal foil may be treated with the silane coupling agent.
  • the ten-point average roughness of the surface of the metal foil is preferably 0.01 ⁇ m or more, more preferably 0.2 ⁇ m or more, and even more preferably 0.7 ⁇ m or more.
  • the ten-point average roughness is preferably 4 ⁇ m or less, more preferably 1.5 ⁇ m or less, and even more preferably 1.2 ⁇ m or less. In this case, the bondability with the first resin layer is improved, and a printed wiring board having excellent transmission characteristics is easily obtained.
  • the first resin layer in the present invention is a resin layer derived from a resin material containing a TFE-based polymer.
  • a layer having a TFE-based polymer or a film having a TFE-based polymer in a pre-laminate (such as a resin-attached metal foil) described below, which is used for manufacturing the laminate of the present invention, may be composed of only the TFE-based polymer.
  • a resin or an additive other than the TFE-based polymer preferably contains 80 to 100% by mass of the TFE-based polymer.
  • the first resin layer contains a cured product of the curable resin and the TFE-based polymer.
  • the first resin layer contains the changed additive.
  • the resin-attached metal foil described later used for manufacturing the laminate of the present invention when the resin is formed through a heat treatment, the resin before the heat treatment is a curable resin as a resin other than the TFE-based polymer.
  • the resin in the obtained resin-attached metal foil includes a cured product of a curable resin.
  • the TFE-based polymer in the present invention is a polymer having a unit based on tetrafluoroethylene (TFE) (hereinafter, also referred to as “TFE unit”).
  • TFE unit tetrafluoroethylene
  • the TFE-based polymer may be a homopolymer of TFE or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter, also referred to as “comonomer”).
  • the TFE-based polymer preferably has 90 to 100 mol% of TFE units based on all units constituting the polymer.
  • TFE polymer examples include polytetrafluoroethylene (PTFE), a copolymer of TFE and ethylene, a copolymer of TFE and propylene, a copolymer of TFE and perfluoro (alkyl vinyl ether) (PAVE), and a copolymer of TFE and hexafluoropropylene (HFP).
  • PTFE polytetrafluoroethylene
  • PAVE perfluoro
  • HFP hexafluoropropylene
  • a copolymer of TFE and fluoroalkylethylene (FAE) a copolymer of TFE and chlorotrifluoroethylene, and the like.
  • the TFE-based polymer a polymer having a temperature region exhibiting a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower is preferable.
  • the TFE-based polymer preferably has a storage modulus of 0.5 to 3.0 MPa.
  • the temperature range in which the TFE-based polymer exhibits such storage modulus is preferably from 180 to 260 ° C., particularly preferably from 200 to 260 ° C.
  • the first resin layer is appropriately softened in the temperature region in the solder reflow step, and the warpage of the laminate due to heating is more easily suppressed. Further, in the temperature range, the TFE-based polymer tends to effectively exhibit adhesiveness based on elasticity.
  • the TFE-based polymer preferably has a fluorine content of 70 to 76% by mass, particularly preferably 72 to 76% by mass.
  • the first resin layer easily plays a sufficient role as a heat insulating layer, and the first resin layer also has excellent chemical resistance (etching resistance). Further, the transmission characteristics as a printed circuit board are further improved. In addition, the separation of the interface between the metal foil and the first resin layer is more easily suppressed, and the TFE polymer is excellent in melt moldability.
  • the melting point of the TFE-based polymer is preferably from 260 to 320 ° C.
  • the first resin layer sufficiently serves as a heat insulating layer during heating in the solder reflow step.
  • the melting point is equal to or less than the upper limit, peeling of the interface between the metal foil and the first resin layer is more easily suppressed. Further, the TFE polymer is excellent in melt moldability.
  • the TFE polymer preferably has a melt viscosity at 380 ° C. of 1 ⁇ 10 2 to 1 ⁇ 10 6 Pa ⁇ s, and has a melt viscosity at 340 ° C. of 1 ⁇ 10 2 to 1 ⁇ 10 6 Pa ⁇ s. Those having a melt viscosity at 300 ° C. of 1 ⁇ 10 2 to 1 ⁇ 10 6 Pa ⁇ s are particularly preferable.
  • a powder dispersion described later is applied to the surface of the metal foil and baked, the powder is densely packed and a nonporous high-smooth first resin layer is easily formed.
  • the first resin layer sufficiently plays a role as a heat insulating layer when heated in the solder reflow step. Therefore, the swelling at the interface between the first resin layer and the second resin layer is more easily suppressed.
  • a preferred embodiment of the TFE-based polymer is PTFE having a low molecular weight.
  • Low molecular weight PTFE includes not only PTFE having a melt viscosity of 1 ⁇ 10 2 to 1 ⁇ 10 6 Pa ⁇ s at 380 ° C. as a whole polymer but also only a shell portion in a core-shell structure comprising a core portion and a shell portion.
  • PTFE (such as WO 2016/170918) satisfying the above range of melt viscosity may be used.
  • Low-molecular-weight PTFE is obtained by irradiating high-molecular-weight PTFE (having a melt viscosity of about 1 ⁇ 10 9 to 1 ⁇ 10 10 Pa ⁇ s) with radiation (WO 2018/026017, etc.). ), Or PTFE obtained by the action of a chain transfer agent in producing PTFE by polymerizing TFE (WO 2010/114033, etc.).
  • the low molecular weight PTFE may be a polymer obtained by polymerizing TFE alone or a copolymer obtained by copolymerizing TFE and a comonomer (WO 2009/18787). No.).
  • the copolymer a copolymer having 99.5 mol% or more of TFE units based on all units constituting the polymer is preferable, and a copolymer having 99.9 mol% or more is particularly preferable.
  • the comonomer include a fluoromonomer described below, and HFP, PAVE and FAE are preferable.
  • the standard specific gravity of the low molecular weight PTFE (hereinafter, also referred to as “SSG”) is preferably from 2.14 to 2.22, particularly preferably from 2.16 to 2.20. SSG can be measured according to ASTM D4895-04.
  • a preferred embodiment of the TFE-based polymer is a copolymer of TFE and a comonomer, and a fluoropolymer having more than 0.5 mol% of a unit based on a comonomer with respect to all units contained in the copolymer (hereinafter referred to as “polymer F”) Also described.).
  • the polymer F include a copolymer of TFE and ethylene (ETFE), a copolymer of TFE and HFP (FEP), a copolymer of TFE and PAVE (PFA), and the like.
  • EFE copolymer of TFE and ethylene
  • FEP copolymer of TFE and HFP
  • PFA copolymer of TFE and PAVE
  • the polymer F PFA and FEP are more preferable, and PFA is particularly preferable, from the viewpoint of electric characteristics (low dielectric constant, low dielectric loss tangent, etc.) and heat resistance.
  • the TFE-based polymer at least one selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group is excellent in bonding property between the first resin layer and the metal foil.
  • a TFE-based polymer having a kind of functional group (hereinafter also referred to as “functional group”) is preferable.
  • the functional group may be provided by a plasma treatment or the like.
  • the functional group may be contained in a unit in the TFE-based polymer, or may be contained in a terminal group of the main chain of the polymer.
  • Examples of the latter polymer include a polymer having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent and the like.
  • a polymer having a unit having a functional group and a TFE unit is preferable.
  • a polymer having another unit PAVE unit, HFP unit, and the like described later.
  • the functional group a carbonyl group-containing group is preferable from the viewpoint of the bonding property between the first resin layer and the metal foil.
  • Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue, and a fatty acid residue, and a carboxy group and an acid anhydride residue are preferable.
  • the unit having a functional group a unit based on a monomer having a functional group is preferable.
  • a cyclic monomer having an acid anhydride residue As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
  • a cyclic monomer itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also called hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride are preferable.
  • CH 2 CHCH (CF 2 ) 2 F, CH 2 CHCH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 CFCF (CF 2 ) 4 H and the like, and CH 2 CHCH (CF 2 ) 4 F and CH 2 CHCH (CF 2 ) 2 F are preferable.
  • the polymer F a polymer having a unit having a functional group, a TFE unit, and a PAVE unit or an HFP unit is preferable.
  • a polymer (X) described in WO2018 / 16644 is exemplified.
  • the proportion of TFE units in the polymer F is preferably from 90 to 99 mol% based on all units constituting the polymer F.
  • the ratio of the PAVE unit in the polymer F is preferably 0.5 to 9.97 mol% based on all units constituting the polymer F.
  • the ratio of the unit having a functional group in the polymer F is preferably 0.01 to 3 mol% based on all units constituting the polymer F.
  • the resin material containing a TFE-based polymer for forming the first resin layer contains an inorganic filler, a resin other than the TFE-based polymer, an additive, and the like, as necessary, within a range that does not impair the effects of the present invention. Is also good.
  • the resin material preferably contains a binder resin. If the resin material includes a binder resin, powder powder is suppressed in the production of the pre-laminated body described later, the uniformity and surface smoothness of the first resin layer are further improved, and the linear expansion property is leveled. Therefore, the heat resistance is easily improved.
  • the content thereof is preferably 25% by mass or less, more preferably 20% by mass or less, and more preferably 5% by mass or less based on the TFE-based polymer. Is particularly preferred.
  • the binder resin contained in the resin material is a polymer different from the TFE-based polymer, and may be thermoplastic or thermosetting.
  • the binder resin contained in the resin of the preliminary laminate may be the binder resin itself, or may be a reaction product of the binder resin (such as a cured product of a curable binder resin).
  • the binder resin is a curable binder resin
  • the first resin layer contains a cured product thereof. If the binder resin is thermoplastic, the adhesiveness of the first resin layer is more easily improved due to the fluidity of the binder resin, and the heat resistance is more likely to be improved.
  • the binder resin is preferably a polyamide imide, a polyimide or a (meth) acrylate polymer.
  • binder resin examples include “Advancel” series (manufactured by Sekisui Chemical Co., Ltd.), “Aron” series (manufactured by Toagosei Co., Ltd.), “ORICOX” series (manufactured by Kyoeisha Chemical Co., Ltd.), and “Foret” series (manufactured by Soken.) (Meth) acrylate polymers such as “Dick Fine” series (manufactured by DIC), polyamideimides such as “HPC” series (manufactured by Hitachi Chemical), “Neoprim” series (manufactured by Mitsubishi Gas Chemical), “Spixeria” series (manufactured by Somar), “Q-PILON” series (manufactured by PI Technology Research Institute), “PAID” series (manufactured by Arakawa Chemical Industries), “WINGO” series (manufactured by Wingo Technology), and “Tomid Series (made by T & K TOKA),
  • the first resin layer is preferably a layer formed by melting a TFE-based polymer in a resin material.
  • the resin layer in the later-described pre-laminate may also be a layer formed by melting a TFE-based polymer in the resin material.
  • the first resin layer since the first resin layer is a non-porous film, the first resin layer sufficiently serves as a heat insulating layer during heating in the solder reflow step. Therefore, swelling of the interface between the first resin layer and the second resin layer due to heating is further suppressed. Further, the first resin layer is also excellent in chemical resistance (etching resistance).
  • the second resin layer in the present invention is a layer formed from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass. If the matrix resin is curable, the second resin layer contains the cured product as the resin in the second resin layer, and if the matrix resin is non-curable, the resin itself is used as the resin of the second resin layer. Including. As the second resin layer, a layer composed of a cured product of a prepreg containing a curable matrix resin having a fluorine content of 40% by mass or less, and a layer composed of a cured prepreg containing a curable matrix resin having no fluorine atom Is mentioned.
  • the fluorine content of the matrix resin is preferably from 0 to 25% by mass, more preferably from 0 to 10% by mass.
  • the matrix resin may be composed of two or more resins.
  • the embodiment (I) consisting only of a matrix resin having no fluorine atom, the fluorine content in the total amount of the resin consisting of a matrix resin having no fluorine atom and a matrix resin having a fluorine atom Is 0 to 40% by mass
  • Embodiment (III) consisting only of a matrix resin having a fluorine atom having a fluorine content of 40% by mass or less.
  • a TFE-based polymer As the latter matrix resin in the embodiment (II) and the matrix resin in the embodiment (III), a TFE-based polymer, a thermoplastic polyimide having a fluorine atom, a curable polyimide such as a polyimide precursor having a fluorine atom, an epoxy having a fluorine atom Resins.
  • the prepreg examples include prepregs in which a reinforcing fiber sheet is impregnated with a matrix resin having a fluorine content of 0 to 40% by mass.
  • a reinforcing fiber sheet a reinforcing fiber bundle composed of a plurality of reinforcing fibers, a cloth woven from the reinforcing fiber bundle, a unidirectional reinforcing fiber bundle in which a plurality of reinforcing fibers are aligned in one direction
  • the unidirectional reinforcing fiber Examples include a unidirectional cloth composed of bundles, a combination thereof, and a stack of a plurality of reinforcing fiber bundles.
  • the reinforcing fiber a continuous long fiber having a length of 10 mm or more is preferable.
  • the reinforcing fibers do not need to be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.
  • Examples of the reinforcing fibers include inorganic fibers, metal fibers, and organic fibers.
  • Examples of the inorganic fiber include carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, silicon carbide fiber, and boron fiber.
  • Examples of the metal fiber include an aluminum fiber, a brass fiber, and a stainless steel fiber.
  • Examples of the organic fibers include aromatic polyamide fibers, polyaramid fibers, polyparaphenylenebenzoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers, and the like.
  • the reinforcing fibers may be surface-treated. One type of reinforcing fiber may be used alone, or two or more types may be used in combination. In printed circuit board applications, glass fibers are preferred as reinforcing fibers.
  • the matrix resin having no fluorine atom may be a thermoplastic resin or a thermosetting resin.
  • a thermosetting resin is preferable.
  • the thermosetting resin include the same thermosetting resins as those described later in the description of the powder dispersion, and thermosetting polyphenylene ether is preferable.
  • the thermosetting polyphenylene ether a polyphenylene ether having a vinyl group is preferable.
  • the thermoplastic resin include the same thermoplastic resins as those described in the description of the powder dispersion below.
  • the matrix resin having no fluorine atom may be composed of two or more kinds.
  • the matrix resin in the prepreg epoxy resin, polyphenylene oxide, polyphenylene ether and polybutadiene are preferable from the viewpoint of processability.
  • the matrix resin in the prepreg is a thermosetting resin
  • the prepreg preferably contains a curing agent, and in terms of the hardness and heat resistance of the cured product, a curable group (isocyanate group, Those containing a curing agent having three or more blocked isocyanate groups) are particularly preferred.
  • the prepreg contains a thermosetting resin and a curing agent
  • the resin in the second resin layer is a cured resin that is a reaction product of the thermosetting resin and the curing agent.
  • the content of the matrix resin in the prepreg in the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the content is preferably 90% by mass or less.
  • the laminate of the present invention has a metal foil, a first resin layer, and a second resin layer containing at least 60% by mass of a second resin derived from a matrix resin in this order.
  • the thickness is 5 to 15 ⁇ m
  • the relative permittivity of the substrate portion is 3.6 or less (preferably 3.4 or less) and the dielectric loss tangent is 0.003 or less (preferably 0.002 or less).
  • the laminate of the present invention in such an aspect has excellent heat resistance such as solder reflow resistance, excellent flexibility and bendability, and excellent electrical characteristics, it can be used in various forms of printed circuit boards (such as a multilayer printed circuit board described below). )).
  • Examples of the prepreg include the following product names.
  • the laminate of the present invention is manufactured using a metal foil, a prepreg, and a laminate material that can form a first resin layer.
  • a film formed of a resin material containing a TFE-based polymer as a laminate material capable of forming the first resin layer, and laminating this film, metal foil and prepreg in any order, the laminate of the present invention can be obtained.
  • the laminate of the present invention can be obtained.
  • a method of forming the resin layer of the preliminary laminate a method of applying a coating liquid containing a TFE-based polymer is preferable.
  • a method of manufacturing the laminate of the present invention using the former preliminary laminate hereinafter, also referred to as “metal foil with resin”.
  • the laminate of the present invention is preferably manufactured by laminating a resin-coated metal foil having a resin layer and a metal foil formed of a resin material containing a TFE-based polymer and a prepreg by a hot press method. Since the thickness of the first resin layer in the laminate of the present invention is 20 ⁇ m or less, the resin layer in the resin-coated metal foil has a thickness corresponding to the thickness, and is essentially heat-stretchable TFE. The resin can be bonded to the prepreg by the hot pressing method without deteriorating the dimensional stability while using the resin as the resin layer.
  • the resin layer in the resin-attached metal foil may be the same resin as the resin in the first resin layer of the laminate, or a resin (for example, thermosetting) that becomes the resin in the first resin layer through the manufacturing process of the laminate. Resin containing an uncured resin).
  • a method for producing the metal foil with resin a method of applying a coating liquid containing a TFE-based polymer to the surface of the metal foil is preferable. Specifically, a powder of a resin material containing a TFE-based polymer, a liquid dispersion containing a liquid medium and a dispersant is applied to the surface of the metal foil, and the metal foil is held in a temperature range of 100 to 300 ° C. Then, a method of forming a resin layer containing the TFE-based polymer on the surface of the metal foil by firing the TFE-based polymer in a temperature range higher than the above-mentioned temperature range is exemplified.
  • the powder of the resin material containing the TFE-based polymer may contain components other than the TFE-based polymer as long as the effects of the present invention are not impaired. It is preferable to use it as a main component.
  • the content of the TFE-based polymer in the F powder is preferably 80% by mass or more, and particularly preferably 100% by mass.
  • the D50 of the F powder is preferably from 0.05 to 6.0 ⁇ m, more preferably from 0.1 to 3.0 ⁇ m, and particularly preferably from 0.2 to 3.0 ⁇ m.
  • the D90 of the F powder is preferably from 0.3 to 8 ⁇ m, particularly preferably from 0.8 to 5 ⁇ m. Within this range, the fluidity and dispersibility of the F powder are good, and the electrical characteristics (such as a low dielectric constant) and heat resistance of the first resin layer are most easily exhibited.
  • a method for producing the F powder the method described in WO 2016/017801 can be employed.
  • the F powder a commercially available product of a desired powder may be used.
  • the liquid medium a compound having a lower boiling point than components other than the liquid medium contained in the powder dispersion and not reacting with the F powder is preferable.
  • a compound which does not volatilize instantaneously but volatilizes during holding in a temperature range of 100 to 300 ° C. is preferable, a compound having a boiling point of 80 to 275 ° C. is preferable, and a compound having a boiling point of 125 to 250 ° C. is particularly preferable. .
  • the boiling point is within this range, volatilization of the liquid medium and partial decomposition and flow of the dispersant are effective when the powder dispersion applied to the surface of the metal foil is kept in a temperature range of 100 to 300 ° C. And the dispersant tends to segregate on the surface.
  • organic compounds are preferable, and cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-butanol Methoxy-2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), ⁇ -butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) are more preferable, and N-methylpyrrolidone, ⁇ -butyrolactone, cyclohexanone and cyclopentanone are particularly preferable.
  • the dispersant is particularly preferably a compound having a hydrophobic part and a hydrophilic part (surfactant), from the viewpoint of imparting bonding properties to the surface properties of the resin layer.
  • surfactant polyols, polyoxyalkylene glycols and polycaprolactams are preferred, and polymeric polyols are more preferred.
  • polymeric polyol polyvinyl, polybutyral and fluoropolyol are particularly preferred, and fluoropolyol is most preferred.
  • the fluoropolyol is not a TFE-based polymer but a polymer having a hydroxyl group and a fluorine atom. Further, as the fluoropolyol, a part of hydroxyl groups may be chemically modified and modified.
  • fluoropolyol examples include a (meth) acrylate having a polyfluoroalkyl group or a polyfluoroalkenyl group (hereinafter, also referred to as “(meth) acrylate F”) and a (meth) acrylate having a polyoxyalkylene monool group (hereinafter, referred to as “methacrylate”).
  • a copolymer hereinafter, also referred to as “dispersion polymer F” with “(meth) acrylate AO” is particularly preferable.
  • the ratio of the unit based on (meth) acrylate F to all the units constituting the dispersion polymer F is preferably from 20 to 60 mol%, particularly preferably from 20 to 40 mol%.
  • the ratio of the unit based on (meth) acrylate AO to all the units constituting the dispersion polymer F is preferably from 40 to 80 mol%, particularly preferably from 60 to 80 mol%.
  • the dispersion polymer F may be composed of only a unit based on (meth) acrylate F and a unit based on (meth) acrylate AO, or may have other units.
  • the powder dispersion may contain a resin other than the TFE-based polymer and the dispersant (hereinafter, also referred to as “other resin”) as long as the effects of the present invention are not impaired.
  • Other resins may or may not be dissolved in the powder dispersion.
  • the other resin may be a non-curable resin or a curable resin.
  • the non-curable resin include a heat-meltable resin and a non-meltable resin.
  • the heat-fusible resin include thermoplastic polyimide.
  • the non-melting resin include a cured product of a curable resin.
  • the powder dispersion preferably contains the other resin as a binder resin.
  • the binder resins listed as specific examples of the binder resin in the resin material forming the first resin layer are preferable.
  • the curable resin examples include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group.
  • the reactive group examples include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
  • the thermosetting resin examples include epoxy resin, thermosetting polyimide, polyamic acid as a polyimide precursor, curable acrylic resin, phenol resin, curable polyester, curable polyolefin, curable polyphenylene ether, curable polybutadiene, and polyfunctional.
  • thermosetting resin examples include a cyanate ester resin, a polyfunctional maleimide-cyanate ester resin, a polyfunctional maleimide resin, a vinyl ester resin, a urea resin, a diallyl phthalate resin, a melamine resin, a guanamine resin, and a melamine-urea cocondensation resin.
  • thermosetting polyimide a polyimide precursor, an epoxy resin, a curable acrylic resin, a bismaleimide resin or a curable polyphenylene ether are preferable from the viewpoint of being useful for the use of a printed circuit board, and an epoxy resin and a curable resin.
  • Polyphenylene ether is particularly preferred.
  • the epoxy resin examples include naphthalene type epoxy resin, cresol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolak type epoxy resin, phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, dicyclopentadiene type epoxy resin, trishydroxyphenylmethane type epoxy compound, phenol and phenolic hydroxy group Epoxidized condensates with aromatic aldehydes, diglycidyl ether of bisphenol, diglycidyl ether of naphthalene diol, Glycidyl ethers of Lumpur, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
  • the bismaleimide resin a resin composition (BT resin) in which a bisphenol A-type cyanate ester resin and a bismaleimide compound are used in combination, as described in JP-A-7-70315, described in WO2013 / 008667 And its background art.
  • the polyamic acid usually has a reactive group that can react with a functional group of the TFE-based polymer.
  • Examples of the diamine and polycarboxylic acid dianhydride forming a polyamic acid include, for example, [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like.
  • aromatic diamines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and pyromellitic dianhydride, 3,3 ', 4,4 Polyamic acids comprising a combination with an aromatic polycarboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride are preferred.
  • the heat-fusible resin examples include a thermoplastic resin such as a thermoplastic polyimide, and a heat-meltable cured product of a curable resin.
  • a thermoplastic resin such as a thermoplastic polyimide
  • a heat-meltable cured product of a curable resin examples include a thermoplastic resin such as a thermoplastic polyimide, and a heat-meltable cured product of a curable resin.
  • the thermoplastic resin polyester, polyolefin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyallyl sulfone, aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, Examples thereof include liquid crystalline polyester and polyphenylene ether, and are preferably thermoplastic polyimide, liquid crystalline polyester, or polyphenylene ether.
  • the powder dispersion may contain materials other than the TFE-based polymer, the dispersant, and other resins (hereinafter, also referred to as “other materials”) as long as the effects of the present invention are not impaired.
  • Other materials include a thixotropic agent, an antifoaming agent, an inorganic filler, a reactive alkoxysilane, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, Examples include a coloring agent, a conductive agent, a release agent, a surface treatment agent, a viscosity modifier, and a flame retardant.
  • the proportion of the F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 45% by mass. Within this range, the relative permittivity and the dielectric loss tangent of the first resin layer can be easily controlled to be low. In addition, the powder dispersion has high uniform dispersibility, and the first resin layer has excellent mechanical strength.
  • the proportion of the dispersant in the powder dispersion is preferably from 0.1 to 30% by mass, particularly preferably from 5 to 10% by mass. Within this range, the uniform dispersion of the F powder is high, and the electrical properties of the first resin layer and the bondability are easily balanced.
  • the proportion of the liquid medium in the powder dispersion is preferably from 15 to 65% by mass, particularly preferably from 25 to 50% by mass. Within this range, the coatability of the powder dispersion is excellent, and poor appearance of the first resin layer is unlikely to occur.
  • any method may be used as long as a stable wet film made of the powder dispersion is formed on the surface of the metal foil after application, such as a spray method, a roll coating method.
  • Methods a spin coating method, a gravure coating method, a microgravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a die coating method, a fountain Meyer bar method, a slot die coating method and the like.
  • the state of the wet film may be adjusted by heating the metal foil at a temperature lower than the temperature range.
  • the adjustment is performed to such an extent that the liquid medium does not completely volatilize, and is usually performed to the extent that 50% by mass or less of the liquid medium is volatilized.
  • After applying the powder dispersion to the surface of the metal foil it is preferable to hold the metal foil in a temperature range of 100 to 300 ° C. (hereinafter also referred to as “holding temperature”).
  • the holding temperature is the temperature of the atmosphere.
  • the holding may be performed in one stage, or may be performed in two or more stages at different temperatures. Examples of the holding method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays.
  • the atmosphere in the holding may be under normal pressure or under reduced pressure.
  • the atmosphere for the holding may be any of an oxidizing gas atmosphere, a reducing gas atmosphere, and an inert gas atmosphere.
  • the inert gas include helium gas, neon gas, argon gas, nitrogen gas and the like, and nitrogen gas is preferable.
  • the reducing gas include hydrogen gas.
  • the oxidizing gas includes oxygen gas.
  • the atmosphere for the holding is preferably an atmosphere containing an oxygen gas from the viewpoint that the decomposition of the dispersant is promoted and the bonding property of the resin layer is further improved.
  • the oxygen gas concentration (based on volume) in an atmosphere containing oxygen gas is preferably 0.5 ⁇ 10 3 to 1 ⁇ 10 4 ppm. Within this range, it is easy to balance the promotion of decomposition of the dispersant with the suppression of oxidation of the metal foil.
  • the holding temperature is preferably in a temperature range of 100 to 200 ° C or in a temperature range of 200 to 300 ° C, more preferably in a temperature range of 160 to 200 ° C or in a temperature range of 220 to 260 ° C. Is particularly preferred. Within this range, partial decomposition and flow of the dispersant effectively proceed, and the surface of the dispersant is more easily segregated.
  • the holding time at the holding temperature is particularly preferably 0.5 to 5 minutes.
  • the TFE-based polymer is further baked in a temperature range higher than the holding temperature (hereinafter, also referred to as “baking temperature”) to form a resin layer on the surface of the metal foil.
  • the firing temperature is the temperature of the atmosphere. In the firing, the F powder is densely packed, and the fusion of the TFE-based polymer proceeds in a state where the dispersant is effectively segregated on the surface, so that a resin layer having excellent smoothness and bonding properties is formed.
  • a resin layer composed of a mixture of a TFE-based polymer and a soluble resin is formed if the powder dispersion contains a thermofusible resin, and if the powder dispersion contains a thermosetting resin, TFE is used.
  • a resin layer composed of the base polymer and a cured product of the thermosetting resin is formed.
  • the firing method examples include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays.
  • a method using an oven In order to increase the smoothness of the surface of the resin layer, pressure may be applied with a heating plate, a heating roll, or the like.
  • a firing method a method of irradiating far-infrared rays is preferable because firing can be performed in a short time and a far-infrared ray furnace is relatively compact.
  • infrared heating and hot air heating may be combined.
  • the effective wavelength band of the far infrared ray is preferably 2 to 20 ⁇ m from the viewpoint of promoting uniform fusion of the TFE-based polymer.
  • the atmosphere in the firing may be under normal pressure or under reduced pressure.
  • the atmosphere in the firing may be any of an oxidizing gas atmosphere such as an oxygen gas, a reducing gas atmosphere such as a hydrogen gas, and an inert gas atmosphere such as a helium gas, a neon gas, an argon gas, and a nitrogen gas.
  • the atmosphere is preferably a reducing gas atmosphere or an inert gas atmosphere.
  • the atmosphere in the firing is preferably an atmosphere composed of an inert gas and having a low oxygen gas concentration, particularly preferably an atmosphere composed of a nitrogen gas and having an oxygen gas concentration (by volume) of less than 500 ppm.
  • the oxygen gas concentration (based on volume) is usually 1 ppm or more. Within this range, further oxidative decomposition of the dispersant is suppressed, and the bonding property of the resin layer is easily improved.
  • the firing temperature is preferably higher than 300 ° C., and particularly preferably 330 to 380 ° C. In this case, the TFE-based polymer can more easily form a dense resin layer.
  • the time for maintaining the firing temperature is preferably 30 seconds to 5 minutes.
  • the surface of the resin layer may be surface-treated in order to control the coefficient of linear expansion of the resin layer or to further improve the bonding property of the resin layer.
  • the surface treatment include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and fine surface roughening treatment.
  • the temperature, pressure, and time in the annealing treatment are preferably 80 to 190 ° C., 0.001 to 0.030 MPa, and 10 to 300 minutes in this order.
  • Examples of the plasma irradiation apparatus in the plasma processing include a high-frequency induction method, a capacitive coupling electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like.
  • Examples of a gas used for the plasma treatment include an oxygen gas, a nitrogen gas, a rare gas (eg, argon), a hydrogen gas, and an ammonia gas, and a rare gas and a nitrogen gas are preferable.
  • Specific examples of the gas used for the plasma treatment include an argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas, and argon gas.
  • the atmosphere in the plasma treatment is preferably an atmosphere having a volume fraction of a rare gas or a nitrogen gas of 70% by volume or more, and particularly preferably an atmosphere having a volume fraction of 100% by volume.
  • Ra on the surface of the resin layer is adjusted to 2.5 ⁇ m or less to easily form fine irregularities on the surface of the resin layer of the metal foil with resin.
  • RRa of the surface of the resin layer in the metal foil with resin is preferably 2 nm to 2.5 ⁇ m, particularly preferably 5 nm to 1 ⁇ m.
  • Rz on the surface of the resin layer is preferably from 15 nm to 2.5 ⁇ m, particularly preferably from 50 nm to 2 ⁇ m. Within this range, it is easy to balance the bondability between the resin-attached metal foil and the prepreg and the ease of processing the surface of the resin layer.
  • the pressing temperature is preferably equal to or lower than the melting point of the TFE polymer, and particularly preferably 160 to 220 ° C. Within this range, the first resin layer and the second resin layer can be firmly joined while suppressing thermal degradation of the resin.
  • the hot pressing it is particularly preferable to perform the hot pressing at a degree of vacuum of 20 kPa or less. Within this range, it is possible to suppress the incorporation of bubbles into the respective interfaces of the metal foil, the first resin layer, and the second resin layer in the laminate, and deterioration due to oxidation.
  • the pressure in the hot press is preferably from 0.2 to 10 MPa. In this range, the first resin layer and the second resin layer can be firmly joined while suppressing breakage of the prepreg.
  • the laminate of the present invention uses a TFE-based polymer having excellent physical properties such as electrical properties and chemical resistance (etching resistance) as the material of the first resin layer
  • the laminate of the present invention is a flexible copper-clad laminate. Or as a rigid copper-clad laminate for the production of printed circuit boards.
  • a method of etching the metal foil of the laminate of the present invention to form a conductor circuit (transmission circuit) having a predetermined pattern or a method of electroplating the metal foil of the laminate of the present invention (semi-additive method (SAP method)) ), A modified semi-additive method (MSAP method), etc.) to manufacture a printed circuit board from the laminate of the present invention by a method of processing into a transmission circuit.
  • a printed circuit board manufactured from the laminate of the present invention includes a transmission circuit made of a metal material (that is, a layer formed by removing a part of the metal foil of the laminate of the present invention), a first resin layer, and a second resin layer. It has a resin layer in this order.
  • the layer structure of the printed circuit board according to the present invention includes transmission circuit / first resin layer / second resin layer, transmission circuit / first resin layer / second resin layer / first resin layer / transmission circuit. No.
  • an interlayer insulating film may be formed over the transmission circuit, and the transmission circuit may be further formed over the interlayer insulating film.
  • the interlayer insulating film can also be formed by, for example, the powder dispersion of the present invention.
  • a solder resist may be laminated on a transmission circuit.
  • the solder resist can be formed by the powder dispersion of the present invention.
  • a coverlay film may be laminated on a transmission circuit.
  • the coverlay film can also be formed by the powder dispersion of the present invention.
  • the printed circuit board there is a multilayer printed circuit board in which the laminated structure of the present invention is formed into multiple layers.
  • the outermost layer of the multilayer printed circuit board is the first resin layer, and the transmission circuit made of a metal material (that is, a part of the metal foil of the laminate of the present invention is removed).
  • Layer), a first resin layer, and a second resin layer are laminated in this order in one or more embodiments. Further, a transmission circuit may be provided between the first resin layer and the second resin layer.
  • the multilayer printed circuit board of the above aspect has the first resin layer as the outermost layer and is excellent in heat resistance. Specifically, even at 288 ° C., the first resin layer and the second resin layer Swelling and interface peeling between the transmission circuit and the first resin layer hardly occur. In particular, when the metal foil has a contact surface between the first resin layer and the second resin layer which is exposed after being removed, the tendency is likely to be remarkable. It is considered that the surface roughness of the first resin layer generated by transferring the surface roughness of the metal foil to the surface of the first resin layer exerts an anchor effect in contact with the second resin layer. As a result, it is considered that the respective interfaces were firmly joined without performing the hydrophilic treatment such as the plasma treatment, and the swelling and separation of the interface, particularly the swelling and separation of the outermost layer were suppressed even during heating.
  • the outermost layer of the multilayer printed circuit board is a second resin layer, and the transmission circuit, the first resin layer, and the second resin layer are stacked in this order.
  • a transmission circuit may be provided between the first resin layer and the second resin layer.
  • the multilayer printed circuit board of the above aspect has excellent heat resistance even if it has the second resin layer as the outermost layer. Specifically, even at 300 ° C., the first resin layer and the second resin layer Interfacial swelling of the layer and interface peeling between the transmission circuit and the first resin layer hardly occur. In particular, when a transmission circuit is formed, that is, when there is a contact surface between the first resin layer and the second resin layer which are exposed by removing a part of the metal foil, such a tendency is likely to be remarkable. . It is considered that the surface roughness of the first resin layer generated by transferring the surface roughness of the metal foil to the surface of the first resin layer exerts an anchor effect in contact with the second resin layer.
  • the multilayer printed circuit board in these aspects is useful as a printed board having excellent solder reflow resistance.
  • test piece was peeled 90 ° at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the longitudinal direction of the test piece as the center, and the maximum load was measured for the peel strength (N / Cm).
  • a tensile tester manufactured by Orientec
  • the maximum load was measured for the peel strength (N / Cm).
  • solder heat resistance test After the laminate is floated five times in a solder bath at 288 ° C. for 5 seconds, the presence or absence of swelling at the interface between the first resin layer and the cured prepreg layer, and the interface between the metal foil and the first resin layer. The presence or absence of peeling was confirmed.
  • Copper foil 1 Ultra-low roughness electrolytic copper foil (CF-T4X-SV, manufactured by Fukuda Metal Foil & Powder Co., Ltd., thickness: 18 ⁇ m, Rz JIS : 1.2 ⁇ m).
  • Powder 1 Polymer 1 having 97.9 mol% of TFE units, 0.1 mol% of NAH units and 2.0 mol% of PPVE units (melting point 300 ° C., fluorine content 75.7% by weight, at 260 ° C. Powder composed of storage modulus: 1.1 MPa (D50: 1.7 ⁇ m, D90: 3.8 ⁇ m).
  • Polyimide precursor solution 1 U-varnish ST (solid content 18% by weight) manufactured by Ube Industries, Ltd.
  • Prepreg 1 FR-4 (manufactured by Panasonic Corporation, a prepreg in which 0.6 mm of R1755C obtained by etching a copper foil is used as a core, and 0.1 t of R1650CG is superimposed on both sides of the core).
  • Prepreg 2 manufactured by Panasonic Corporation. R-5670 0.2 mm.
  • Prepreg 3 manufactured by Panasonic Corporation. R-5680 0.2 mm.
  • Prepreg 4 manufactured by Panasonic Corporation. R-1650C 0.2 mm.
  • the prepregs 1 to 4 are prepregs each containing a thermosetting matrix resin having no fluorine atom.
  • the second resin formed by heating and pressing these prepregs is referred to as a prepreg cured product.
  • Example 1 A powder dispersion containing 50 parts by mass of powder 1, 5 parts by mass of dispersant 1 and 45 parts by mass of N-methylpyrrolidone was applied to the surface of copper foil 1 using a die coater.
  • the copper foil 1 coated with the powder dispersion was passed through a ventilation drying furnace (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute. : Nitrogen gas having an oxygen gas concentration of less than 100 ppm) for 3 minutes.
  • a resin-coated copper foil having a 5 ⁇ m-thick first resin layer on the surface of the copper foil 1 was obtained.
  • the surface of the first resin layer of the copper foil with resin was subjected to vacuum plasma treatment to obtain the copper foil with resin 1.
  • the plasma processing conditions were as follows: output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 6.7 Pa, and processing time: 2 minutes.
  • the prepreg 1 is overlaid on the surface of the first resin layer of the resin-coated copper foil 1, and subjected to vacuum hot pressing under the conditions of a press temperature: 185 ° C., a press pressure: 3.0 MPa, and a press time: 60 minutes.
  • a laminate 1 having a foil 1, a first resin layer, and a prepreg cured product layer in this order was obtained.
  • the thickness of the prepreg cured product layer was 1200 ⁇ m, the warpage ratio of the laminate 1 was 0.3%, and the peel strength was 12 N / cm.
  • the laminate 1 does not swell at the interface between the first resin layer and the cured prepreg even if the laminate 1 is floated five times for 5 seconds at 288 ° C. No lifting of the foil from the first resin layer occurred.
  • Example 2 The copper foil of the laminate 1 was subjected to an etching treatment and a dry desmear treatment using a mixed gas of oxygen gas, hydrogen gas, argon gas and nitrogen gas.
  • the prepreg 1 was placed on the surface of the first resin layer, and was subjected to vacuum hot pressing in the same manner as in Example 1 to obtain a laminate 2.
  • the laminate 2 was subjected to a solder heat resistance test. No swelling occurred at the interface between the first resin layer and the cured prepreg layer, and no separation occurred at the interface between the copper foil and the first resin layer.
  • Example 3 A laminate 3 was obtained in the same manner as in Example 1, except that the thickness of the first resin layer was changed to 0.8 ⁇ m.
  • Example 4 A laminate 4 was obtained in the same manner as in Example 1 except that the thickness of the first resin layer was changed to 25 ⁇ m.
  • the laminate 4 was subjected to a solder heat resistance test. Floating in the solder at 288 ° C. for 5 seconds five times caused peeling of the interface between the copper foil and the first resin layer.
  • Example 5 The prepreg 2 is superimposed on the surface of the first resin layer of the resin-coated copper foil 1, and the prepreg 2 is sandwiched between both surfaces of the resin-coated copper foil 1 under a pressure of 195 ° C. and 3.5 MPa. Laminate 5 was obtained by vacuum hot pressing for 5 minutes. The peel strength of the laminate 5 was 8 N / cm.
  • Example 6 The prepreg 3 is superimposed on the surface of the first resin layer of the resin-coated copper foil 1, and the both sides of the prepreg 3 are sandwiched between the resin-coated copper foils 1, at a pressure of 195 ° C. and a pressure of 3.5 MPa. Laminate 6 was obtained by vacuum hot pressing for minutes.
  • the peel strength of the laminate 6 was 9 N / cm.
  • Example 7 The prepreg 4 is superimposed on the surface of the first resin layer of the resin-coated copper foil 1, and both sides of the prepreg 4 are sandwiched between the resin-coated copper foils 1, at 175 ° C. and under a pressure of 3.0 MPa. Laminate 7 was obtained by vacuum hot pressing for minutes. The peel strength of the laminate 7 was 10 N / cm.
  • Example 8 A powder dispersion containing 40 parts by weight of powder 1, 10 parts by weight of polyimide precursor solution 1, 5 parts by weight of dispersant 1, and 45 parts by weight of N-methylpyrrolidone was prepared.
  • a resin-coated copper foil was obtained in the same manner as in Example 1 except that this powder dispersion was used.
  • the prepreg 1 was overlaid on the surface of the first resin layer of the resin-coated copper foil without plasma treatment, and was subjected to vacuum hot pressing in the same manner as in Example 1 to obtain a laminate 8.
  • the laminate 8 had a cured product layer thickness of 1200 ⁇ m, a warpage rate of 0.1%, and a peel strength of 8 N / cm.
  • Example 9 A powder dispersion containing 45 parts by weight of powder 1, 1 part by weight of polyimide 1, 5 parts by weight of dispersant 1, and 49 parts by weight of N-methylpyrrolidone was prepared.
  • a resin-coated copper foil was obtained in the same manner as in Example 1 except that this powder dispersion was used.
  • the prepreg 1 was stacked on the surface of the first resin layer of the resin-coated copper foil without performing plasma treatment, and was subjected to vacuum hot pressing in the same manner as in Example 1 to obtain a laminate 9.
  • the thickness of the cured prepreg layer was 1200 ⁇ m
  • the warpage was 0.1%
  • the peel strength was 12 N / cm.
  • the laminated body 9 does not swell at the interface between the first resin layer and the cured prepreg layer even if it is floated five times in a solder bath at 288 ° C. for 5 seconds for 5 seconds. The phenomenon that the copper foil floated from the first resin layer did not occur.
  • Example 10 Evaluation of transmission loss of laminate
  • a transmission line was formed in the laminate to form a printed board, and the signal transmission loss was measured.
  • a laminate a laminate 5 (thickness of the first resin layer: 5 ⁇ m) and a laminate 51 (a laminate produced in the same manner as the laminate 5 except that the thickness of the first resin layer is 12 ⁇ m)
  • a laminate 50 a laminate produced in the same manner as the laminate 5 except that the first resin layer is not provided.
  • a signal of 2 GHz to 40 GHz was processed using a vector network analyzer (E8361A, manufactured by Keysight Technology), and measured by a high-frequency GSG contact probe (250 ⁇ m pitch, manufactured by Picoprobe).
  • a transmission line formed on a printed board a coplanar waveguide (Conductor Backed Co-Planar Waveguide) with a back conductor was used.
  • the characteristic impedance of the line was set to 50 ⁇ .
  • Gold flash plating was applied to the surface of copper, which is the conductor of the printed circuit board.
  • the calibration method used was TRL calibration (Thru-Reflect-Line calibration). The length of the line was set to 50 mm, and the transmission loss per unit length was measured.
  • S-parameter As a measure of the transmission loss, "S-parameter" (hereinafter also referred to as S value), which is one of the network parameters used to represent the characteristics of a high-frequency electronic circuit or a high-frequency electronic component, was used.
  • S value is one of the network parameters used to represent the characteristics of a high-frequency electronic circuit or a high-frequency electronic component. The S value means that the closer the value is to 0, the smaller the transmission loss is.
  • the S values of the stacked body 50, the stacked body 5, and the stacked body 51 at a frequency of 28 GHz were -1.76, -1.64, and -1.51 in this order.
  • the laminate 5 showed a 7% improvement with respect to the laminate 50, and the laminate 51 showed a 14% improvement with respect to the laminate 50 with respect to the S value. This improvement rate was constant irrespective of the frequency (2 to 40 GHz).
  • the copper foil 1 in the laminate 5 was replaced with another copper foil (HS1-VSP manufactured by Mitsui Kinzoku Mining, HS2-VSP manufactured by Mitsui Kinzoku Mining, CF-T9DA-SV manufactured by Fukuda Metal Foil & Powder Co., Ltd.). Even if it changed to, the same improvement effect was obtained. Further, even when the prepreg 2 in the laminate 5 was changed to another prepreg (prepreg 3, prepreg 4), the same improvement effect was obtained.
  • the antenna characteristics of each of the laminate 5, the laminate 50, and the laminate 51 were evaluated by simulation.
  • the laminated body was modeled using an electromagnetic field analysis simulator (CST MICROWAVE STUDIO, manufactured by Dassault Systèmes), a four-element patch array antenna of 28 GHz band was formed on the laminated body, and its radiation characteristics were analyzed. .
  • the gains at 28 GHz of the stacked body 50, the stacked body 5, and the stacked body 51 are 12.1 dBi, 12.2 dBi, and 12.4 dBi in this order, and the stacked body 5 is 1% of the stacked body 50 and the stacked body 51 is Showed an improvement rate of 3% with respect to the laminate 50.
  • the antenna formed from the laminate (laminates 5 and 51) having the first resin layer having a predetermined thickness is compared with the antenna (laminate 50) having no first resin layer. It was confirmed that the antenna characteristics were improved.
  • the laminate of the present invention is useful as a material for a printed circuit board.
  • the entire contents of the specification, claims, abstract, and drawings of the application No. 2019-041110 are incorporated herein by reference and incorporated in the specification of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: a laminate in which, due to heating, swelling at the interface between a first resin layer derived from a resin material including a tetrafluoroethylene-based polymer and a second resin layer derived from a prepreg, and peeling at the interface between a metal foil and the first resin layer are suppressed; a printed board; and a method for manufacturing a printed board using the laminate. This laminate (10) has a metal foil 12, a first resin layer 14 derived from a resin material including a tetrafluoroethylene-based polymer, and a second resin layer 16 derived from a prepreg including a matrix resin which has a fluorine content of 0-40 mass% in this order, wherein the first resin layer 14 has a thickness of 1.0-20 μm.

Description

積層体、プリント基板及びその製造方法Laminated body, printed circuit board, and method of manufacturing the same
 本発明は、金属箔を有する積層体、プリント基板、及び積層体を用いたプリント基板の製造方法に関する。 The present invention relates to a laminate having a metal foil, a printed board, and a method for manufacturing a printed board using the laminate.
 金属箔の表面に絶縁樹脂層を有する金属箔/絶縁樹脂積層体は、金属箔をエッチング等によって加工して伝送回路を形成することによってプリント基板として用いられる。高周波信号の伝送に用いられるプリント基板には優れた伝送特性が要求されており、絶縁樹脂層に用いられる絶縁樹脂として比誘電率及び誘電正接が低い、ポリテトラフルオロエチレン等のフルオロポリマーが注目されている。また、電子機器の高密度化に伴い、プリプレグ等を介したプリント基板同士の接合によるプリント基板の多層化が検討されている。 金属 A metal foil / insulating resin laminate having an insulating resin layer on the surface of a metal foil is used as a printed circuit board by processing the metal foil by etching or the like to form a transmission circuit. Excellent transmission characteristics are required for printed circuit boards used for transmitting high-frequency signals, and fluoropolymers such as polytetrafluoroethylene, which have low relative permittivity and low dielectric loss tangent, are attracting attention as insulating resins used for insulating resin layers. ing. Also, with the increase in the density of electronic devices, multilayering of printed boards by joining printed boards via a prepreg or the like is being studied.
 フルオロポリマーを絶縁樹脂層とする金属箔/絶縁樹脂積層体から形成されたプリント基板を多層化する試みとして、プリント基板の絶縁樹脂層上にケイ素原子、窒素原子又は硫黄原子を有するシランカップリング剤の被覆層を設け、被覆層と特定のフルオロポリマーを主成分とするプリプレグとを熱圧着により接合させて多層基板とする提案がされている(特許文献1参照)。 As an attempt to multilayer a printed circuit board formed from a metal foil / insulating resin laminate having a fluoropolymer as an insulating resin layer, a silane coupling agent having a silicon atom, a nitrogen atom, or a sulfur atom on the insulating resin layer of the printed circuit board Is proposed in which a coating layer is provided and a prepreg containing a specific fluoropolymer as a main component is bonded by thermocompression bonding to form a multilayer substrate (see Patent Document 1).
特開2018-011033号公報JP 2018-011033 A
 一方、本質的に低粘着性のフルオロポリマーを含む絶縁樹脂層と、フルオロポリマーを含まないプリプレグとを加熱加圧して、寸法安定性と熱安定性とを具備する積層体(プリント基板)を製造するのは容易ではない。具体的には、プリント基板の実装工程におけるはんだリフロー工程(プリント基板にはんだペーストを載せて加熱する工程)における加熱によって絶縁樹脂層とプリプレグから形成された繊維強化樹脂層との界面に膨れが発生したり、加熱によってプリント基板に反りが生じ、反りによって金属箔と絶縁樹脂層との界面に剥離が生じたりする。 On the other hand, a laminated body (printed circuit board) having dimensional stability and heat stability is produced by heating and pressing an insulating resin layer containing a fluoropolymer having essentially no tackiness and a prepreg containing no fluoropolymer. It is not easy to do. Specifically, swelling occurs at the interface between the insulating resin layer and the fiber reinforced resin layer formed from the prepreg due to the heating in the solder reflow step (the step of placing a solder paste on the printed board and heating) in the mounting step of the printed board. Or the printed circuit board is warped by the heating, and the warpage causes peeling at the interface between the metal foil and the insulating resin layer.
 本発明は、加熱によるテトラフルオロエチレン系ポリマーを含む樹脂層とプリプレグから形成された繊維強化樹脂層との界面の膨れや金属箔と樹脂層との界面の剥離が抑えられた積層体及びプリント基板を提供する。
 本発明は、加熱によるテトラフルオロエチレン系ポリマーを含む樹脂層とプリプレグから形成された繊維強化樹脂層との界面の膨れや金属箔と樹脂層との界面の剥離が抑えられたプリント基板を製造できる方法を提供する。
The present invention relates to a laminate and a printed board in which swelling at the interface between a resin layer containing a tetrafluoroethylene-based polymer and a fiber-reinforced resin layer formed from a prepreg and peeling at the interface between a metal foil and a resin layer are suppressed by heating. I will provide a.
INDUSTRIAL APPLICABILITY The present invention can produce a printed board in which swelling of the interface between the resin layer containing the tetrafluoroethylene-based polymer and the fiber-reinforced resin layer formed from the prepreg and peeling of the interface between the metal foil and the resin layer are suppressed by heating. Provide a way.
 本発明は、下記の態様を有する。
 [1]金属箔、テトラフルオロエチレン系ポリマーを含む樹脂材料に由来する第1の樹脂層、フッ素含有量が0~40質量%のマトリックス樹脂を含むプリプレグに由来する第2の樹脂層をこの順に有し、前記第1の樹脂層の厚さが1.0~20μmである、積層体。
 [2]前記第1の樹脂層の少なくとも一部と前記第2の樹脂層の少なくとも一部が接している、[1]に記載の積層体。
 [3]前記第2の樹脂層が、フッ素原子を有さない硬化性マトリックス樹脂を含むプリプレグの硬化物からなる層である、[1]又は[2]に記載の積層体。
 [4]前記第1の樹脂層が、さらに結着樹脂を含む前記樹脂材料に由来する樹脂層である、[1]~[3]のいずれかに記載の積層体。
 [5]前記結着樹脂を含む樹脂材料における前記結着樹脂の割合が、テトラフルオロエチレン系ポリマーに対して25質量%以下である、[1]~[4]のいずれかに記載の積層体。
The present invention has the following aspects.
[1] A metal foil, a first resin layer derived from a resin material containing a tetrafluoroethylene-based polymer, and a second resin layer derived from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass are arranged in this order. A laminate having a thickness of the first resin layer of 1.0 to 20 μm.
[2] The laminate according to [1], wherein at least a part of the first resin layer is in contact with at least a part of the second resin layer.
[3] The laminate according to [1] or [2], wherein the second resin layer is a layer made of a cured product of a prepreg containing a curable matrix resin having no fluorine atom.
[4] The laminate according to any one of [1] to [3], wherein the first resin layer is a resin layer derived from the resin material further including a binder resin.
[5] The laminate according to any one of [1] to [4], wherein a ratio of the binder resin in the resin material containing the binder resin is 25% by mass or less based on the tetrafluoroethylene-based polymer. .
 [6]前記テトラフルオロエチレン系ポリマーの融点が、260~320℃である、[1]~[5]のいずれかに記載の積層体。
 [7]前記第1の樹脂層が、テトラフルオロエチレン系ポリマーを溶融して形成された層に由来する層である、[1]~[6]のいずれかに記載の積層体。
 [8]前記第1の樹脂層の厚さに対する前記第2の樹脂層の厚さの比が1以上である、[1]~[7]のいずれかに記載の積層体。
 [9]前記第1の樹脂層の厚さに対する金属箔の厚さの比が1以上である、[1]~[8]のいずれかに記載の積層体。
 [10]前記第1の樹脂層の厚さが、2~18μmである、[1]~[9]のいずれかに記載の積層体。
[6] The laminate according to any one of [1] to [5], wherein the melting point of the tetrafluoroethylene-based polymer is 260 to 320 ° C.
[7] The laminate according to any one of [1] to [6], wherein the first resin layer is a layer derived from a layer formed by melting a tetrafluoroethylene-based polymer.
[8] The laminate according to any one of [1] to [7], wherein a ratio of a thickness of the second resin layer to a thickness of the first resin layer is 1 or more.
[9] The laminate according to any one of [1] to [8], wherein a ratio of a thickness of the metal foil to a thickness of the first resin layer is 1 or more.
[10] The laminate according to any one of [1] to [9], wherein the thickness of the first resin layer is 2 to 18 μm.
 [11]前記金属箔の表面粗さが、1μm未満である、[1]~[10]のいずれかに記載の積層体。
 [12]前記金属箔の厚さが、2~30μmである、[1]~[11]のいずれかに記載の積層体。
 [13]前記[1]~[12]のいずれかに記載の積層体の金属箔をエッチング処理して伝送回路を形成してプリント基板を得る、プリント基板の製造方法。
 [14]金属材料からなる伝送回路、テトラフルオロエチレン系ポリマーに由来する第1の樹脂層、フッ素含有量が0~40質量%のマトリックス樹脂を含むプリプレグに由来する第2の樹脂層をこの順に有し、前記第1の樹脂層の厚さが1.0~20μmである、プリント基板。
 [15]前記[14]に記載のプリント基板から形成されたアンテナ。
[11] The laminate according to any one of [1] to [10], wherein the metal foil has a surface roughness of less than 1 μm.
[12] The laminate according to any one of [1] to [11], wherein the thickness of the metal foil is 2 to 30 μm.
[13] A method of manufacturing a printed circuit board, wherein a printed circuit board is obtained by forming a transmission circuit by etching the metal foil of the laminate according to any one of [1] to [12].
[14] A transmission circuit made of a metal material, a first resin layer derived from a tetrafluoroethylene-based polymer, and a second resin layer derived from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass are arranged in this order. A printed circuit board having a thickness of the first resin layer of 1.0 to 20 μm.
[15] An antenna formed from the printed circuit board according to the above [14].
 本発明の積層体においては、加熱による第1の樹脂層と第2の樹脂層との界面の膨れや金属箔と第1の樹脂層との界面の剥離が抑えられる。
 本発明のプリント基板においては、加熱による第1の樹脂層と第2の樹脂層との界面の膨れや金属箔と第1の樹脂層との界面の剥離が抑えられる。
 本発明のプリント基板の製造方法によれば、加熱による第1の樹脂層と第2の樹脂層との界面の膨れや金属箔と第1の樹脂層との界面の剥離が抑えられたプリント基板を製造できる。
In the laminate of the present invention, swelling of the interface between the first resin layer and the second resin layer due to heating and separation of the interface between the metal foil and the first resin layer are suppressed.
In the printed circuit board of the present invention, swelling of the interface between the first resin layer and the second resin layer due to heating and separation of the interface between the metal foil and the first resin layer are suppressed.
ADVANTAGE OF THE INVENTION According to the manufacturing method of the printed board of this invention, the printed board which suppressed the expansion | swelling of the interface of a 1st resin layer and a 2nd resin layer by heating, or the peeling of the interface of a metal foil and a 1st resin layer Can be manufactured.
本発明の積層体の一例を示す断面図である。It is sectional drawing which shows an example of the laminated body of this invention.
 以下の用語は、以下の意味を有する。
 「ポリマーの貯蔵弾性率」は、ISO 6721-4:1994(JIS K 7244-4:1999)に基づき測定される値である。
 「ポリマーの溶融粘度」は、ASTM D1238に準拠し、フローテスター及び2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を0.7MPaの荷重にて測定温度に保持して測定した値である。
 「ポリマーの融点」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「パウダーのD50」は、レーザー回折・散乱法によって求められる体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、レーザー回折・散乱法によって求められる体積基準累積90%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 「積層体の反り率」は、積層体から180mm角の四角い試験片を切り出し、試験片についてJIS C 6471:1995(IEC 249-1:1982)に規定される測定方法にしたがって測定される値である。
 「比誘電率(20GHz)及び誘電正接(20GHz)」は、SPDR(スプリットポスト誘電体共振器)法により、23℃±2℃、50±5%RHの範囲内の環境下にて、周波数20GHzで測定される値である。
 「算術平均粗さRa」及び「最大高さRz」は、Oxford Instruments社製の原子間力顕微鏡(AFM)を用いて、下記測定条件にて1μm範囲の表面について測定する。
 プローブ:AC160TS-C3(先端R:<7nm、バネ定数:26N/m)、測定モード:AC-Air、Scan Rate:1Hz。
 「RzJIS」は、JIS B 0601:2013の附属書JAで規定される十点平均粗さ値である。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。
 図1における寸法比は、説明の便宜上、実際のものとは異なったものである。
The following terms have the following meanings:
"The storage elastic modulus of a polymer" is a value measured based on ISO 6721-4: 1994 (JIS K 7244-4: 1999).
“Polymer melt viscosity” is based on ASTM D1238, using a flow tester and a 2Φ-8L die, applying a polymer sample (2 g) heated in advance at the measurement temperature for 5 minutes to a load of 0.7 MPa. Is a value measured while maintaining the measurement temperature.
"Melting point of polymer" is the temperature corresponding to the maximum value of the melting peak measured by differential scanning calorimetry (DSC).
“Powder D50” is a volume-based cumulative 50% diameter determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, a cumulative curve is determined with the total volume of the particle population being 100%, and the particle diameter at the point where the cumulative volume becomes 50% on the cumulative curve.
"Powder D90" is a volume-based cumulative 90% diameter determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by the laser diffraction / scattering method, a cumulative curve is determined with the total volume of the particle population being 100%, and the particle diameter at the point where the cumulative volume becomes 90% on the cumulative curve.
The “warp rate of the laminate” is a value measured by cutting a square test piece of 180 mm square from the laminate and measuring the test piece according to a measurement method specified in JIS C 6471: 1995 (IEC 249-1: 1982). is there.
“Relative permittivity (20 GHz) and dielectric loss tangent (20 GHz)” are determined by the SPDR (split post dielectric resonator) method under the environment of 23 ° C. ± 2 ° C. and 50 ± 5% RH in a frequency range of 20 GHz. Is the value measured in
The “arithmetic mean roughness Ra” and the “maximum height Rz” are measured on a surface in a range of 1 μm 2 using an atomic force microscope (AFM) manufactured by Oxford Instruments under the following measurement conditions.
Probe: AC160TS-C3 (tip R: <7 nm, spring constant: 26 N / m), measurement mode: AC-Air, Scan Rate: 1 Hz.
“Rz JIS ” is a ten-point average roughness value specified in Annex JA of JIS B 0601: 2013.
“(Meth) acrylate” is a generic term for acrylate and methacrylate.
The dimensional ratios in FIG. 1 are different from actual ones for convenience of explanation.
 本発明において、テトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)を含む樹脂材料に由来する第1の樹脂層とは、TFE系ポリマーを含む樹脂材料の層やフィルムが積層過程における加熱加圧を経て形成された樹脂層を意味する。
 本発明において、プリプレグに由来する第2の樹脂層とは、プリプレグが積層過程における加熱加圧を経て形成された樹脂層を意味する。
In the present invention, the first resin layer derived from a resin material containing a tetrafluoroethylene-based polymer (hereinafter also referred to as “TFE-based polymer”) refers to a layer or film of a resin material containing a TFE-based polymer in a lamination process. Means a resin layer formed through heating and pressurizing.
In the present invention, the second resin layer derived from the prepreg means a resin layer formed by heating and pressing the prepreg in a lamination process.
 本発明の積層体において、加熱による第1の樹脂層と第2の樹脂層との界面の膨れや金属箔と第1の樹脂層との界面の剥離が抑えられる理由は、必ずしも明確ではないが、以下の様に考えられる。
 本発明における第1の樹脂層は、耐熱性に優れるTFE系ポリマーを含むため、はんだリフロー工程における短時間かつ局所的な加熱の際には、断熱層としての役割を果たす。つまり、第1の樹脂層の厚さが1.0μm以上であることで、はんだリフロー工程にて第2の樹脂層の加熱が抑えられ、第1の樹脂層と第2の樹脂層との界面の膨れが抑えられる。
 一方で、TFE系ポリマーは収縮性が高いため、第1の樹脂層を有する積層体は、はんだリフロー工程における加熱に対する寸法安定性が低下しやすい。積層体の寸法安定性が低下すると、加熱時の反りが発生し、金属箔と樹脂層との界面が剥離しやすくなる。本発明の積層体においては、第1の樹脂層の厚さが20μm以下であることで、積層体の寸法安定性の低下を抑えている。そのため、加熱による積層体の反りが抑えられ、金属箔と第1の樹脂層との界面の剥離が抑えられる。
The reason why the expansion of the interface between the first resin layer and the second resin layer and the separation of the interface between the metal foil and the first resin layer due to heating in the laminate of the present invention are not necessarily clear is not clear. It can be considered as follows.
Since the first resin layer in the present invention contains a TFE-based polymer having excellent heat resistance, it plays a role as a heat insulating layer in a short-time and local heating in the solder reflow step. That is, when the thickness of the first resin layer is 1.0 μm or more, the heating of the second resin layer in the solder reflow step is suppressed, and the interface between the first resin layer and the second resin layer is suppressed. Swelling is suppressed.
On the other hand, since the TFE-based polymer has high shrinkability, the laminate having the first resin layer tends to have low dimensional stability against heating in the solder reflow step. When the dimensional stability of the laminate is reduced, warpage occurs at the time of heating, and the interface between the metal foil and the resin layer is easily peeled. In the laminate of the present invention, the thickness of the first resin layer is not more than 20 μm, thereby suppressing a decrease in dimensional stability of the laminate. Therefore, warpage of the laminate due to heating is suppressed, and peeling of the interface between the metal foil and the first resin layer is suppressed.
 本発明の積層体は、金属箔、第1の樹脂層、第2の樹脂層をこの順に有する。本発明の積層体の層構成としては、例えば、金属箔/第1の樹脂層/第2の樹脂層、金属箔/第1の樹脂層/第2の樹脂層/第1の樹脂層/金属箔が挙げられる。「金属箔/第1の樹脂層/第2の樹脂層」とは、金属箔、第1の樹脂層、第2の樹脂層がこの順に積層されていることを示し、他の層構成も同様である。 積 層 The laminate of the present invention has a metal foil, a first resin layer, and a second resin layer in this order. The layer structure of the laminate of the present invention is, for example, metal foil / first resin layer / second resin layer, metal foil / first resin layer / second resin layer / first resin layer / metal Foil. “Metal foil / first resin layer / second resin layer” indicates that the metal foil, the first resin layer, and the second resin layer are laminated in this order, and the other layer configurations are the same. It is.
 図1は、本発明の積層体の一例を示す断面図である。積層体10は、金属箔12と、金属箔12に接する第1の樹脂層14と、第1の樹脂層14に接する第2の樹脂層16とを有する。
 本発明の積層体においては、第1の樹脂層の少なくとも一部と第2の樹脂層の少なくとも一部が接していることが好ましく、第1の樹脂層の片面の全体と第2の樹脂層の片面の全体とが接していることがより好ましい。
FIG. 1 is a cross-sectional view showing an example of the laminate of the present invention. The laminate 10 has a metal foil 12, a first resin layer 14 in contact with the metal foil 12, and a second resin layer 16 in contact with the first resin layer 14.
In the laminate of the present invention, it is preferable that at least a part of the first resin layer and at least a part of the second resin layer are in contact with each other. It is more preferable that the entire surface of one of the above is in contact with the other.
 金属箔の厚さは、2~30μmであることが好ましく、3~25μmであることが特に好ましい。
 第1の樹脂層の厚さは、2μm以上であることが好ましく、5μm以上であることがより好ましい。第1の樹脂層の厚さは、20μm以下であり、18μm以下であることが好ましく、15μm以下であることがより好ましく、10μm未満であることがさらに好ましい。第1の樹脂層の厚さが前記下限値以上であれば、加熱による第1の樹脂層と第2の樹脂層との界面の膨れが抑えられる。また、特に第1の樹脂層の厚さが2μm以上であれば、第2の樹脂層の構造(厚さ等。)や種類に異存することなく、高周波領域における伝送損失が大幅に改善される。第1の樹脂層の厚さが前記上限値以下であれば、加熱による積層体の反りが抑えられ、金属箔と第1の樹脂層との界面の剥離が抑えられる。
 第2の樹脂層の厚さとしては、30~2000μmが好ましく、10~1000μmがより好ましく、100~500μmが特に好ましい。
The thickness of the metal foil is preferably 2 to 30 μm, particularly preferably 3 to 25 μm.
The thickness of the first resin layer is preferably at least 2 μm, more preferably at least 5 μm. The thickness of the first resin layer is 20 μm or less, preferably 18 μm or less, more preferably 15 μm or less, and even more preferably less than 10 μm. When the thickness of the first resin layer is equal to or larger than the lower limit, swelling of the interface between the first resin layer and the second resin layer due to heating can be suppressed. In particular, when the thickness of the first resin layer is 2 μm or more, the transmission loss in the high frequency region is greatly improved without depending on the structure (thickness and the like) and type of the second resin layer. . When the thickness of the first resin layer is equal to or less than the upper limit, warpage of the laminate due to heating is suppressed, and peeling of the interface between the metal foil and the first resin layer is suppressed.
The thickness of the second resin layer is preferably 30 to 2000 μm, more preferably 10 to 1000 μm, and particularly preferably 100 to 500 μm.
 第1の樹脂層の厚さに対する金属箔の厚さの比は、1以上であることが好ましく、2~10であることが特に好ましい。前記比が前記下限値以上であれば、加熱による積層体の反りがさらに抑えられ、金属箔と第1の樹脂層との界面の剥離がさらに抑えられる。前記比が前記上限値以下であれば、プリント基板としての伝送特性がさらに優れる。
 第1の樹脂層の厚さに対する第2の樹脂層の厚さの比は、1以上であることが好ましく、2~1000であることが特に好ましい。前記比が前記下限値以上であれば、加熱による積層体の反りがさらに抑えられ、金属箔と第1の樹脂層との界面の剥離がさらに抑えられる。前記比が前記上限値以下であれば、加熱による第1の樹脂層と第2の樹脂層との界面の膨れがさらに抑えられる。また、プリント基板としての伝送特性がさらに優れる。
The ratio of the thickness of the metal foil to the thickness of the first resin layer is preferably 1 or more, and more preferably 2 to 10. When the ratio is equal to or more than the lower limit, warpage of the laminate due to heating is further suppressed, and peeling of the interface between the metal foil and the first resin layer is further suppressed. When the ratio is equal to or less than the upper limit, transmission characteristics as a printed board are further improved.
The ratio of the thickness of the second resin layer to the thickness of the first resin layer is preferably 1 or more, and more preferably 2 to 1000. When the ratio is equal to or more than the lower limit, warpage of the laminate due to heating is further suppressed, and peeling of the interface between the metal foil and the first resin layer is further suppressed. When the ratio is equal to or less than the upper limit, swelling of the interface between the first resin layer and the second resin layer due to heating is further suppressed. Further, the transmission characteristics as a printed circuit board are further improved.
 本発明の積層体の反り率は、5%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることが特に好ましい。この場合、加熱による金属箔と第1の樹脂層との界面の剥離がさらに抑えられる。また、積層体をプリント基板に加工する際のハンドリング性と、得られるプリント基板の伝送特性に優れる。 は The laminate of the present invention preferably has a warpage of 5% or less, more preferably 3% or less, and particularly preferably 1% or less. In this case, peeling of the interface between the metal foil and the first resin layer due to heating is further suppressed. Further, it is excellent in handleability when processing the laminate into a printed board and transmission characteristics of the obtained printed board.
 積層体の基板部分(第1の樹脂層及び第2の樹脂層)の比誘電率(20GHz)としては、5.5以下が好ましく、3.6以下が特に好ましい。基板部分の誘電正接(20GHz)としては、0.02以下が好ましく、0.003以下が特に好ましい。この範囲において、基板部分の電気特性(低比誘電率、低誘電正接等)及び接合性の双方が優れ、優れた伝送特性が求められるプリント基板等に積層体を好適に使用できる。 比 The relative permittivity (20 GHz) of the substrate portion (the first resin layer and the second resin layer) of the laminate is preferably 5.5 or less, particularly preferably 3.6 or less. The dielectric loss tangent (20 GHz) of the substrate portion is preferably 0.02 or less, particularly preferably 0.003 or less. Within this range, both the electrical characteristics (low relative dielectric constant, low dielectric loss tangent, etc.) and bonding properties of the substrate portion are excellent, and the laminate can be suitably used for a printed circuit board or the like that requires excellent transmission characteristics.
 本発明の積層体における金属箔の材質としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。
 金属箔としては、圧延銅箔、電解銅箔等が挙げられる。金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層等が形成されていてもよい。
 金属箔の表面はシランカップリング剤により処理されていてもよい。この場合、金属箔の表面の全体がシランカップリング剤により処理されていてもよく、金属箔の表面の一部がシランカップリング剤により処理されていてもよい。
 金属箔の表面の十点平均粗さとしては、0.01μm以上が好ましく、0.2μm以上がより好ましく、0.7μm以上がさらに好ましい。十点平均粗さとしては、4μm以下が好ましく、1.5μm以下がより好ましく、1.2μm以下がさらに好ましい。この場合、第1の樹脂層との接合性が良好となり、伝送特性に優れたプリント配線板が得られやすい。
Examples of the material of the metal foil in the laminate of the present invention include copper, copper alloy, stainless steel, nickel, nickel alloy (including 42 alloy), aluminum, aluminum alloy, titanium, and titanium alloy.
Examples of the metal foil include a rolled copper foil and an electrolytic copper foil. On the surface of the metal foil, an antirust layer (such as an oxide film such as chromate), a heat-resistant layer, and the like may be formed.
The surface of the metal foil may be treated with a silane coupling agent. In this case, the entire surface of the metal foil may be treated with the silane coupling agent, or a part of the surface of the metal foil may be treated with the silane coupling agent.
The ten-point average roughness of the surface of the metal foil is preferably 0.01 μm or more, more preferably 0.2 μm or more, and even more preferably 0.7 μm or more. The ten-point average roughness is preferably 4 μm or less, more preferably 1.5 μm or less, and even more preferably 1.2 μm or less. In this case, the bondability with the first resin layer is improved, and a printed wiring board having excellent transmission characteristics is easily obtained.
 本発明における第1の樹脂層は、TFE系ポリマーを含む樹脂材料に由来する樹脂の層である。本発明の積層体の製造に用いられる、後述の予備積層体(樹脂付金属箔等)におけるTFE系ポリマーを有する層やTFE系ポリマーを有するフィルムは、TFE系ポリマーのみから構成されていてもよく、TFE系ポリマー以外の樹脂や添加剤を含んでいてもよい。TFE系ポリマーを有する層やフィルムは、TFE系ポリマーを80~100質量%含むことが好ましい。
 TFE系ポリマーを有する層やフィルムがTFE系ポリマー以外の樹脂として硬化性樹脂を含む場合、第1の樹脂層は該硬化性樹脂の硬化物とTFE系ポリマーを含む。添加剤についても同様に、積層時の加熱加圧により変化する添加剤の場合は、第1の樹脂層は変化後の添加剤を含む。同様に、本発明の積層体の製造に用いられる後述の樹脂付金属箔において、その樹脂が加熱処理を経て形成される場合、加熱処理前の樹脂がTFE系ポリマー以外の樹脂として硬化性樹脂を含むときは得られた樹脂付金属箔における樹脂は硬化性樹脂の硬化物を含む。
The first resin layer in the present invention is a resin layer derived from a resin material containing a TFE-based polymer. A layer having a TFE-based polymer or a film having a TFE-based polymer in a pre-laminate (such as a resin-attached metal foil) described below, which is used for manufacturing the laminate of the present invention, may be composed of only the TFE-based polymer. And a resin or an additive other than the TFE-based polymer. The layer or film having a TFE-based polymer preferably contains 80 to 100% by mass of the TFE-based polymer.
When the layer or film having a TFE-based polymer contains a curable resin as a resin other than the TFE-based polymer, the first resin layer contains a cured product of the curable resin and the TFE-based polymer. Similarly, in the case of an additive that changes by heating and pressing during lamination, the first resin layer contains the changed additive. Similarly, in a resin-attached metal foil described later used for manufacturing the laminate of the present invention, when the resin is formed through a heat treatment, the resin before the heat treatment is a curable resin as a resin other than the TFE-based polymer. When included, the resin in the obtained resin-attached metal foil includes a cured product of a curable resin.
 本発明におけるTFE系ポリマーは、テトラフルオロエチレン(TFE)に基づく単位(以下、「TFE単位」とも記す。)を有するポリマーである。TFE系ポリマーは、TFEのホモポリマーであってもよく、TFEと、TFEと共重合可能な他のモノマー(以下、「コモノマー」とも記す。)とのコポリマーであってもよい。TFE系ポリマーは、ポリマーを構成する全単位に対して、TFE単位を90~100モル%有するのが好ましい。
 TFE系ポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFEとエチレンとのコポリマー、TFEとプロピレンとのコポリマー、TFEとペルフルオロ(アルキルビニルエーテル)(PAVE)とのコポリマー、TFEとヘキサフルオロプロピレン(HFP)とのコポリマー、TFEとフルオロアルキルエチレン(FAE)とのコポリマー、TFEとクロロトリフルオロエチレンとのコポリマー等が挙げられる。
The TFE-based polymer in the present invention is a polymer having a unit based on tetrafluoroethylene (TFE) (hereinafter, also referred to as “TFE unit”). The TFE-based polymer may be a homopolymer of TFE or a copolymer of TFE and another monomer copolymerizable with TFE (hereinafter, also referred to as “comonomer”). The TFE-based polymer preferably has 90 to 100 mol% of TFE units based on all units constituting the polymer.
Examples of the TFE polymer include polytetrafluoroethylene (PTFE), a copolymer of TFE and ethylene, a copolymer of TFE and propylene, a copolymer of TFE and perfluoro (alkyl vinyl ether) (PAVE), and a copolymer of TFE and hexafluoropropylene (HFP). , A copolymer of TFE and fluoroalkylethylene (FAE), a copolymer of TFE and chlorotrifluoroethylene, and the like.
 TFE系ポリマーとしては、0.1~5.0MPaの貯蔵弾性率を示す温度領域を260℃以下に有するポリマーが好ましい。TFE系ポリマーが示す貯蔵弾性率は、0.5~3.0MPaであることが好ましい。また、TFE系ポリマーがかかる貯蔵弾性率を示す温度領域としては、180~260℃が好ましく、200~260℃が特に好ましい。この場合、はんだリフロー工程における温度領域において第1の樹脂層が適度に柔らかくなり、加熱による積層体の反りがさらに抑制されやすい。また、前記温度領域においてTFE系ポリマーが弾性に基づく粘着性を効果的に発現しやすい。 As the TFE-based polymer, a polymer having a temperature region exhibiting a storage elastic modulus of 0.1 to 5.0 MPa at 260 ° C. or lower is preferable. The TFE-based polymer preferably has a storage modulus of 0.5 to 3.0 MPa. Further, the temperature range in which the TFE-based polymer exhibits such storage modulus is preferably from 180 to 260 ° C., particularly preferably from 200 to 260 ° C. In this case, the first resin layer is appropriately softened in the temperature region in the solder reflow step, and the warpage of the laminate due to heating is more easily suppressed. Further, in the temperature range, the TFE-based polymer tends to effectively exhibit adhesiveness based on elasticity.
 TFE系ポリマーのフッ素含有量は、70~76質量%であることが好ましく、72~76質量%であることが特に好ましい。この場合、第1の樹脂層が断熱層としての役割を充分に果たしやすく、第1の樹脂層の耐薬品性(エッチング耐性)にも優れる。また、プリント基板としての伝送特性がさらに優れる。また、金属箔と第1の樹脂層との界面の剥離がさらに抑制されやすく、TFE系ポリマーの溶融成形性に優れる。 フ ッ 素 The TFE-based polymer preferably has a fluorine content of 70 to 76% by mass, particularly preferably 72 to 76% by mass. In this case, the first resin layer easily plays a sufficient role as a heat insulating layer, and the first resin layer also has excellent chemical resistance (etching resistance). Further, the transmission characteristics as a printed circuit board are further improved. In addition, the separation of the interface between the metal foil and the first resin layer is more easily suppressed, and the TFE polymer is excellent in melt moldability.
 TFE系ポリマーの融点としては、260~320℃が好ましい。前記融点が前記下限値以上であれば、はんだリフロー工程における加熱の際、第1の樹脂層が断熱層としての役割を充分に果たす。前記融点が前記上限値以下であれば、金属箔と第1の樹脂層との界面の剥離がさらに抑制されやすい。また、TFE系ポリマーの溶融成形性に優れる。 融 点 The melting point of the TFE-based polymer is preferably from 260 to 320 ° C. When the melting point is equal to or higher than the lower limit, the first resin layer sufficiently serves as a heat insulating layer during heating in the solder reflow step. When the melting point is equal to or less than the upper limit, peeling of the interface between the metal foil and the first resin layer is more easily suppressed. Further, the TFE polymer is excellent in melt moldability.
 TFE系ポリマーとしては、380℃における溶融粘度が1×10~1×10Pa・sであるものが好ましく、340℃における溶融粘度が1×10~1×10Pa・sであるものがより好ましく、300℃における溶融粘度が1×10~1×10Pa・sであるものが特に好ましい。この場合、後述するパウダー分散液を金属箔の表面に塗布して焼成した際に、パウダーが密にパッキングして、非多孔質の高平滑性の第1の樹脂層を形成しやすい。かかる第1の樹脂層は、はんだリフロー工程における加熱の際には、断熱層としての役割を充分に果たす。そのため、第1の樹脂層と第2の樹脂層との界面の膨れがさらに抑制されやすい。 The TFE polymer preferably has a melt viscosity at 380 ° C. of 1 × 10 2 to 1 × 10 6 Pa · s, and has a melt viscosity at 340 ° C. of 1 × 10 2 to 1 × 10 6 Pa · s. Those having a melt viscosity at 300 ° C. of 1 × 10 2 to 1 × 10 6 Pa · s are particularly preferable. In this case, when a powder dispersion described later is applied to the surface of the metal foil and baked, the powder is densely packed and a nonporous high-smooth first resin layer is easily formed. The first resin layer sufficiently plays a role as a heat insulating layer when heated in the solder reflow step. Therefore, the swelling at the interface between the first resin layer and the second resin layer is more easily suppressed.
 TFE系ポリマーの好適な態様としては、低分子量のPTFEが挙げられる。低分子量のPTFEは、ポリマー全体として380℃における溶融粘度が1×10~1×10Pa・sであるPTFEだけでなく、コア部分とシェル部分からなるコア-シェル構造においてシェル部分のみが前記範囲の溶融粘度を満たすPTFE(国際公開第2016/170918号等)であってもよい。
 低分子量のPTFEは、高分子量のPTFE(溶融粘度が1×10~1×1010Pa・s程度であるもの。)に放射線を照射して得られるPTFE(国際公開第2018/026017号等)であってもよく、TFEを重合してPTFEを製造する際の連鎖移動剤の作用により得られるPTFE(国際公開第2010/114033号等)であってよい。
 なお、低分子量のPTFEは、TFEを単独で重合して得られたポリマーであってもよく、TFEとコモノマーとを共重合して得られたコポリマーであってもよい(国際公開第2009/20187号等)。コポリマーとしては、ポリマーを構成する全単位に対して、TFE単位が99.5モル%以上のコポリマーが好ましく、99.9モル%以上のコポリマーが特に好ましい。コモノマーとしては、後述するフルオロモノマーが挙げられ、HFP、PAVE及びFAEが好ましい。
 低分子量のPTFEの標準比重(以下、「SSG」とも記す。)としては、2.14~2.22が好ましく、2.16~2.20が特に好ましい。SSGは、ASTM D4895-04に準拠して測定できる。
A preferred embodiment of the TFE-based polymer is PTFE having a low molecular weight. Low molecular weight PTFE includes not only PTFE having a melt viscosity of 1 × 10 2 to 1 × 10 6 Pa · s at 380 ° C. as a whole polymer but also only a shell portion in a core-shell structure comprising a core portion and a shell portion. PTFE (such as WO 2016/170918) satisfying the above range of melt viscosity may be used.
Low-molecular-weight PTFE is obtained by irradiating high-molecular-weight PTFE (having a melt viscosity of about 1 × 10 9 to 1 × 10 10 Pa · s) with radiation (WO 2018/026017, etc.). ), Or PTFE obtained by the action of a chain transfer agent in producing PTFE by polymerizing TFE (WO 2010/114033, etc.).
The low molecular weight PTFE may be a polymer obtained by polymerizing TFE alone or a copolymer obtained by copolymerizing TFE and a comonomer (WO 2009/18787). No.). As the copolymer, a copolymer having 99.5 mol% or more of TFE units based on all units constituting the polymer is preferable, and a copolymer having 99.9 mol% or more is particularly preferable. Examples of the comonomer include a fluoromonomer described below, and HFP, PAVE and FAE are preferable.
The standard specific gravity of the low molecular weight PTFE (hereinafter, also referred to as “SSG”) is preferably from 2.14 to 2.22, particularly preferably from 2.16 to 2.20. SSG can be measured according to ASTM D4895-04.
 TFE系ポリマーの好適な態様としては、TFEとコモノマーとのコポリマーであり、コポリマーに含まれる全単位に対して、コモノマーに基づく単位を0.5モル%超有するフルオロポリマー(以下、「ポリマーF」とも記す。)も挙げられる。ポリマーFとしては、TFEとエチレンとのコポリマー(ETFE)、TFEとHFPとのコポリマー(FEP)、TFEとPAVEとのコポリマー(PFA)等が挙げられる。ポリマーFとしては、電気特性(低比誘電率、低誘電正接等)及び耐熱性の点から、PFA及びFEPがより好ましく、PFAが特に好ましい。 A preferred embodiment of the TFE-based polymer is a copolymer of TFE and a comonomer, and a fluoropolymer having more than 0.5 mol% of a unit based on a comonomer with respect to all units contained in the copolymer (hereinafter referred to as “polymer F”) Also described.). Examples of the polymer F include a copolymer of TFE and ethylene (ETFE), a copolymer of TFE and HFP (FEP), a copolymer of TFE and PAVE (PFA), and the like. As the polymer F, PFA and FEP are more preferable, and PFA is particularly preferable, from the viewpoint of electric characteristics (low dielectric constant, low dielectric loss tangent, etc.) and heat resistance.
 TFE系ポリマーとしては、第1の樹脂層と金属箔との接合性が優れる点から、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基からなる群から選ばれる少なくとも1種の官能基(以下、「官能基」とも記す。)を有するTFE系ポリマーが好ましい。官能基はプラズマ処理等により付与してもよい。
 官能基は、TFE系ポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者のポリマーとしては、官能基を、重合開始剤、連鎖移動剤等に由来する末端基として有するポリマーが挙げられる。
 ポリマーFとしては、官能基を有する単位とTFE単位とを有するポリマーが好ましい。また、この場合のポリマーFとしては、さらに他の単位(後述するPAVE単位、HFP単位等)を有するものが好ましい。
 官能基としては、第1の樹脂層と金属箔の接合性の点から、カルボニル基含有基が好ましい。カルボニル基含有基としては、カーボネート基、カルボキシ基、ハロホルミル基、アルコキシカルボニル基、酸無水物残基、脂肪酸残基等が挙げられ、カルボキシ基及び酸無水物残基が好ましい。
 官能基を有する単位としては、官能基を有するモノマーに基づく単位が好ましい。
As the TFE-based polymer, at least one selected from the group consisting of a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group, and an isocyanate group is excellent in bonding property between the first resin layer and the metal foil. A TFE-based polymer having a kind of functional group (hereinafter also referred to as “functional group”) is preferable. The functional group may be provided by a plasma treatment or the like.
The functional group may be contained in a unit in the TFE-based polymer, or may be contained in a terminal group of the main chain of the polymer. Examples of the latter polymer include a polymer having a functional group as a terminal group derived from a polymerization initiator, a chain transfer agent and the like.
As the polymer F, a polymer having a unit having a functional group and a TFE unit is preferable. Further, as the polymer F in this case, a polymer having another unit (PAVE unit, HFP unit, and the like described later) is preferable.
As the functional group, a carbonyl group-containing group is preferable from the viewpoint of the bonding property between the first resin layer and the metal foil. Examples of the carbonyl group-containing group include a carbonate group, a carboxy group, a haloformyl group, an alkoxycarbonyl group, an acid anhydride residue, and a fatty acid residue, and a carboxy group and an acid anhydride residue are preferable.
As the unit having a functional group, a unit based on a monomer having a functional group is preferable.
 カルボニル基含有基を有するモノマーとしては、酸無水物残基を有する環状モノマー、カルボキシ基を有するモノマー、ビニルエステル及び(メタ)アクリレートが好ましく、酸無水物残基を有する環状モノマーが特に好ましい。
 前記環状モノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」とも記す。)及び無水マレイン酸が好ましい。
 官能基を有する単位及びTFE単位以外の他の単位としては、HFPに基づく単位、PAVEに基づく単位及びFAEに基づく単位が好ましい。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(以下、「PPVE」とも記す。)、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、PPVEが好ましい。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFH等が挙げられ、CH=CH(CFF及びCH=CH(CFFが好ましい。
As the monomer having a carbonyl group-containing group, a cyclic monomer having an acid anhydride residue, a monomer having a carboxy group, a vinyl ester and (meth) acrylate are preferable, and a cyclic monomer having an acid anhydride residue is particularly preferable.
As the cyclic monomer, itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic anhydride (also called hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride are preferable.
As units other than the unit having a functional group and the TFE unit, a unit based on HFP, a unit based on PAVE and a unit based on FAE are preferable.
PAVE includes CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter also referred to as “PPVE”), CF 2 = CFOCF 2 CF 2 CF 2 CF 3 , CF 2 CFCFO (CF 2 ) 8 F and the like, and PPVE is preferable.
As FAE, CH 2 CHCH (CF 2 ) 2 F, CH 2 CHCH (CF 2 ) 3 F, CH 2 CHCH (CF 2 ) 4 F, CH 2 CFCF (CF 2 ) 3 H, CH 2 CFCF (CF 2 ) 4 H and the like, and CH 2 CHCH (CF 2 ) 4 F and CH 2 CHCH (CF 2 ) 2 F are preferable.
 ポリマーFとしては、官能基を有する単位と、TFE単位と、PAVE単位又はHFP単位とを有するポリマーが好ましい。かかるポリマーFの具体例としては、国際公開第2018/16644号に記載された重合体(X)が挙げられる。
 ポリマーFにおけるTFE単位の割合は、ポリマーFを構成する全単位に対して、90~99モル%であることが好ましい。
 ポリマーFにおけるPAVE単位の割合は、ポリマーFを構成する全単位に対して、0.5~9.97モル%であることが好ましい。
 ポリマーFにおける官能基を有する単位の割合は、ポリマーFを構成する全単位に対して、0.01~3モル%であることが好ましい。
As the polymer F, a polymer having a unit having a functional group, a TFE unit, and a PAVE unit or an HFP unit is preferable. As a specific example of the polymer F, a polymer (X) described in WO2018 / 16644 is exemplified.
The proportion of TFE units in the polymer F is preferably from 90 to 99 mol% based on all units constituting the polymer F.
The ratio of the PAVE unit in the polymer F is preferably 0.5 to 9.97 mol% based on all units constituting the polymer F.
The ratio of the unit having a functional group in the polymer F is preferably 0.01 to 3 mol% based on all units constituting the polymer F.
 第1の樹脂層を形成するためのTFE系ポリマーを含む樹脂材料は、本発明の効果を損なわない範囲において、必要に応じて無機フィラー、TFE系ポリマー以外の樹脂、添加剤等を含んでいてもよい。
 上記樹脂材料は、結着樹脂を含むことが好ましい。
 樹脂材料が結着樹脂を含めば、後述の予備積層体の製造においてパウダーの粉落ちが抑制され、第1の樹脂層の均一性及び表面平滑性がより向上して、その線膨張性が平準化されるため耐熱性がより向上しやすいやすい。
 樹脂材料が結着樹脂を含む場合、その含有割合は、TFE系ポリマーに対して、25質量%以下であることが好ましく、20質量%以下であることがより好ましく、5質量%以下であることが特に好ましい。
The resin material containing a TFE-based polymer for forming the first resin layer contains an inorganic filler, a resin other than the TFE-based polymer, an additive, and the like, as necessary, within a range that does not impair the effects of the present invention. Is also good.
The resin material preferably contains a binder resin.
If the resin material includes a binder resin, powder powder is suppressed in the production of the pre-laminated body described later, the uniformity and surface smoothness of the first resin layer are further improved, and the linear expansion property is leveled. Therefore, the heat resistance is easily improved.
When the resin material contains a binder resin, the content thereof is preferably 25% by mass or less, more preferably 20% by mass or less, and more preferably 5% by mass or less based on the TFE-based polymer. Is particularly preferred.
 樹脂材料に含まれる結着樹脂は、TFE系ポリマーとは異なるポリマーであり、熱可塑性であってもよく、熱硬化性であってもよい。予備積層体の樹脂に含まれる結着樹脂は、結着樹脂自体であってもよく、結着樹脂の反応物(硬化性の結着樹脂の硬化物等。)であってもよい。結着樹脂が硬化性の結着樹脂である場合には、第1の樹脂層にはその硬化物が含まれる。結着性樹脂が熱可塑性であれば、結着樹脂の流動性により第1の樹脂層の密着性がより向上しやすく、耐熱性が向上しやすい。
 結着性樹脂は、ポリアミドイミド、ポリイミド又は(メタ)アクリレートポリマーであることが好ましい。結着樹脂の具体例としては、「アドバンセル」シリーズ(積水化学社製)、「アロン」シリーズ(東亞合成社製)、「オリコックス」シリーズ(共栄社化学社製)、「フォレット」シリーズ(綜研化学社製)、「ディックファイン」シリーズ(DIC社製)等の(メタ)アクリレートポリマー、「HPC」シリーズ(日立化成社製)等のポリアミドイミド、「ネオプリム」シリーズ(三菱ガス化学社製)、「スピクセリア」シリーズ(ソマール社製)、「Q-PILON」シリーズ(ピーアイ技術研究所製)、「PAID」シリーズ(荒川化学工業社製)、「WINGO」シリーズ(ウィンゴーテクノロジー社製)、「トーマイド」シリーズ(T&K TOKA社製)、「KPI-MX」シリーズ(河村産業社製)、「ユピア-AT」シリーズ(宇部興産社製)等のポリイミドが挙げられる。
The binder resin contained in the resin material is a polymer different from the TFE-based polymer, and may be thermoplastic or thermosetting. The binder resin contained in the resin of the preliminary laminate may be the binder resin itself, or may be a reaction product of the binder resin (such as a cured product of a curable binder resin). When the binder resin is a curable binder resin, the first resin layer contains a cured product thereof. If the binder resin is thermoplastic, the adhesiveness of the first resin layer is more easily improved due to the fluidity of the binder resin, and the heat resistance is more likely to be improved.
The binder resin is preferably a polyamide imide, a polyimide or a (meth) acrylate polymer. Specific examples of the binder resin include “Advancel” series (manufactured by Sekisui Chemical Co., Ltd.), “Aron” series (manufactured by Toagosei Co., Ltd.), “ORICOX” series (manufactured by Kyoeisha Chemical Co., Ltd.), and “Foret” series (manufactured by Soken.) (Meth) acrylate polymers such as “Dick Fine” series (manufactured by DIC), polyamideimides such as “HPC” series (manufactured by Hitachi Chemical), “Neoprim” series (manufactured by Mitsubishi Gas Chemical), "Spixeria" series (manufactured by Somar), "Q-PILON" series (manufactured by PI Technology Research Institute), "PAID" series (manufactured by Arakawa Chemical Industries), "WINGO" series (manufactured by Wingo Technology), and "Tomid Series (made by T & K TOKA), "KPI-MX" series (made by Kawamura Sangyo), "Upia-AT" series (Made by Ube Industries, Ltd.).
 第1の樹脂層は、樹脂材料中のTFE系ポリマーを溶融して形成された層が好ましい。後述の予備積層体における樹脂層も樹脂材料中のTFE系ポリマーを溶融して形成された層であってもよい。これらの場合、第1の樹脂層が非多孔質の膜となるため、はんだリフロー工程における加熱の際には、断熱層としての役割を充分に果たす。そのため、加熱による第1の樹脂層と第2の樹脂層との界面の膨れがさらに抑えられる。また、第1の樹脂層の耐薬品性(エッチング耐性)にも優れる。 層 The first resin layer is preferably a layer formed by melting a TFE-based polymer in a resin material. The resin layer in the later-described pre-laminate may also be a layer formed by melting a TFE-based polymer in the resin material. In these cases, since the first resin layer is a non-porous film, the first resin layer sufficiently serves as a heat insulating layer during heating in the solder reflow step. Therefore, swelling of the interface between the first resin layer and the second resin layer due to heating is further suppressed. Further, the first resin layer is also excellent in chemical resistance (etching resistance).
 本発明における第2の樹脂層は、フッ素含有量が0~40質量%のマトリックス樹脂を含むプリプレグから形成される層である。第2の樹脂層は、マトリックス樹脂が硬化性であれば第2の樹脂層における樹脂としてその硬化物を含み、マトリックス樹脂が非硬化性であれば第2の樹脂層の樹脂としてその樹脂自体を含む。第2の樹脂層としては、フッ素含有量が40質量%以下の硬化性マトリックス樹脂を含むプリプレグの硬化物からなる層、フッ素原子を有さない硬化性マトリックス樹脂を含むプリプレグの硬化物からなる層が挙げられる。 2The second resin layer in the present invention is a layer formed from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass. If the matrix resin is curable, the second resin layer contains the cured product as the resin in the second resin layer, and if the matrix resin is non-curable, the resin itself is used as the resin of the second resin layer. Including. As the second resin layer, a layer composed of a cured product of a prepreg containing a curable matrix resin having a fluorine content of 40% by mass or less, and a layer composed of a cured prepreg containing a curable matrix resin having no fluorine atom Is mentioned.
 マトリックス樹脂のフッ素含有量としては、0~25質量%が好ましく、0~10質量%がより好ましい。マトリックス樹脂は、2種以上の樹脂から構成されていてもよい。
 マトリックス樹脂の好適な態様としては、フッ素原子を有さないマトリックス樹脂のみからなる態様(I)、フッ素原子を有さないマトリックス樹脂とフッ素原子を有するマトリックス樹脂とからなり樹脂総量中のフッ素含有量が0~40質量%である態様(II)、フッ素含有量40質量%以下のフッ素原子を有するマトリックス樹脂のみからなる態様(III)が挙げられる。
 態様(II)における後者のマトリックス樹脂及び態様(III)におけるマトリックス樹脂としては、TFE系ポリマー、フッ素原子を有する熱可塑性ポリイミド、フッ素原子を有するポリイミド前駆体等の硬化性ポリイミド、フッ素原子を有するエポキシ樹脂が挙げられる。
The fluorine content of the matrix resin is preferably from 0 to 25% by mass, more preferably from 0 to 10% by mass. The matrix resin may be composed of two or more resins.
As a preferred embodiment of the matrix resin, the embodiment (I) consisting only of a matrix resin having no fluorine atom, the fluorine content in the total amount of the resin consisting of a matrix resin having no fluorine atom and a matrix resin having a fluorine atom Is 0 to 40% by mass, and Embodiment (III) consisting only of a matrix resin having a fluorine atom having a fluorine content of 40% by mass or less.
As the latter matrix resin in the embodiment (II) and the matrix resin in the embodiment (III), a TFE-based polymer, a thermoplastic polyimide having a fluorine atom, a curable polyimide such as a polyimide precursor having a fluorine atom, an epoxy having a fluorine atom Resins.
 プリプレグとしては、強化繊維シートに、フッ素含有量が0~40質量%のマトリックス樹脂が含浸されたプリプレグが挙げられる。
 強化繊維シートとしては、複数の強化繊維からなる強化繊維束、該強化繊維束を織成したクロス、複数の強化繊維が一方向に引き揃えられた一方向性強化繊維束、該一方向性強化繊維束から構成された一方向性クロス、これらを組み合わせたもの、複数の強化繊維束を積み重ねたもの等が挙げられる。
 強化繊維としては、長さが10mm以上の連続した長繊維が好ましい。強化繊維は、強化繊維シートの長さ方向の全長または幅方向の全幅にわたり連続している必要はなく、途中で分断されていてもよい。
Examples of the prepreg include prepregs in which a reinforcing fiber sheet is impregnated with a matrix resin having a fluorine content of 0 to 40% by mass.
As the reinforcing fiber sheet, a reinforcing fiber bundle composed of a plurality of reinforcing fibers, a cloth woven from the reinforcing fiber bundle, a unidirectional reinforcing fiber bundle in which a plurality of reinforcing fibers are aligned in one direction, the unidirectional reinforcing fiber Examples include a unidirectional cloth composed of bundles, a combination thereof, and a stack of a plurality of reinforcing fiber bundles.
As the reinforcing fiber, a continuous long fiber having a length of 10 mm or more is preferable. The reinforcing fibers do not need to be continuous over the entire length in the length direction or the entire width in the width direction of the reinforcing fiber sheet, and may be divided in the middle.
 強化繊維としては、無機繊維、金属繊維、有機繊維等が挙げられる。
 無機繊維としては、炭素繊維、黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維等が挙げられる。
 金属繊維としては、アルミニウム繊維、黄銅繊維、ステンレス繊維等が挙げられる。
 有機繊維としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等が挙げられる。
 強化繊維は、表面処理が施されているものであってもよい。
 強化繊維は、1種を単独で用いてもよく、2種以上を併用してもよい。
 プリント基板用途では、強化繊維としては、ガラス繊維が好ましい。
Examples of the reinforcing fibers include inorganic fibers, metal fibers, and organic fibers.
Examples of the inorganic fiber include carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, alumina fiber, silicon carbide fiber, and boron fiber.
Examples of the metal fiber include an aluminum fiber, a brass fiber, and a stainless steel fiber.
Examples of the organic fibers include aromatic polyamide fibers, polyaramid fibers, polyparaphenylenebenzoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers, and the like.
The reinforcing fibers may be surface-treated.
One type of reinforcing fiber may be used alone, or two or more types may be used in combination.
In printed circuit board applications, glass fibers are preferred as reinforcing fibers.
 フッ素原子を有さないマトリックス樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。フッ素原子を有さないマトリックス樹脂としては、熱硬化性樹脂が好ましい。
 熱硬化性樹脂としては、後述するパウダー分散液の説明で挙げられた熱硬化性樹脂と同じものが挙げられ、熱硬化性ポリフェニレンエーテルが好ましい。熱硬化性ポリフェニレンエーテルとしては、ビニル基を有するポリフェニレンエーテルが好ましい。
 熱可塑性樹脂としては、後述するパウダー分散液の説明で挙げられた熱可塑性樹脂と同じものが挙げられる。
 フッ素原子を有さないマトリックス樹脂は、2種以上から構成されていてもよい。
 プリプレグ中のマトリックス樹脂としては、加工性の点から、エポキシ樹脂、ポリフェニレンオキサイド、ポリフェニレンエーテル及びポリブタジエンが好ましい。
 また、プリプレグ中のマトリックス樹脂が熱硬化性樹脂である場合、プリプレグとしては、硬化剤を含むものが好ましく、硬化物の硬度と耐熱性の点から、1分子中に硬化性基(イソシアネート基、ブロックイソシアネート基等。)を3以上有する硬化剤を含むものが特に好ましい。プリプレグが熱硬化性樹脂と硬化剤を含む場合、第2の樹脂層における樹脂は、熱硬化性樹脂と硬化剤の反応生成物である硬化した樹脂である。
The matrix resin having no fluorine atom may be a thermoplastic resin or a thermosetting resin. As the matrix resin having no fluorine atom, a thermosetting resin is preferable.
Examples of the thermosetting resin include the same thermosetting resins as those described later in the description of the powder dispersion, and thermosetting polyphenylene ether is preferable. As the thermosetting polyphenylene ether, a polyphenylene ether having a vinyl group is preferable.
Examples of the thermoplastic resin include the same thermoplastic resins as those described in the description of the powder dispersion below.
The matrix resin having no fluorine atom may be composed of two or more kinds.
As the matrix resin in the prepreg, epoxy resin, polyphenylene oxide, polyphenylene ether and polybutadiene are preferable from the viewpoint of processability.
When the matrix resin in the prepreg is a thermosetting resin, the prepreg preferably contains a curing agent, and in terms of the hardness and heat resistance of the cured product, a curable group (isocyanate group, Those containing a curing agent having three or more blocked isocyanate groups) are particularly preferred. When the prepreg contains a thermosetting resin and a curing agent, the resin in the second resin layer is a cured resin that is a reaction product of the thermosetting resin and the curing agent.
 本発明におけるプリプレグ中のマトリックス樹脂の含有量としては、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上が特に好ましい。前記含有量としては、90質量%以下が好ましい。この場合、比誘電率と誘電正接により優れた積層体やプリント基板が得られやすい。例えば、本発明の積層体が、金属箔、第1の樹脂層、マトリックス樹脂に由来する第2の樹脂を60質量%以上含む第2の樹脂層をこの順に有し、第1の樹脂層の厚さが5~15μmであると、基板部分の比誘電率が3.6以下(好ましくは3.4以下。)であり、かつ誘電正接が0.003以下(好ましくは0.002以下。)である積層体やプリント基板を調整し易い。
 かかる態様の本発明の積層体は、はんだリフロー耐性等の耐熱加工性に加え、柔軟性や屈曲性に優れ、電気特性にも優れるため、種々の形態のプリント基板(後述する多層プリント回路基板等。)に容易に加工できる。
The content of the matrix resin in the prepreg in the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more. The content is preferably 90% by mass or less. In this case, it is easy to obtain a laminate or a printed board excellent in relative dielectric constant and dielectric loss tangent. For example, the laminate of the present invention has a metal foil, a first resin layer, and a second resin layer containing at least 60% by mass of a second resin derived from a matrix resin in this order. When the thickness is 5 to 15 μm, the relative permittivity of the substrate portion is 3.6 or less (preferably 3.4 or less) and the dielectric loss tangent is 0.003 or less (preferably 0.002 or less). It is easy to adjust the laminate and the printed circuit board.
Since the laminate of the present invention in such an aspect has excellent heat resistance such as solder reflow resistance, excellent flexibility and bendability, and excellent electrical characteristics, it can be used in various forms of printed circuit boards (such as a multilayer printed circuit board described below). )).
 プリプレグとしては、以下の商品名のものが挙げられる。
 パナソニック社製のメグトロン(MEGTRON) GXシリーズのR-G520、R-1410W、R-1410A、R-1410E、MEGTRONシリーズのR-1410W、R-1410A、R-1410E、MEGTRONシリーズのR-5680、R-5680(J)、R-5680(NJ)、R-5670、R-5670(N)、R-5620S、R-5620、R-5630、R-1570、HIPERシリーズノR-1650V、R-1650D、R-1650M、R-1650E、R-5610、CR-5680、CR-5680(N)、CR-5680(J)。
 日立化成工業社製のGEA-770G、GEA-705G、GEA-700G、GEA-679FG、GEA-679F(R)、GEA-78G、TD-002、GEA-75G、GEA-67、GEA-67G。
 住友ベークライト社製のEI-6765、panasonic社製のR-5785。
 三菱ガス化学社製のGEPL-190T、GEPL-230T、GHPL-830X TypeA、GHPL-830NS、GHPL-830NSR、GHPL-830NSF。
 DOOSAN CORPORATION社製のGEPL-190T、GEPL-230T、GHPL-830X TypeA、GHPL-830NS、GHPL-830NSR、GHPL-830NSF。
 GUANDONG Shengyi SCI. TECH社製のSP120N、S1151G、S1151GB、S1170G、S1170GB、S1150G、S1150GB、S1140F、S1140FB、S7045G、SP175M、S1190、S1190B、S1170、S0701、S1141KF、S0401KF、S1000-2M、S1000-2MB、S1000-2、S1000-2B、S1000、S1000B、S1000H、S1000HB、S7136H、S7439、S7439B。
 SHANGHAI NANYA社製のNY1135、NY1140、NY1150、NY1170、NY2150、NY2170、NY9135、NY9140、NY9600、NY9250、NY9140HF、NY6200、NY6150、NY3170LK、NY6300、NY3170M、NY6200、NY3150HF CTI600、NY3170HF、NY3150D、NY3150HF、NY2170H、NY2170、NY2150、NY2140、NY1600、NY1140、NY9815HF、NY9810HF、NY9815、NY9810。
 ITEQ CORPORATION社製のIT-180GN、IT-180I、IT-180A、IT-189、IT-180、IT-258GA3、IT-158、IT-150GN、IT-140、IT-150GS、IT-150G、IT-168G1、IT-168G2、IT-170G、IT-170GRA1、IT-958G、IT-200LK、IT-200D、IT-150DA、IT-170GLE、IT-968G、IT-968G SE、IT-968、IT-968 SE。
 NANYA PLASTICS社製のUV BLOCK FR-4-86、NP-140 TL/B、NP-140M TL/B、NP-150 R/TL/B、NP-170 R/TL/B、NP-180 R/TL/B、NPG R/TL/B、NPG-151、NPG-150N、NPG-150LKHD、NPG-170N、NPG-170 R/TL/B、NPG-171、NPG-170D R/TL/B、NPG-180ID/B、NPG-180IF/B、NPG-180IN/B、NPG-180INBK/B(BP)、NPG-186、NPG-200R/TL、NPG-200WT、FR-4-86 PY、FR-140TL PY、NPG-PY R/TL、CEM-3-92、CEM-3-92PY、CEM-3-98、CEM-3-01PY、CEM-3-01HC、CEM-3-09、CEM-3-09HT、CEM-3-10、NP-LDII、NP-LDIII、NP-175R/TL/B、NP-155F R/TL/B、NP-175F R/TL/B、NP-175F BH、NP-175FM BH。
 TAIWAN UNION TECHNOLOGY社製のULVP series、LDP series。
 ISOLA GROUP社製のA11、R406N、P25N、TerraGreen、I-Tera MT40、IS680 AG、IS680、Astra MT77、G200、DE104、FR408、ED130UV、FR406、IS410、FR402、FR406N、IS420、IS620i、370TURBO、254、I-Speed、FR-408HR、IS415、370HR。
 PARK ELECTROCHEMICAL社製のNY9000、NX9000、NL9000、NH9000、N9000-13 RF、N8000Q、N8000、N7000-1、N7000-2 HTスラッシュ-3、N7000-3、N5000、N5000-30、N-5000-32、N4000-12、N4000-12SI、N4000-13、N4000-13SI、N4000-13SI、N4000-13EP、N4000-13EP SI、N4350-13RF、N4380-13RF、N4800-20、N4800-20SI、Meteorwave1000、Meteorwave2000、Meteorwave3000、Meteorwave4000、Mercurywave9350、N4000-6、N4000-6FC、N4000-7、N4000-7SI、N4000-11、N4000-29。
 ROGERS CORPORATION社製のRO4450B、RO4450F、CLTE-P、3001 Bonding Film、2929 Bondply、CuClad 6700 Bonding Film、ULTRALAM 3908 Bondply、CuClad 6250 Bonding Film。
 利昌工業社製のES-3329、ES-3317B、ES-3346、ES-3308S、ES-3310A、ES-3306S、ES-3350、ES-3352、ES-3660、ES-3351S、ES-3551S、ES-3382S、ES-3940、ES-3960V、ES-3960C、ES-3753、ES-3305、ES-3615、ES-3306S、ES-3506S、ES-3308S、ES-3317B、ES-3615。
Examples of the prepreg include the following product names.
Panasonic MEGTRON (MEGTRON) GX series R-G520, R-1410W, R-1410A, R-1410E, MEGTRON series R-1410W, R-1410A, R-1410E, MEGTRON series R-5680, R -5680 (J), R-5680 (NJ), R-5670, R-5670 (N), R-5620S, R-5620, R-5630, R-1570, HIPER Series R-1650V, R-1650D , R-1650M, R-1650E, R-5610, CR-5680, CR-5680 (N), CR-5680 (J).
GEA-770G, GEA-705G, GEA-700G, GEA-679FG, GEA-679F (R), GEA-78G, TD-002, GEA-75G, GEA-67, GEA-67G manufactured by Hitachi Chemical Co., Ltd.
EI-6765 manufactured by Sumitomo Bakelite and R-5785 manufactured by panasonic.
GEPL-190T, GEPL-230T, GHPL-830X TypeA, GHPL-830NS, GHPL-830NSR, GHPL-830NSF manufactured by Mitsubishi Gas Chemical Company.
GEPL-190T, GEPL-230T, GHPL-830X TypeA, GHPL-830NS, GHPL-830NSR, and GHPL-830NSF manufactured by DOOSAN CORPORATION.
GUANDONG Shengyi SCI. TECH SP120N, S1151G, S1151GB, S1170G, S1170GB, S1150G, S1150GB, S1140F, S1140FB, S7045G, SP175M, S1190, S1190B, S1170, S0701, S1141KF, S0401KS, 10001MB S1000-2B, S1000, S1000B, S1000H, S1000HB, S7136H, S7439, S7439B.
NY1135, NY1140, NY1150, NY1170, NY2150, NY2170, NY9135, NY9140, NY9600, NY9250, NY9140HF, NY6200, NY6150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3150, NY3170, NY3300, NY6300, NY3150, NY6300, NY3150, NY6300, NY3170, NY3150, NY3300, NY3150, NY6170, NY3150, NY6150, NY3150, NY3150, NY6150, NY3170, NY3170, NY3150, NY3150, NY3150 NY2170, NY2150, NY2140, NY1600, NY1140, NY9815HF, NY9810HF, NY9815, NY9810.
IT-180GN, IT-180I, IT-180A, IT-189, IT-180, IT-258GA3, IT-158, IT-150GN, IT-140, IT-150GS, IT-150G, IT manufactured by ITEQ CORPORATION -168G1, IT-168G2, IT-170G, IT-170GRA1, IT-958G, IT-200LK, IT-200D, IT-150DA, IT-170GLE, IT-968G, IT-968G SE, IT-968, IT- 968 SE.
UV BLOCK FR-4-86, NP-140 TL / B, NP-140M TL / B, NP-150 R / TL / B, NP-170 R / TL / B, NP-180 R / manufactured by NANYA PLASTICS TL / B, NPG R / TL / B, NPG-151, NPG-150N, NPG-150LKHD, NPG-170N, NPG-170 R / TL / B, NPG-171, NPG-170D R / TL / B, NPG -180ID / B, NPG-180IF / B, NPG-180IN / B, NPG-180INBK / B (BP), NPG-186, NPG-200R / TL, NPG-200WT, FR-4-86 PY, FR-140TL PY, NPG-PY R / TL, CEM-3-92, CEM-3-92PY, CEM-3-98, CEM-3 01PY, CEM-3-01HC, CEM-3-09, CEM-3-09HT, CEM-3-10, NP-LDII, NP-LDIII, NP-175R / TL / B, NP-155F R / TL / B , NP-175F R / TL / B, NP-175F BH, NP-175FM BH.
ULVP series and LDP series manufactured by TAIWAN UNION TECHNOLOGY.
A11, R406N, P25N, TerraGreen, I-Tera MT40, IS680 AG, IS680, Astra MT77, G200, DE104, FR408, ED130UV, FR406, IS410, FR402, FR406N, IS420, IS620i, 370TUR, manufactured by ISOLA GROUP. I-Speed, FR-408HR, IS415, 370HR.
NY9000, NX9000, NL9000, NH9000, N9000-13 RF, N8000Q, N8000, N7000-1, N7000-2 HT Slash-3, N7000-3, N5000, N5000-30, N-5000-32, manufactured by PARK ELECTROCHEMICAL N4000-12, N4000-12SI, N4000-13, N4000-13SI, N4000-13SI, N4000-13EP, N4000-13EP SI, N4350-13RF, N4380-13RF, N4800-20, N4800-20SI, Meteorwave1000, Meteorwave2000, Meteorwave2000 , Meteorwave4000, Mercurywave9350, N4000-6 , N4000-6FC, N4000-7, N4000-7SI, N4000-11, N4000-29.
RO4450B, RO4450F, CLTE-P, 3001 Bonding Film, 2929 Bondply, CuClad 6700 Bonding Film, ULTRALAM 3908 Bondply, CuClad 6250 Bond, manufactured by ROGERS CORPORATION.
ES-3329, ES-3317B, ES-3346, ES-3308S, ES-3310A, ES-3306S, ES-3350, ES-3352, ES-3660, ES-3351S, ES-3551S, ES-3329 manufactured by Risho Kogyo Co., Ltd. -3382S, ES-3940, ES-3960V, ES-3960C, ES-3753, ES-3305, ES-3615, ES-3306S, ES-3506S, ES-3308S, ES-3317B, ES-3615.
 本発明の積層体は、金属箔と、プリプレグと、第1の樹脂層を形成しうる積層材料とを使用して製造される。第1の樹脂層を形成しうる積層材料としてTFE系ポリマーを含む樹脂材料から形成されたフィルムを使用し、このフィルムと金属箔とプリプレグとを任意の順に積層すれば、本発明の積層体を製造できる。
 第1の樹脂層の層厚が20μm以下と薄いため、TFE系ポリマーを含む樹脂材料から形成された樹脂層を有する予備積層体とプリプレグを積層する方法により、本発明の積層体を製造することが好ましい。予備積層体の樹脂層を形成する方法としては、TFE系ポリマーを含む塗工液を塗布する方法が好ましい。
 以下、前者の予備積層体(以下、「樹脂付金属箔」とも記す。)を用いた本発明の本発明の積層体の製造方法を説明する。
The laminate of the present invention is manufactured using a metal foil, a prepreg, and a laminate material that can form a first resin layer. By using a film formed of a resin material containing a TFE-based polymer as a laminate material capable of forming the first resin layer, and laminating this film, metal foil and prepreg in any order, the laminate of the present invention can be obtained. Can be manufactured.
Since the thickness of the first resin layer is as thin as 20 μm or less, the laminate of the present invention is manufactured by a method of laminating a prepreg and a preliminary laminate having a resin layer formed from a resin material containing a TFE-based polymer. Is preferred. As a method of forming the resin layer of the preliminary laminate, a method of applying a coating liquid containing a TFE-based polymer is preferable.
Hereinafter, a method of manufacturing the laminate of the present invention using the former preliminary laminate (hereinafter, also referred to as “metal foil with resin”) will be described.
 本発明の積層体は、TFE系ポリマーを含む樹脂材料から形成された樹脂層及び金属箔を有する樹脂付金属箔と、プリプレグとを熱プレス法により積層させて製造されることが好ましい。
 本発明の積層体における第1の樹脂層の厚さが20μm以下であるため、樹脂付金属箔における樹脂層はその厚さに対応する厚さを有し、本質的に熱伸縮性であるTFE系ポリマーを樹脂層としながらも、寸法安定性を損なうことなく、熱プレス法によりプリプレグと接合できる。樹脂付金属箔における樹脂層は、積層体の第1の樹脂層における樹脂と同じ樹脂であってもよく、積層体の製造過程を経て第1の樹脂層における樹脂となる樹脂(例えば、熱硬化性樹脂の未硬化物を含む樹脂)であってもよい。
The laminate of the present invention is preferably manufactured by laminating a resin-coated metal foil having a resin layer and a metal foil formed of a resin material containing a TFE-based polymer and a prepreg by a hot press method.
Since the thickness of the first resin layer in the laminate of the present invention is 20 μm or less, the resin layer in the resin-coated metal foil has a thickness corresponding to the thickness, and is essentially heat-stretchable TFE. The resin can be bonded to the prepreg by the hot pressing method without deteriorating the dimensional stability while using the resin as the resin layer. The resin layer in the resin-attached metal foil may be the same resin as the resin in the first resin layer of the laminate, or a resin (for example, thermosetting) that becomes the resin in the first resin layer through the manufacturing process of the laminate. Resin containing an uncured resin).
 樹脂付金属箔を製造する方法としては、金属箔の表面に、TFE系ポリマーを含む塗工液を塗布する方法が好ましい。具体的には、TFE系ポリマーを含む樹脂材料のパウダーと、液状媒体と、分散剤とを含むパウダー分散液を金属箔の表面に塗布し、100~300℃の温度領域にて金属箔を保持し、前記温度領域超の温度領域にてTFE系ポリマーを焼成させることにより、金属箔の表面にTFE系ポリマーを含む樹脂層を形成する方法が挙げられる。 と し て As a method for producing the metal foil with resin, a method of applying a coating liquid containing a TFE-based polymer to the surface of the metal foil is preferable. Specifically, a powder of a resin material containing a TFE-based polymer, a liquid dispersion containing a liquid medium and a dispersant is applied to the surface of the metal foil, and the metal foil is held in a temperature range of 100 to 300 ° C. Then, a method of forming a resin layer containing the TFE-based polymer on the surface of the metal foil by firing the TFE-based polymer in a temperature range higher than the above-mentioned temperature range is exemplified.
 TFE系ポリマーを含む樹脂材料のパウダー(以下、「Fパウダー」とも記す。)は、本発明の効果を損なわない範囲において、TFE系ポリマー以外の成分を含んでいてもよいが、TFE系ポリマーを主成分とするのが好ましい。FパウダーにおけるTFE系ポリマーの含有量は、80質量%以上であることが好ましく、100質量%であることが特に好ましい。
 FパウダーのD50としては、0.05~6.0μmが好ましく、0.1~3.0μmがより好ましく、0.2~3.0μmが特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、樹脂付金属箔におけるTFE系ポリマーの電気特性(低比誘電率等)や耐熱性が最も発現しやすい。
 FパウダーのD90としては、0.3~8μmが好ましく、0.8~5μmが特に好ましい。この範囲において、Fパウダーの流動性と分散性が良好となり、第1の樹脂層の電気特性(低比誘電率等)や耐熱性が最も発現しやすい。
 Fパウダーの製造方法としては、国際公開第2016/017801号に記載の方法を採用できる。なお、Fパウダーは、所望のパウダーの市販品を用いてもよい。
The powder of the resin material containing the TFE-based polymer (hereinafter, also referred to as “F powder”) may contain components other than the TFE-based polymer as long as the effects of the present invention are not impaired. It is preferable to use it as a main component. The content of the TFE-based polymer in the F powder is preferably 80% by mass or more, and particularly preferably 100% by mass.
The D50 of the F powder is preferably from 0.05 to 6.0 μm, more preferably from 0.1 to 3.0 μm, and particularly preferably from 0.2 to 3.0 μm. Within this range, the fluidity and dispersibility of the F powder are good, and the electrical characteristics (such as a low dielectric constant) and heat resistance of the TFE-based polymer in the resin-coated metal foil are most easily exhibited.
The D90 of the F powder is preferably from 0.3 to 8 μm, particularly preferably from 0.8 to 5 μm. Within this range, the fluidity and dispersibility of the F powder are good, and the electrical characteristics (such as a low dielectric constant) and heat resistance of the first resin layer are most easily exhibited.
As a method for producing the F powder, the method described in WO 2016/017801 can be employed. As the F powder, a commercially available product of a desired powder may be used.
 液状媒体としては、パウダー分散液に含まれる液状媒体以外の成分よりも低沸点であり、Fパウダーと反応しない化合物が好ましい。
 液状媒体としては、瞬間的に揮発せずに、100~300℃の温度領域に保持中に揮発する化合物が好ましく、沸点80~275℃の化合物が好ましく、沸点125~250℃の化合物が特に好ましい。沸点がこの範囲であれば、金属箔の表面に塗布したパウダー分散液を100~300℃の温度領域に保持した際に、液状媒体の揮発と分散剤の部分的な分解及び流動とが効果的に進行し、分散剤が表面偏析しやすい。
As the liquid medium, a compound having a lower boiling point than components other than the liquid medium contained in the powder dispersion and not reacting with the F powder is preferable.
As the liquid medium, a compound which does not volatilize instantaneously but volatilizes during holding in a temperature range of 100 to 300 ° C. is preferable, a compound having a boiling point of 80 to 275 ° C. is preferable, and a compound having a boiling point of 125 to 250 ° C. is particularly preferable. . When the boiling point is within this range, volatilization of the liquid medium and partial decomposition and flow of the dispersant are effective when the powder dispersion applied to the surface of the metal foil is kept in a temperature range of 100 to 300 ° C. And the dispersant tends to segregate on the surface.
 液状媒体としては、有機化合物が好ましく、シクロヘキサン(沸点:81℃)、2-プロパノール(沸点:82℃)、1-プロパノール(沸点:97℃)、1-ブタノール(沸点:117℃)、1-メトキシ-2-プロパノール(沸点:119℃)、N-メチルピロリドン(沸点:202℃)、γ-ブチロラクトン(沸点:204℃)、シクロヘキサノン(沸点:156℃)及びシクロペンタノン(沸点:131℃)がより好ましく、N-メチルピロリドン、γ-ブチロラクトン、シクロヘキサノン及びシクロペンタノンが特に好ましい。 As the liquid medium, organic compounds are preferable, and cyclohexane (boiling point: 81 ° C.), 2-propanol (boiling point: 82 ° C.), 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 117 ° C.), 1-butanol Methoxy-2-propanol (boiling point: 119 ° C), N-methylpyrrolidone (boiling point: 202 ° C), γ-butyrolactone (boiling point: 204 ° C), cyclohexanone (boiling point: 156 ° C) and cyclopentanone (boiling point: 131 ° C) Are more preferable, and N-methylpyrrolidone, γ-butyrolactone, cyclohexanone and cyclopentanone are particularly preferable.
 分散剤は、樹脂層の表面性状に接合性を付与する観点から、疎水部位と親水部位を有する化合物(界面活性剤)が特に好ましい。
 分散剤としては、ポリオール、ポリオキシアルキレングリコール及びポリカプロラクタムが好ましく、ポリマー状ポリオールがより好ましい。ポリマー状ポリオールとしては、ポリビニール、ポリブチラール及びフルオロポリオールが特に好ましく、フルオロポリオールが最も好ましい。ただし、フルオロポリオールとは、TFE系ポリマーではない、水酸基とフッ素原子とを有するポリマーである。また、フルオロポリオールとしては、水酸基の一部が化学修飾され、変性されていてもよい。
The dispersant is particularly preferably a compound having a hydrophobic part and a hydrophilic part (surfactant), from the viewpoint of imparting bonding properties to the surface properties of the resin layer.
As the dispersant, polyols, polyoxyalkylene glycols and polycaprolactams are preferred, and polymeric polyols are more preferred. As the polymeric polyol, polyvinyl, polybutyral and fluoropolyol are particularly preferred, and fluoropolyol is most preferred. However, the fluoropolyol is not a TFE-based polymer but a polymer having a hydroxyl group and a fluorine atom. Further, as the fluoropolyol, a part of hydroxyl groups may be chemically modified and modified.
 フルオロポリオールとしては、ポリフルオロアルキル基又はポリフルオロアルケニル基を有する(メタ)アクリレート(以下、「(メタ)アクリレートF」とも記す。)とポリオキシアルキレンモノオール基を有する(メタ)アクリレート(以下、「(メタ)アクリレートAO」とも記す。)とのコポリマー(以下、「分散ポリマーF」とも記す。)が特に好ましい。 Examples of the fluoropolyol include a (meth) acrylate having a polyfluoroalkyl group or a polyfluoroalkenyl group (hereinafter, also referred to as “(meth) acrylate F”) and a (meth) acrylate having a polyoxyalkylene monool group (hereinafter, referred to as “methacrylate”). A copolymer (hereinafter, also referred to as “dispersion polymer F”) with “(meth) acrylate AO” is particularly preferable.
 (メタ)アクリレートFの具体例としては、CH=CHC(O)O(CHOCF(CF)(C(CF(CF)(=C(CF)、CH=CHC(O)O(CHOC(CF)(=C(CF(CF)(CF(CF)、CH=C(CH)C(O)O(CHNHC(O)OCH(CHOCHCH(CFF)、CH=C(CH)C(O)O(CHNHC(O)OCH(CHOCHCH(CFF)、CH=C(CH)C(O)O(CHNHC(O)OCH(CHOCH(CFF)、CH=C(CH)C(O)O(CHNHC(O)OCH(CHOCH(CFF)、CH=C(CH)C(O)O(CHNHC(O)OCH(CHOCH(CFF)、CH=C(CH)C(O)O(CHNHC(O)OCH(CHOCH(CFF)が挙げられる。 Specific examples of (meth) acrylate F include CH 2 CHCHC (O) O (CH 2 ) 4 OCF (CF 3 ) (C (CF (CF 3 ) 2 ) (= C (CF 3 ) 2 ), CH 2 = CHC (O) O ( CH 2) 4 OC (CF 3) (= C (CF (CF 3) 2) (CF (CF 3) 2), CH 2 = C (CH 3) C (O) O (CH 2 ) 2 NHC (O) OCH (CH 2 OCH 2 CH 2 (CF 2 ) 6 F) 2 , CH 2 CC (CH 3 ) C (O) O (CH 2 ) 2 NHC (O) OCH ( CH 2 OCH 2 CH 2 (CF 2 ) 4 F) 2 , CH 2 CC (CH 3 ) C (O) O (CH 2 ) 2 NHC (O) OCH (CH 2 OCH 2 (CF 2 ) 6 F) 2 , CH 2 CC (CH 3 ) C (O) O (CH 2 ) 2 NHC (O) OCH (CH 2 OCH 2 (CF 2 ) 4 F) 2 , CH 2 CC (CH 3 ) C (O) O (CH 2 ) 3 NHC (O) OCH (CH 2 OCH 2 (CF 2 ) 6 F) 2 , CH 2 = C (CH 3) C ( O) O (CH 2) 3 NHC (O) OCH (CH 2 OCH 2 (CF 2) 4 F) 2 and the like.
 (メタ)アクリレートAOの具体例としては、CH=CHC(O)O(CHCHO)H、CH=CHC(O)O(CHCHO)10H、CH=CHC(O)O(CHCHO)12H、CH=C(CH)C(O)OCHCHO(CHCH(CH)O)H、CH=C(CH)C(O)OCHCHO(CHCH(CH)O)12H、CH=C(CH)C(O)OCHCHO(CHCH(CH)O)16Hが挙げられる。
 分散ポリマーFを構成する全単位に対する(メタ)アクリレートFに基づく単位の割合は、20~60モル%であることが好ましく、20~40モル%あることが特に好ましい。
 分散ポリマーFを構成する全単位に対する(メタ)アクリレートAOに基づく単位の割合は、40~80モル%あることが好ましく、60~80モル%あることが特に好ましい。
 分散ポリマーFは、(メタ)アクリレートFに基づく単位と(メタ)アクリレートAOに基づく単位のみからなっていてもよく、さらに他の単位を有してもよい。
Specific examples of the (meth) acrylate AO include CH 2 CHCHC (O) O (CH 2 CH 2 O) 8 H, CH 2 CHCHC (O) O (CH 2 CH 2 O) 10 H, and CH 2 = CHC (O) O (CH 2 CH 2 O) 12 H, CH 2 = C (CH 3) C (O) OCH 2 CH 2 O (CH 2 CH (CH 3) O) 8 H, CH 2 = C ( CH 3) C (O) OCH 2 CH 2 O (CH 2 CH (CH 3) O) 12 H, CH 2 = C (CH 3) C (O) OCH 2 CH 2 O (CH 2 CH (CH 3) O) 16 H.
The ratio of the unit based on (meth) acrylate F to all the units constituting the dispersion polymer F is preferably from 20 to 60 mol%, particularly preferably from 20 to 40 mol%.
The ratio of the unit based on (meth) acrylate AO to all the units constituting the dispersion polymer F is preferably from 40 to 80 mol%, particularly preferably from 60 to 80 mol%.
The dispersion polymer F may be composed of only a unit based on (meth) acrylate F and a unit based on (meth) acrylate AO, or may have other units.
 パウダー分散液は、本発明の効果を損なわない範囲で、TFE系ポリマー及び分散剤以外の樹脂(以下、「他の樹脂」とも記す。)を含んでいてもよい。他の樹脂は、パウダー分散液に溶解してもよく、溶解しなくてもよい。
 他の樹脂は、非硬化性樹脂であってもよく、硬化性樹脂であってもよい。
 非硬化性樹脂としては、熱溶融性樹脂、非溶融性樹脂が挙げられる。熱溶融性樹脂としては、熱可塑性ポリイミド等が挙げられる。非溶融性樹脂としては、硬化性樹脂の硬化物等が挙げられる。
 パウダー分散液は、上記の他の樹脂を結着樹脂として含むことが好ましい。結着樹脂として含まれる場合の他の樹脂としては、第1の樹脂層を形成する樹脂材料において結着樹脂として具体例に挙げた結着樹脂が好ましい。
The powder dispersion may contain a resin other than the TFE-based polymer and the dispersant (hereinafter, also referred to as “other resin”) as long as the effects of the present invention are not impaired. Other resins may or may not be dissolved in the powder dispersion.
The other resin may be a non-curable resin or a curable resin.
Examples of the non-curable resin include a heat-meltable resin and a non-meltable resin. Examples of the heat-fusible resin include thermoplastic polyimide. Examples of the non-melting resin include a cured product of a curable resin.
The powder dispersion preferably contains the other resin as a binder resin. As the other resin when included as the binder resin, the binder resins listed as specific examples of the binder resin in the resin material forming the first resin layer are preferable.
 硬化性樹脂としては、反応性基を有するポリマー、反応性基を有するオリゴマー、低分子化合物、反応性基を有する低分子化合物等が挙げられる。反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基等が挙げられる。
 熱硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド、ポリイミド前駆体であるポリアミック酸、硬化性アクリル樹脂、フェノール樹脂、硬化性ポリエステル、硬化性ポリオレフィン、硬化性ポリフェニレンエーテル、硬化性ポリブタジエン、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。熱硬化性樹脂としては、プリント基板の用途に有用な点から、熱硬化性ポリイミド、ポリイミド前駆体、エポキシ樹脂、硬化性アクリル樹脂、ビスマレイミド樹脂又は硬化性ポリフェニレンエーテルが好ましく、エポキシ樹脂及び硬化性ポリフェニレンエーテルが特に好ましい。
Examples of the curable resin include a polymer having a reactive group, an oligomer having a reactive group, a low molecular compound, and a low molecular compound having a reactive group. Examples of the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group, and an epoxy group.
Examples of the thermosetting resin include epoxy resin, thermosetting polyimide, polyamic acid as a polyimide precursor, curable acrylic resin, phenol resin, curable polyester, curable polyolefin, curable polyphenylene ether, curable polybutadiene, and polyfunctional. Examples include a cyanate ester resin, a polyfunctional maleimide-cyanate ester resin, a polyfunctional maleimide resin, a vinyl ester resin, a urea resin, a diallyl phthalate resin, a melamine resin, a guanamine resin, and a melamine-urea cocondensation resin. As the thermosetting resin, thermosetting polyimide, a polyimide precursor, an epoxy resin, a curable acrylic resin, a bismaleimide resin or a curable polyphenylene ether are preferable from the viewpoint of being useful for the use of a printed circuit board, and an epoxy resin and a curable resin. Polyphenylene ether is particularly preferred.
 エポキシ樹脂の具体例としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ化合物、フェノールとフェノール性ヒドロキシ基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノールのグリシジルエーテル化物、アルコールのジグリシジルエーテル化物、トリグリシジルイソシアヌレート等が挙げられる。 Specific examples of the epoxy resin include naphthalene type epoxy resin, cresol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, Cresol novolak type epoxy resin, phenol novolak type epoxy resin, alkylphenol novolak type epoxy resin, aralkyl type epoxy resin, biphenol type epoxy resin, dicyclopentadiene type epoxy resin, trishydroxyphenylmethane type epoxy compound, phenol and phenolic hydroxy group Epoxidized condensates with aromatic aldehydes, diglycidyl ether of bisphenol, diglycidyl ether of naphthalene diol, Glycidyl ethers of Lumpur, diglycidyl ethers of alcohols, triglycidyl isocyanurate.
 ビスマレイミド樹脂としては、特開平7-70315号公報に記載される、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物(BTレジン)、国際公開第2013/008667号に記載の発明、その背景技術に記載のものが挙げられる。
 ポリアミック酸は、通常、TFE系ポリマーの官能基と反応しうる反応性基を有している。
 ポリアミック酸を形成するジアミン、多価カルボン酸二無水物としては、例えば、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012-145676号公報の[0055]、[0057]等に記載のものが挙げられる。なかでも、4,4'-ジアミノジフェニルエーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン等の芳香族ジアミンと、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物等の芳香族多価カルボン酸二無水物との組合せからなるポリアミック酸が好ましい。
As the bismaleimide resin, a resin composition (BT resin) in which a bisphenol A-type cyanate ester resin and a bismaleimide compound are used in combination, as described in JP-A-7-70315, described in WO2013 / 008667 And its background art.
The polyamic acid usually has a reactive group that can react with a functional group of the TFE-based polymer.
Examples of the diamine and polycarboxylic acid dianhydride forming a polyamic acid include, for example, [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. , [0057] and the like. Among them, aromatic diamines such as 4,4'-diaminodiphenyl ether and 2,2-bis [4- (4-aminophenoxy) phenyl] propane, and pyromellitic dianhydride, 3,3 ', 4,4 Polyamic acids comprising a combination with an aromatic polycarboxylic dianhydride such as '-biphenyltetracarboxylic dianhydride and 3,3', 4,4'-benzophenonetetracarboxylic dianhydride are preferred.
 熱溶融性樹脂としては、熱可塑性ポリイミド等の熱可塑性樹脂、硬化性樹脂の熱溶融性の硬化物が挙げられる。
 熱可塑性樹脂としては、ポリエステル、ポリオレフィン、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテル等が挙げられ、熱可塑性ポリイミド、液晶性ポリエステル又はポリフェニレンエーテルが好ましい。
Examples of the heat-fusible resin include a thermoplastic resin such as a thermoplastic polyimide, and a heat-meltable cured product of a curable resin.
As the thermoplastic resin, polyester, polyolefin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyallyl sulfone, aromatic polyamide, aromatic polyether amide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, Examples thereof include liquid crystalline polyester and polyphenylene ether, and are preferably thermoplastic polyimide, liquid crystalline polyester, or polyphenylene ether.
 パウダー分散液は、本発明の効果を損なわない範囲で、TFE系ポリマー、分散剤及び他の樹脂以外の材料(以下、「他の材料」とも記す。)を含んでいてもよい。
 他の材料としては、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤等が挙げられる。
The powder dispersion may contain materials other than the TFE-based polymer, the dispersant, and other resins (hereinafter, also referred to as “other materials”) as long as the effects of the present invention are not impaired.
Other materials include a thixotropic agent, an antifoaming agent, an inorganic filler, a reactive alkoxysilane, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, a whitening agent, Examples include a coloring agent, a conductive agent, a release agent, a surface treatment agent, a viscosity modifier, and a flame retardant.
 パウダー分散液中のFパウダーの割合としては、5~60質量%が好ましく、35~45質量%が特に好ましい。この範囲において、第1の樹脂層の比誘電率及び誘電正接を低く制御しやすい。また、パウダー分散液の均一分散性が高く、第1の樹脂層の機械的強度に優れる。
 パウダー分散液中の分散剤の割合としては、0.1~30質量%が好ましく、5~10質量%が特に好ましい。この範囲において、Fパウダーの均一分散性が高く、また第1の樹脂層の電気特性と接合性とをバランスさせやすい。
 パウダー分散液中の液状媒体の割合としては、15~65質量%が好ましく、25~50質量%が特に好ましい。この範囲において、パウダー分散液の塗布性が優れ、かつ第1の樹脂層の外観不良が起こりにくい。
The proportion of the F powder in the powder dispersion is preferably 5 to 60% by mass, particularly preferably 35 to 45% by mass. Within this range, the relative permittivity and the dielectric loss tangent of the first resin layer can be easily controlled to be low. In addition, the powder dispersion has high uniform dispersibility, and the first resin layer has excellent mechanical strength.
The proportion of the dispersant in the powder dispersion is preferably from 0.1 to 30% by mass, particularly preferably from 5 to 10% by mass. Within this range, the uniform dispersion of the F powder is high, and the electrical properties of the first resin layer and the bondability are easily balanced.
The proportion of the liquid medium in the powder dispersion is preferably from 15 to 65% by mass, particularly preferably from 25 to 50% by mass. Within this range, the coatability of the powder dispersion is excellent, and poor appearance of the first resin layer is unlikely to occur.
 パウダー分散液を金属箔の表面に塗布する際の塗布方法としては、塗布後の金属箔の表面にパウダー分散液からなる安定したウェット膜が形成される方法であればよく、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法等が挙げられる。 As a method of applying the powder dispersion to the surface of the metal foil, any method may be used as long as a stable wet film made of the powder dispersion is formed on the surface of the metal foil after application, such as a spray method, a roll coating method. Methods, a spin coating method, a gravure coating method, a microgravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a die coating method, a fountain Meyer bar method, a slot die coating method and the like.
 後述の保持温度にウェット膜付き金属箔を供する前に、前記温度領域未満の温度にて金属箔を加熱して、ウェット膜の状態を調整してもよい。調整は、液状媒体が完全に揮発しない程度にて行われ、50質量%以下の液状媒体を揮発させる程度に通常は行われる。
 パウダー分散液を金属箔の表面に塗布した後に、100~300℃の温度領域(以下、「保持温度」とも記す。)にて金属箔を保持することが好ましい。保持温度は、雰囲気の温度である。
 パウダー分散液を金属箔の表面に塗布して保持温度に保持すると、液状媒体の揮発と分散剤の分解とが進行しながら、Fパウダーが密にパッキングした平滑性の高い被膜が形成される。この際、分散剤は、Fパウダーに弾かれやすくなり、表面に流動しやすくなると考えられる。つまり、この保持により、分散剤が表面に偏析した状態が形成されるとも考えられる。
 保持は、1段階で実施してもよく、異なる温度にて2段階以上で実施してもよい。
 保持の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。
Before providing the metal foil with a wet film to the holding temperature described below, the state of the wet film may be adjusted by heating the metal foil at a temperature lower than the temperature range. The adjustment is performed to such an extent that the liquid medium does not completely volatilize, and is usually performed to the extent that 50% by mass or less of the liquid medium is volatilized.
After applying the powder dispersion to the surface of the metal foil, it is preferable to hold the metal foil in a temperature range of 100 to 300 ° C. (hereinafter also referred to as “holding temperature”). The holding temperature is the temperature of the atmosphere.
When the powder dispersion is applied to the surface of the metal foil and held at the holding temperature, the volatilization of the liquid medium and the decomposition of the dispersing agent proceed, and a highly smooth coating with densely packed F powder is formed. At this time, it is considered that the dispersant is likely to be repelled by the F powder and easily flow to the surface. That is, it is considered that a state in which the dispersant segregates on the surface is formed by this holding.
The holding may be performed in one stage, or may be performed in two or more stages at different temperatures.
Examples of the holding method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays.
 保持における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、保持における雰囲気は、酸化性ガス雰囲気、還元性ガス雰囲気、不活性ガス雰囲気のいずれであってもよい。
 不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等が挙げられ、窒素ガスが好ましい。
 還元性ガスとしては、水素ガスが挙げられる。
 酸化性ガスとしては、酸素ガスが挙げられる。
The atmosphere in the holding may be under normal pressure or under reduced pressure. The atmosphere for the holding may be any of an oxidizing gas atmosphere, a reducing gas atmosphere, and an inert gas atmosphere.
Examples of the inert gas include helium gas, neon gas, argon gas, nitrogen gas and the like, and nitrogen gas is preferable.
Examples of the reducing gas include hydrogen gas.
The oxidizing gas includes oxygen gas.
 保持における雰囲気は、分散剤の分解が促され、樹脂層の接合性がより向上する点からは、酸素ガスを含む雰囲気が好ましい。
 酸素ガスを含む雰囲気における酸素ガス濃度(体積基準)としては、0.5×10~1×10ppmが好ましい。この範囲において、分散剤の分解促進と、金属箔の酸化抑制とをバランスさせやすい。
 保持温度は、100~200℃の温度領域であるか又は200~300℃の温度領域であることがより好ましく、160~200℃の温度領域であるか又は220~260℃の温度領域であることが特に好ましい。この範囲において、分散剤の部分的な分解及び流動が効果的に進行し、分散剤をより表面偏析させやすい。
 保持温度に保持する時間は、0.5~5分間であることが特に好ましい。
The atmosphere for the holding is preferably an atmosphere containing an oxygen gas from the viewpoint that the decomposition of the dispersant is promoted and the bonding property of the resin layer is further improved.
The oxygen gas concentration (based on volume) in an atmosphere containing oxygen gas is preferably 0.5 × 10 3 to 1 × 10 4 ppm. Within this range, it is easy to balance the promotion of decomposition of the dispersant with the suppression of oxidation of the metal foil.
The holding temperature is preferably in a temperature range of 100 to 200 ° C or in a temperature range of 200 to 300 ° C, more preferably in a temperature range of 160 to 200 ° C or in a temperature range of 220 to 260 ° C. Is particularly preferred. Within this range, partial decomposition and flow of the dispersant effectively proceed, and the surface of the dispersant is more easily segregated.
The holding time at the holding temperature is particularly preferably 0.5 to 5 minutes.
 本発明においては、さらに、保持温度超の温度領域(以下、「焼成温度」とも記す。)にてTFE系ポリマーを焼成させて金属箔の表面に樹脂層を形成することが好ましい。焼成温度は、雰囲気の温度である。
 焼成においては、Fパウダーが密にパッキングし、分散剤が効果的に表面偏析した状態でTFE系ポリマーの融着が進行するため、平滑性及び接合性に優れた樹脂層が形成される。なお、焼成が行われた場合、パウダー分散液が熱溶融性樹脂を含めばTFE系ポリマーと溶解性樹脂との混合物からなる樹脂層が形成され、パウダー分散液が熱硬化性樹脂を含めばTFE系ポリマーと熱硬化性樹脂の硬化物とからなる樹脂層が形成される。
In the present invention, it is preferable that the TFE-based polymer is further baked in a temperature range higher than the holding temperature (hereinafter, also referred to as “baking temperature”) to form a resin layer on the surface of the metal foil. The firing temperature is the temperature of the atmosphere.
In the firing, the F powder is densely packed, and the fusion of the TFE-based polymer proceeds in a state where the dispersant is effectively segregated on the surface, so that a resin layer having excellent smoothness and bonding properties is formed. When baking is performed, a resin layer composed of a mixture of a TFE-based polymer and a soluble resin is formed if the powder dispersion contains a thermofusible resin, and if the powder dispersion contains a thermosetting resin, TFE is used. A resin layer composed of the base polymer and a cured product of the thermosetting resin is formed.
 焼成の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法等が挙げられる。樹脂層の表面の平滑性を高めるために、加熱板、加熱ロール等で加圧してもよい。焼成の方法としては、短時間で焼成でき、遠赤外線炉が比較的コンパクトである点から、遠赤外線を照射する方法が好ましい。焼成においては、赤外線加熱と熱風加熱とを組み合わせてもよい。
 遠赤外線の有効波長帯は、TFE系ポリマーの均質な融着を促す点から、2~20μmが好ましい。
Examples of the firing method include a method using an oven, a method using a ventilation drying oven, and a method of irradiating heat rays such as infrared rays. In order to increase the smoothness of the surface of the resin layer, pressure may be applied with a heating plate, a heating roll, or the like. As a firing method, a method of irradiating far-infrared rays is preferable because firing can be performed in a short time and a far-infrared ray furnace is relatively compact. In the firing, infrared heating and hot air heating may be combined.
The effective wavelength band of the far infrared ray is preferably 2 to 20 μm from the viewpoint of promoting uniform fusion of the TFE-based polymer.
 焼成における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、焼成における雰囲気は、酸素ガス等の酸化性ガス雰囲気、水素ガス等の還元性ガス雰囲気、ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等の不活性ガス雰囲気のいずれであってもよく、金属箔及び樹脂層の酸化劣化を抑える点からは、還元性ガス雰囲気又は不活性ガス雰囲気であることが好ましい。 雰 囲 気 The atmosphere in the firing may be under normal pressure or under reduced pressure. The atmosphere in the firing may be any of an oxidizing gas atmosphere such as an oxygen gas, a reducing gas atmosphere such as a hydrogen gas, and an inert gas atmosphere such as a helium gas, a neon gas, an argon gas, and a nitrogen gas. From the viewpoint of suppressing the oxidative deterioration of the foil and the resin layer, the atmosphere is preferably a reducing gas atmosphere or an inert gas atmosphere.
 焼成における雰囲気は、不活性ガスから構成され、酸素ガス濃度が低い雰囲気であることが好ましく、窒素ガスから構成され、酸素ガス濃度(体積基準)が500ppm未満の雰囲気であることが特に好ましい。また、酸素ガス濃度(体積基準)は、通常、1ppm以上である。この範囲において、分散剤のさらなる酸化分解が抑えられ、樹脂層の接合性を向上させやすい。
 焼成温度としては、300℃超が好ましく、330~380℃が特に好ましい。この場合、TFE系ポリマーが、緻密な樹脂層をより形成しやすい。
 焼成温度に保持する時間としては、30秒~5分間が好ましい。
The atmosphere in the firing is preferably an atmosphere composed of an inert gas and having a low oxygen gas concentration, particularly preferably an atmosphere composed of a nitrogen gas and having an oxygen gas concentration (by volume) of less than 500 ppm. The oxygen gas concentration (based on volume) is usually 1 ppm or more. Within this range, further oxidative decomposition of the dispersant is suppressed, and the bonding property of the resin layer is easily improved.
The firing temperature is preferably higher than 300 ° C., and particularly preferably 330 to 380 ° C. In this case, the TFE-based polymer can more easily form a dense resin layer.
The time for maintaining the firing temperature is preferably 30 seconds to 5 minutes.
 樹脂付金属箔においては、樹脂層の線膨張係数を制御したり、樹脂層の接合性をさらに改善したりするために、樹脂層の表面を表面処理してもよい。
 表面処理としては、アニール処理、コロナ放電処理、大気圧プラズマ処理、真空プラズマ処理、UVオゾン処理、エキシマ処理、ケミカルエッチング、シランカップリング処理、微粗面化処理等が挙げられる。
 アニール処理における、温度、圧力及び時間は、この順に、80~190℃、0.001~0.030MPa、10~300分間であることが好ましい。
In the resin-attached metal foil, the surface of the resin layer may be surface-treated in order to control the coefficient of linear expansion of the resin layer or to further improve the bonding property of the resin layer.
Examples of the surface treatment include annealing treatment, corona discharge treatment, atmospheric pressure plasma treatment, vacuum plasma treatment, UV ozone treatment, excimer treatment, chemical etching, silane coupling treatment, and fine surface roughening treatment.
The temperature, pressure, and time in the annealing treatment are preferably 80 to 190 ° C., 0.001 to 0.030 MPa, and 10 to 300 minutes in this order.
 プラズマ処理におけるプラズマ照射装置としては、高周波誘導方式、容量結合型電極方式、コロナ放電電極-プラズマジェット方式、平行平板型、リモートプラズマ型、大気圧プラズマ型、ICP型高密度プラズマ型等が挙げられる。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス等が挙げられ、希ガス及び窒素ガスが好ましい。プラズマ処理に用いるガスの具体例としては、アルゴンガス、水素ガスと窒素ガスの混合ガス、水素ガスと窒素ガスとアルゴンガスの混合ガスが挙げられる。
 プラズマ処理における雰囲気としては、希ガス又は窒素ガスの体積分率が70体積%以上の雰囲気が好ましく、100体積%の雰囲気が特に好ましい。この範囲において、樹脂層の表面のRaを2.5μm以下に調整して、樹脂付金属箔の樹脂層の表面に微細凹凸を形成しやすい。
Examples of the plasma irradiation apparatus in the plasma processing include a high-frequency induction method, a capacitive coupling electrode method, a corona discharge electrode-plasma jet method, a parallel plate type, a remote plasma type, an atmospheric pressure plasma type, an ICP type high density plasma type, and the like. .
Examples of a gas used for the plasma treatment include an oxygen gas, a nitrogen gas, a rare gas (eg, argon), a hydrogen gas, and an ammonia gas, and a rare gas and a nitrogen gas are preferable. Specific examples of the gas used for the plasma treatment include an argon gas, a mixed gas of hydrogen gas and nitrogen gas, and a mixed gas of hydrogen gas, nitrogen gas, and argon gas.
The atmosphere in the plasma treatment is preferably an atmosphere having a volume fraction of a rare gas or a nitrogen gas of 70% by volume or more, and particularly preferably an atmosphere having a volume fraction of 100% by volume. Within this range, Ra on the surface of the resin layer is adjusted to 2.5 μm or less to easily form fine irregularities on the surface of the resin layer of the metal foil with resin.
 樹脂付金属箔における樹脂層の表面のRaとしては、2nm~2.5μmが好ましく、5nm~1μmが特に好ましい。樹脂層の表面のRzとしては、15nm~2.5μmが好ましく、50nm~2μmが特に好ましい。この範囲において、樹脂付金属箔とプリプレグとの接合性と、樹脂層の表面の加工のしやすさとをバランスさせやすい。 RRa of the surface of the resin layer in the metal foil with resin is preferably 2 nm to 2.5 μm, particularly preferably 5 nm to 1 μm. Rz on the surface of the resin layer is preferably from 15 nm to 2.5 μm, particularly preferably from 50 nm to 2 μm. Within this range, it is easy to balance the bondability between the resin-attached metal foil and the prepreg and the ease of processing the surface of the resin layer.
 樹脂付金属箔の樹脂層の表面にプリプレグを積層して積層体とする方法としては、樹脂付金属箔とプリプレグとを熱プレスする方法が挙げられる。
 プレス温度としては、TFE系ポリマーの融点以下が好ましく、160~220℃が特に好ましい。この範囲において、樹脂の熱劣化を抑えつつ、第1の樹脂層と第2の樹脂層とを強固に接合できる。
As a method of laminating the prepreg on the surface of the resin layer of the resin-attached metal foil to form a laminate, a method of hot-pressing the resin-attached metal foil and the prepreg is exemplified.
The pressing temperature is preferably equal to or lower than the melting point of the TFE polymer, and particularly preferably 160 to 220 ° C. Within this range, the first resin layer and the second resin layer can be firmly joined while suppressing thermal degradation of the resin.
 熱プレスは、20kPa以下の真空度で行うことが特に好ましい。この範囲において、積層体における金属箔、第1の樹脂層、第2の樹脂層のそれぞれの界面への気泡混入と酸化による劣化とを抑制できる。
 また、熱プレス時は前記真空度に到達した後に昇温することが好ましい。前記真空度に到達する前に昇温すると、第1の樹脂層が軟化した状態、すなわち一定程度の流動性、密着性がある状態にて圧着されてしまい、気泡の原因となる。
 熱プレスにおける圧力としては、0.2~10MPaが好ましい。この範囲において、プリプレグの破損を抑えつつ、第1の樹脂層と第2の樹脂層とを強固に接合できる。
It is particularly preferable to perform the hot pressing at a degree of vacuum of 20 kPa or less. Within this range, it is possible to suppress the incorporation of bubbles into the respective interfaces of the metal foil, the first resin layer, and the second resin layer in the laminate, and deterioration due to oxidation.
In the case of hot pressing, it is preferable to raise the temperature after reaching the degree of vacuum. If the temperature is increased before reaching the degree of vacuum, the first resin layer is pressed in a softened state, that is, in a state having a certain degree of fluidity and adhesion, which causes bubbles.
The pressure in the hot press is preferably from 0.2 to 10 MPa. In this range, the first resin layer and the second resin layer can be firmly joined while suppressing breakage of the prepreg.
 本発明の積層体は、電気特性、耐薬品性(エッチング耐性)等の物性に優れたTFE系ポリマーを第1の樹脂層の材料とするため、本発明の積層体は、フレキシブル銅張積層板やリジッド銅張積層板として、プリント基板の製造に用いることができる。
 例えば、本発明の積層体の金属箔をエッチング処理して所定のパターンの導体回路(伝送回路)に加工する方法や、本発明の積層体の金属箔を電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によって伝送回路に加工する方法によって、本発明の積層体からプリント基板を製造できる。
Since the laminate of the present invention uses a TFE-based polymer having excellent physical properties such as electrical properties and chemical resistance (etching resistance) as the material of the first resin layer, the laminate of the present invention is a flexible copper-clad laminate. Or as a rigid copper-clad laminate for the production of printed circuit boards.
For example, a method of etching the metal foil of the laminate of the present invention to form a conductor circuit (transmission circuit) having a predetermined pattern, or a method of electroplating the metal foil of the laminate of the present invention (semi-additive method (SAP method)) ), A modified semi-additive method (MSAP method), etc.) to manufacture a printed circuit board from the laminate of the present invention by a method of processing into a transmission circuit.
 本発明の積層体から製造されたプリント基板は、金属材料からなる伝送回路(すなわち、本発明の積層体の金属箔の一部が除去されてなる層)、第1の樹脂層、第2の樹脂層をこの順に有する。本発明のプリント基板の層構成としては、伝送回路/第1の樹脂層/第2の樹脂層、伝送回路/第1の樹脂層/第2の樹脂層/第1の樹脂層/伝送回路が挙げられる。
 プリント基板の製造においては、伝送回路を形成した後に、伝送回路上に層間絶縁膜を形成し、層間絶縁膜上にさらに伝送回路を形成してもよい。層間絶縁膜は、例えば、本発明におけるパウダー分散液によっても形成できる。
 プリント基板の製造においては、伝送回路上にソルダーレジストを積層してもよい。ソルダーレジストは、本発明におけるパウダー分散液によって形成できる。
 プリント基板の製造においては、伝送回路上にカバーレイフィルムを積層してもよい。カバーレイフィルムは、本発明におけるパウダー分散液によっても形成できる。
A printed circuit board manufactured from the laminate of the present invention includes a transmission circuit made of a metal material (that is, a layer formed by removing a part of the metal foil of the laminate of the present invention), a first resin layer, and a second resin layer. It has a resin layer in this order. The layer structure of the printed circuit board according to the present invention includes transmission circuit / first resin layer / second resin layer, transmission circuit / first resin layer / second resin layer / first resin layer / transmission circuit. No.
In manufacturing a printed circuit board, after forming a transmission circuit, an interlayer insulating film may be formed over the transmission circuit, and the transmission circuit may be further formed over the interlayer insulating film. The interlayer insulating film can also be formed by, for example, the powder dispersion of the present invention.
In manufacturing a printed circuit board, a solder resist may be laminated on a transmission circuit. The solder resist can be formed by the powder dispersion of the present invention.
In manufacturing a printed circuit board, a coverlay film may be laminated on a transmission circuit. The coverlay film can also be formed by the powder dispersion of the present invention.
 プリント基板の具体的な態様としては、本発明の積層体構造を多層化した多層プリント回路基板が挙げられる。
 多層プリント回路基板の好適な態様としては、多層プリント回路基板の最外層が第1の樹脂層であり、金属材料からなる伝送回路(すなわち、本発明の積層体の金属箔の一部が除去されてなる層)、第1の樹脂層、第2の樹脂層がこの順に積層された構成を1以上有する態様が挙げられる。また、第1の樹脂層と第2の樹脂層の間に、伝送回路が配置されていてもよい。
As a specific embodiment of the printed circuit board, there is a multilayer printed circuit board in which the laminated structure of the present invention is formed into multiple layers.
In a preferred embodiment of the multilayer printed circuit board, the outermost layer of the multilayer printed circuit board is the first resin layer, and the transmission circuit made of a metal material (that is, a part of the metal foil of the laminate of the present invention is removed). Layer), a first resin layer, and a second resin layer are laminated in this order in one or more embodiments. Further, a transmission circuit may be provided between the first resin layer and the second resin layer.
 前記態様の多層プリント回路基板は、最外層に第1の樹脂層を有しており耐熱性に優れており、具体的には、288℃においても、第1の樹脂層と第2の樹脂層の界面膨れや伝送回路と第1の樹脂層の界面剥離が発生しにくい。特に、金属箔の一部が除去されて露出した第1の樹脂層と第2の樹脂層との接触面を有する場合、かかる傾向が顕著になり易い。金属箔の表面粗さが第1の樹脂層の表面に転写されて生じた第1の樹脂層の表面粗さが、第2の樹脂層との接触においてアンカー効果を発現するためと考えられる。その結果、プラズマ処理等の親水化処理を施すことなく、それぞれの界面が強固に接合し、加熱時にも界面膨れや界面剥離、特に最外層における膨れや剥離が抑制されたと考えられる。 The multilayer printed circuit board of the above aspect has the first resin layer as the outermost layer and is excellent in heat resistance. Specifically, even at 288 ° C., the first resin layer and the second resin layer Swelling and interface peeling between the transmission circuit and the first resin layer hardly occur. In particular, when the metal foil has a contact surface between the first resin layer and the second resin layer which is exposed after being removed, the tendency is likely to be remarkable. It is considered that the surface roughness of the first resin layer generated by transferring the surface roughness of the metal foil to the surface of the first resin layer exerts an anchor effect in contact with the second resin layer. As a result, it is considered that the respective interfaces were firmly joined without performing the hydrophilic treatment such as the plasma treatment, and the swelling and separation of the interface, particularly the swelling and separation of the outermost layer were suppressed even during heating.
 多層プリント回路基板の好適な態様としては、多層プリント回路基板の最外層が第2の樹脂層であり、伝送回路、第1の樹脂層、第2の樹脂層がこの順に積層された構成を1以上有する態様も挙げられる。また、第1の樹脂層と第2の樹脂層の間に、伝送回路が配置されていてもよい。 As a preferred embodiment of the multilayer printed circuit board, the outermost layer of the multilayer printed circuit board is a second resin layer, and the transmission circuit, the first resin layer, and the second resin layer are stacked in this order. There is also an embodiment having the above. Further, a transmission circuit may be provided between the first resin layer and the second resin layer.
 前記態様の多層プリント回路基板は、最外層に第2の樹脂層を有していても耐熱性に優れており、具体的には、300℃においても、第1の樹脂層と第2の樹脂層の界面膨れや伝送回路と第1の樹脂層の界面剥離が発生しにくい。特に、伝送回路を形成している場合、つまり、金属箔の一部が除去されて露出した第1の樹脂層と第2の樹脂層との接触面を有する場合、かかる傾向が顕著になり易い。金属箔の表面粗さが第1の樹脂層の表面に転写されて生じた第1の樹脂層の表面粗さが、第2の樹脂層との接触においてアンカー効果を発現するためと考えられる。その結果、プラズマ処理等の親水化処理を施すことなく、それぞれの界面が強固に接合し、加熱時にも界面膨れや界面剥離、特に最外層における膨れや剥離が抑制されたと考えられる。
 これらの態様における多層プリント回路基板は、はんだリフロー耐性に優れたプリント基板として有用である。
The multilayer printed circuit board of the above aspect has excellent heat resistance even if it has the second resin layer as the outermost layer. Specifically, even at 300 ° C., the first resin layer and the second resin layer Interfacial swelling of the layer and interface peeling between the transmission circuit and the first resin layer hardly occur. In particular, when a transmission circuit is formed, that is, when there is a contact surface between the first resin layer and the second resin layer which are exposed by removing a part of the metal foil, such a tendency is likely to be remarkable. . It is considered that the surface roughness of the first resin layer generated by transferring the surface roughness of the metal foil to the surface of the first resin layer exerts an anchor effect in contact with the second resin layer. As a result, it is considered that the respective interfaces were firmly joined without performing a hydrophilic treatment such as a plasma treatment, and the interface swelling and interfacial peeling even during heating, particularly the swelling and peeling in the outermost layer, were suppressed.
The multilayer printed circuit board in these aspects is useful as a printed board having excellent solder reflow resistance.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種測定方法を以下に示す。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
Various measurement methods are shown below.
 (ポリマーの融点)
 示差走査熱量計(セイコーインスツル社製、DSC-7020)を用い、TFE系ポリマーを10℃/分の速度で昇温させて測定した。
 (ポリマーの貯蔵弾性率)
 ISO 6721-4:1994(JIS K 7244-4:1999)に基づき、動的粘弾性測定装置(SIIナノテクノロジー社製、DMS6100)を用い、周波数10Hz、静的力0.98N、動的変位0.035%の条件にて、ポリマーの温度を2℃/分の速度で20℃から上昇させ、260℃における貯蔵弾性率を測定した。
 (パウダーのD50及びD90)
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、LA-920測定器)を用い、パウダーを水中に分散させて測定した。
 (反り率)
 積層体から180mm角の四角い試験片を切り出した。この試験片について、JIS C 6471:1995に規定される測定方法にしたがって反り率を測定した。
 (剥離強度)
 積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出した。試験片の長さ方向の一端から50mmの位置まで、樹脂付銅箔とプリプレグの硬化物とを剥離した。次いで、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、最大荷重を剥離強度(N/cm)とした。
 (はんだ耐熱性試験)
 積層体を288℃のはんだ浴に5秒間、5回浮かべた後、第1の樹脂層とプリプレグの硬化物層との界面の膨れの有無、及び金属箔と第1の樹脂層との界面の剥離の有無を確認した。
(Melting point of polymer)
Using a differential scanning calorimeter (DSC-7020, manufactured by Seiko Instruments Inc.), the TFE polymer was heated at a rate of 10 ° C./min and measured.
(Storage modulus of polymer)
Based on ISO 6721-4: 1994 (JIS K 7244-4: 1999), using a dynamic viscoelasticity measuring device (DMS6100, manufactured by SII Nanotechnology), frequency 10 Hz, static force 0.98 N, dynamic displacement 0 Under the condition of 0.035%, the temperature of the polymer was increased from 20 ° C. at a rate of 2 ° C./min, and the storage modulus at 260 ° C. was measured.
(Powder D50 and D90)
The powder was dispersed in water using a laser diffraction / scattering type particle size distribution analyzer (LA-920 measuring device manufactured by Horiba, Ltd.), and the measurement was performed.
(Warpage rate)
A square test piece of 180 mm square was cut out from the laminate. With respect to this test piece, the warpage rate was measured according to a measurement method specified in JIS C6471: 1995.
(Peel strength)
From the laminate, a rectangular test piece having a length of 100 mm and a width of 10 mm was cut out. The resin-coated copper foil and the cured product of the prepreg were peeled off from one end of the test piece in the length direction to a position of 50 mm. Next, the test piece was peeled 90 ° at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the longitudinal direction of the test piece as the center, and the maximum load was measured for the peel strength (N / Cm).
(Solder heat resistance test)
After the laminate is floated five times in a solder bath at 288 ° C. for 5 seconds, the presence or absence of swelling at the interface between the first resin layer and the cured prepreg layer, and the interface between the metal foil and the first resin layer. The presence or absence of peeling was confirmed.
 使用した材料を以下に示す。
 銅箔1:超低粗度電解銅箔(福田金属箔粉工業社製、CF-T4X-SV、厚さ:18μm、RzJIS:1.2μm)。
 パウダー1:TFE単位の97.9モル%、NAH単位の0.1モル%及びPPVE単位の2.0モル%を有するポリマー1(融点300℃、フッ素含有量75.7質量%、260℃における貯蔵弾性率:1.1MPa)からなるパウダー(D50:1.7μm、D90:3.8μm)。
 ポリイミド前駆体溶液1:宇部興産社製、U-ワニスST(固形分18重量%)。
 ポリイミド1:非反応型の熱可塑性ポリイミド(5%重量減少温度:300℃以上、ガラス転移点:260℃)
 分散剤1:CH=CHC(O)O(CHOCF(CF)C(CF(CF)(=C(CF)とCH=CHC(O)O(CHCHO)10Hとのコポリマー。
 プリプレグ1:FR-4(パナソニック社製。銅箔をエッチングしたR1755C 0.6mmをコアとし、R1650CG 0.1tを2重に重ねあわせてコアの両面に重ねたプリプレグ)。
 プリプレグ2:パナソニック社製。R-5670 0.2mm。
 プリプレグ3:パナソニック社製。R-5680 0.2mm。
 プリプレグ4:パナソニック社製。R-1650C 0.2mm。
 なお、プリプレグ1~4は、いずれもフッ素原子を有さない熱硬化性マトリックス樹脂を含むプリプレグである。なお、以下、これらプリプレグを加熱加圧して形成した第2の樹脂をプリプレグ硬化物という。
The materials used are shown below.
Copper foil 1: Ultra-low roughness electrolytic copper foil (CF-T4X-SV, manufactured by Fukuda Metal Foil & Powder Co., Ltd., thickness: 18 μm, Rz JIS : 1.2 μm).
Powder 1: Polymer 1 having 97.9 mol% of TFE units, 0.1 mol% of NAH units and 2.0 mol% of PPVE units (melting point 300 ° C., fluorine content 75.7% by weight, at 260 ° C. Powder composed of storage modulus: 1.1 MPa (D50: 1.7 μm, D90: 3.8 μm).
Polyimide precursor solution 1: U-varnish ST (solid content 18% by weight) manufactured by Ube Industries, Ltd.
Polyimide 1: Non-reactive thermoplastic polyimide (5% weight loss temperature: 300 ° C. or higher, glass transition point: 260 ° C.)
Dispersant 1: CH 2 = CHC (O ) O (CH 2) 4 OCF (CF 3) C (CF (CF 3) 2) (= C (CF 3) 2) and CH 2 = CHC (O) O ( CH 2 CH 2 O) 10 H.
Prepreg 1: FR-4 (manufactured by Panasonic Corporation, a prepreg in which 0.6 mm of R1755C obtained by etching a copper foil is used as a core, and 0.1 t of R1650CG is superimposed on both sides of the core).
Prepreg 2: manufactured by Panasonic Corporation. R-5670 0.2 mm.
Prepreg 3: manufactured by Panasonic Corporation. R-5680 0.2 mm.
Prepreg 4: manufactured by Panasonic Corporation. R-1650C 0.2 mm.
The prepregs 1 to 4 are prepregs each containing a thermosetting matrix resin having no fluorine atom. Hereinafter, the second resin formed by heating and pressing these prepregs is referred to as a prepreg cured product.
 (例1)
 パウダー1の50質量部、分散剤1の5質量部及びN-メチルピロリドンの45質量部を含むパウダー分散液を、銅箔1の表面にダイコーターを用いて塗布した。パウダー分散液が塗布された銅箔1を通風乾燥炉(雰囲気温度:230℃、雰囲気ガス:酸素ガス濃度8000ppmの窒素ガス)に通して1分間保持し、遠赤外線炉(温度:380℃、ガス:酸素ガス濃度100ppm未満の窒素ガス)にさらに通して3分間焼成した。銅箔1の表面に厚さ5μmの第1の樹脂層を有する樹脂付銅箔を得た。さらに、樹脂付銅箔の第1の樹脂層の表面を真空プラズマ処理して樹脂付銅箔1を得た。プラズマ処理条件は、出力:4.5kW、導入ガス:アルゴンガス、導入ガス流量:50cm/分、圧力:6.7Pa、処理時間:2分間とした。
 樹脂付銅箔1の第1の樹脂層の表面に、プリプレグ1を重ね、プレス温度:185℃、プレス圧力:3.0MPa、プレス時間:60分間の条件にて、真空熱プレスして、銅箔1、第1の樹脂層、プリプレグ硬化物層をこの順に有する、積層体1を得た。プリプレグ硬化物層の厚さは1200μmであり、積層体1の反り率は0.3%であり、剥離強度は12N/cmであった。積層体をはんだ浴に浮かべるはんだ耐熱性試験において、積層体1は288℃のはんだに5秒間、5回浮かべても、第1の樹脂層とプリプレグ硬化物の界面に膨れは発生せず、銅箔の第1の樹脂層からの浮きも発生しなかった。
(Example 1)
A powder dispersion containing 50 parts by mass of powder 1, 5 parts by mass of dispersant 1 and 45 parts by mass of N-methylpyrrolidone was applied to the surface of copper foil 1 using a die coater. The copper foil 1 coated with the powder dispersion was passed through a ventilation drying furnace (atmosphere temperature: 230 ° C., atmosphere gas: nitrogen gas having an oxygen gas concentration of 8000 ppm) and held for 1 minute. : Nitrogen gas having an oxygen gas concentration of less than 100 ppm) for 3 minutes. A resin-coated copper foil having a 5 μm-thick first resin layer on the surface of the copper foil 1 was obtained. Further, the surface of the first resin layer of the copper foil with resin was subjected to vacuum plasma treatment to obtain the copper foil with resin 1. The plasma processing conditions were as follows: output: 4.5 kW, introduced gas: argon gas, introduced gas flow rate: 50 cm 3 / min, pressure: 6.7 Pa, and processing time: 2 minutes.
The prepreg 1 is overlaid on the surface of the first resin layer of the resin-coated copper foil 1, and subjected to vacuum hot pressing under the conditions of a press temperature: 185 ° C., a press pressure: 3.0 MPa, and a press time: 60 minutes. A laminate 1 having a foil 1, a first resin layer, and a prepreg cured product layer in this order was obtained. The thickness of the prepreg cured product layer was 1200 μm, the warpage ratio of the laminate 1 was 0.3%, and the peel strength was 12 N / cm. In the solder heat resistance test in which the laminate is floated in a solder bath, the laminate 1 does not swell at the interface between the first resin layer and the cured prepreg even if the laminate 1 is floated five times for 5 seconds at 288 ° C. No lifting of the foil from the first resin layer occurred.
 (例2)
 積層体1の銅箔をエッチング処理し、酸素ガスと水素ガスとアルゴンガスと窒素ガスの混合ガスを用いてドライデスミア処理した。第1の樹脂層の表面に、プリプレグ1を重ね、例1と同様に真空熱プレスして積層体2を得た。積層体2についてはんだ耐熱性試験を実施した。第1の樹脂層とプリプレグ硬化物層との界面に膨れは発生せず、銅箔と第1の樹脂層との界面の剥離も発生しなかった。
 (例3)
 第1の樹脂層の厚さを0.8μmとした以外は例1と同様にして積層体3を得た。積層体3についてはんだ耐熱性試験を実施した。288℃のはんだに5秒間、2回浮かべた段階で、第1の樹脂層とプリプレグ硬化物層との界面に膨れが発生した。
 (例4)
 第1の樹脂層の厚さを25μmとした以外は例1と同様にして積層体4を得た。積層体4についてはんだ耐熱性試験を実施した。288℃のはんだに5秒間、5回浮かべると、銅箔と第1の樹脂層との界面の剥離が発生した。
(Example 2)
The copper foil of the laminate 1 was subjected to an etching treatment and a dry desmear treatment using a mixed gas of oxygen gas, hydrogen gas, argon gas and nitrogen gas. The prepreg 1 was placed on the surface of the first resin layer, and was subjected to vacuum hot pressing in the same manner as in Example 1 to obtain a laminate 2. The laminate 2 was subjected to a solder heat resistance test. No swelling occurred at the interface between the first resin layer and the cured prepreg layer, and no separation occurred at the interface between the copper foil and the first resin layer.
(Example 3)
A laminate 3 was obtained in the same manner as in Example 1, except that the thickness of the first resin layer was changed to 0.8 μm. The laminate 3 was subjected to a solder heat resistance test. At the stage of being floated twice on the solder at 288 ° C. for 5 seconds, swelling occurred at the interface between the first resin layer and the cured prepreg layer.
(Example 4)
A laminate 4 was obtained in the same manner as in Example 1 except that the thickness of the first resin layer was changed to 25 μm. The laminate 4 was subjected to a solder heat resistance test. Floating in the solder at 288 ° C. for 5 seconds five times caused peeling of the interface between the copper foil and the first resin layer.
 (例5)
 樹脂付銅箔1の第1の樹脂層の表面にプリプレグ2を重ね、プリプレグ2の両面を樹脂付銅箔1で挟んだ状態にて、195℃、3.5MPaの加圧条件にて、75分間、真空熱プレスして積層体5を得た。積層体5の剥離強度は8N/cmであった。
 (例6)
 樹脂付銅箔1の第1の樹脂層の表面にプリプレグ3を重ね、プリプレグ3の両面を樹脂付銅箔1で挟んだ状態にて、195℃、3.5MPaの加圧条件にて、75分間、真空熱プレスして積層体6を得た。積層体6の剥離強度は9N/cmであった。
 (例7)
 樹脂付銅箔1の第1の樹脂層の表面にプリプレグ4を重ね、プリプレグ4の両面を樹脂付銅箔1で挟んだ状態にて、175℃、3.0MPaの加圧条件にて、60分間、真空熱プレスして積層体7を得た。積層体7の剥離強度は10N/cmであった。
(Example 5)
The prepreg 2 is superimposed on the surface of the first resin layer of the resin-coated copper foil 1, and the prepreg 2 is sandwiched between both surfaces of the resin-coated copper foil 1 under a pressure of 195 ° C. and 3.5 MPa. Laminate 5 was obtained by vacuum hot pressing for 5 minutes. The peel strength of the laminate 5 was 8 N / cm.
(Example 6)
The prepreg 3 is superimposed on the surface of the first resin layer of the resin-coated copper foil 1, and the both sides of the prepreg 3 are sandwiched between the resin-coated copper foils 1, at a pressure of 195 ° C. and a pressure of 3.5 MPa. Laminate 6 was obtained by vacuum hot pressing for minutes. The peel strength of the laminate 6 was 9 N / cm.
(Example 7)
The prepreg 4 is superimposed on the surface of the first resin layer of the resin-coated copper foil 1, and both sides of the prepreg 4 are sandwiched between the resin-coated copper foils 1, at 175 ° C. and under a pressure of 3.0 MPa. Laminate 7 was obtained by vacuum hot pressing for minutes. The peel strength of the laminate 7 was 10 N / cm.
 (例8)
 パウダー1の40質量部、ポリイミド前駆体溶液1の10重量部、分散剤1の5質量部及びN-メチルピロリドンの45質量部を含むパウダー分散液を調製した。このパウダー分散液を使用する以外は、例1と同様にして樹脂付銅箔を得た。この樹脂付銅箔の第1の樹脂層をプラズマ処理することなく、その表面にプリプレグ1を重ね、例1と同様に真空熱プレスして、積層体8を得た。積層体8は、硬化物層の厚さが1200μmであり、反り率は0.1%であり、剥離強度は8N/cmであった。
 積層体8は、はんだ浴に浮かべるはんだ耐熱性試験において、288℃のはんだ浴に5秒間、5回浮かべても、第1の樹脂層とプリプレグ硬化物層の界面に膨れは発生せず、第1の樹脂層から銅箔が浮く現象も発生しなかった。
(Example 8)
A powder dispersion containing 40 parts by weight of powder 1, 10 parts by weight of polyimide precursor solution 1, 5 parts by weight of dispersant 1, and 45 parts by weight of N-methylpyrrolidone was prepared. A resin-coated copper foil was obtained in the same manner as in Example 1 except that this powder dispersion was used. The prepreg 1 was overlaid on the surface of the first resin layer of the resin-coated copper foil without plasma treatment, and was subjected to vacuum hot pressing in the same manner as in Example 1 to obtain a laminate 8. The laminate 8 had a cured product layer thickness of 1200 μm, a warpage rate of 0.1%, and a peel strength of 8 N / cm.
In the solder heat resistance test in which the laminate 8 floats on the solder bath, even if the laminate 8 floats 5 times for 5 seconds in a solder bath at 288 ° C., no swelling occurs at the interface between the first resin layer and the cured prepreg layer. The phenomenon that the copper foil floated from the resin layer 1 did not occur.
 (例9)
 パウダー1の45質量部、ポリイミド1の1重量部、分散剤1の5質量部及びN-メチルピロリドンの49質量部を含むパウダー分散液を調製した。このパウダー分散液を使用する以外は、例1と同様にして樹脂付銅箔を得た。この樹脂付銅箔の第1の樹脂層をプラズマ処理することなく、その表面にプリプレグ1を重ね、例1と同様に真空熱プレスして、積層体9を得た。この積層体9は、プリプレグ硬化物層の厚さが1200μmであり、反り率は0.1%であり、剥離強度は12N/cmであった。
 この積層体9は、はんだ浴に浮かべるはんだ耐熱性試験において、288℃のはんだ浴に5秒間、5回浮かべても、第1の樹脂層とプリプレグ硬化物層の界面に膨れは発生せず、第1の樹脂層から銅箔が浮く現象も発生しなかった。
(Example 9)
A powder dispersion containing 45 parts by weight of powder 1, 1 part by weight of polyimide 1, 5 parts by weight of dispersant 1, and 49 parts by weight of N-methylpyrrolidone was prepared. A resin-coated copper foil was obtained in the same manner as in Example 1 except that this powder dispersion was used. The prepreg 1 was stacked on the surface of the first resin layer of the resin-coated copper foil without performing plasma treatment, and was subjected to vacuum hot pressing in the same manner as in Example 1 to obtain a laminate 9. In this laminate 9, the thickness of the cured prepreg layer was 1200 μm, the warpage was 0.1%, and the peel strength was 12 N / cm.
In the solder heat resistance test, the laminated body 9 does not swell at the interface between the first resin layer and the cured prepreg layer even if it is floated five times in a solder bath at 288 ° C. for 5 seconds for 5 seconds. The phenomenon that the copper foil floated from the first resin layer did not occur.
 (例10)積層体の伝送損失評価
 プリント基板としての高周波信号の伝送特性を評価するため、積層体に伝送線路を形成してプリント基板とし、その信号伝送損失を測定した。
 積層体としては、積層体5(第1の樹脂層の厚さ:5μm)、積層体51(第1の樹脂層の厚さを12μmとする以外は積層体5と同様にして作製された積層体。)、積層体50(第1の樹脂層を設けない以外は積層体5と同様にして作製された積層体。)をそれぞれ用いた。
 測定系としては、2GHz~40GHzの信号をベクトルネットワークアナライザー(キーサイトテクノロジー社製、E8361A)を用いて処理し、GSGの高周波コンタクトプローブ(Picoprobe社製、250μmピッチ)によって測定した。
 プリント基板に形成する伝送線路は、背面導体付のコプレナー導波路(Conductor Backed Co-Planar Waveguide)を用いた。
 線路の特性インピーダンスは、50Ωとした。
 プリント基板の導体である銅の表面には金フラッシュめっきを施した。
 校正方法はTRL校正(Thru-Reflect-Line校正)を用いた。
 線路の長さは50mmとし、単位長さあたりの伝送損失を測定した。
 伝送損失の尺度としては、高周波電子回路や高周波電子部品の特性を表すために使用される回路網パラメータの一つである「S-parameter」(以下、S値とも記す。)を使用した。S値は、その値が0に近い程、伝送損失が小さいことを意味する。
(Example 10) Evaluation of transmission loss of laminate In order to evaluate the transmission characteristics of a high-frequency signal as a printed board, a transmission line was formed in the laminate to form a printed board, and the signal transmission loss was measured.
As a laminate, a laminate 5 (thickness of the first resin layer: 5 μm) and a laminate 51 (a laminate produced in the same manner as the laminate 5 except that the thickness of the first resin layer is 12 μm) ) And a laminate 50 (a laminate produced in the same manner as the laminate 5 except that the first resin layer is not provided).
As a measurement system, a signal of 2 GHz to 40 GHz was processed using a vector network analyzer (E8361A, manufactured by Keysight Technology), and measured by a high-frequency GSG contact probe (250 μm pitch, manufactured by Picoprobe).
As a transmission line formed on a printed board, a coplanar waveguide (Conductor Backed Co-Planar Waveguide) with a back conductor was used.
The characteristic impedance of the line was set to 50Ω.
Gold flash plating was applied to the surface of copper, which is the conductor of the printed circuit board.
The calibration method used was TRL calibration (Thru-Reflect-Line calibration).
The length of the line was set to 50 mm, and the transmission loss per unit length was measured.
As a measure of the transmission loss, "S-parameter" (hereinafter also referred to as S value), which is one of the network parameters used to represent the characteristics of a high-frequency electronic circuit or a high-frequency electronic component, was used. The S value means that the closer the value is to 0, the smaller the transmission loss is.
 周波数28GHzにおける、積層体50、積層体5、積層体51のS値は、この順に-1.76、-1.64、-1.51であった。積層体5は積層体50に対して7%、積層体51は積層体50に対して14%の、S値の改善率を示した。この改善率は、周波数(2~40GHz)によらず、一定であった。
 なお、積層体5における銅箔1を別の銅箔(三井金属鉱業社製のHS1-VSP、三井金属鉱業社製のHS2-VSP、福田金属箔粉工業社製のCF-T9DA-SV。)に変更しても、同じ改善効果が得られた。さらに、積層体5におけるプリプレグ2を別のプリプレグ(プリプレグ3、プリプレグ4)に変更しても、同じ改善効果が得られた。
The S values of the stacked body 50, the stacked body 5, and the stacked body 51 at a frequency of 28 GHz were -1.76, -1.64, and -1.51 in this order. The laminate 5 showed a 7% improvement with respect to the laminate 50, and the laminate 51 showed a 14% improvement with respect to the laminate 50 with respect to the S value. This improvement rate was constant irrespective of the frequency (2 to 40 GHz).
The copper foil 1 in the laminate 5 was replaced with another copper foil (HS1-VSP manufactured by Mitsui Kinzoku Mining, HS2-VSP manufactured by Mitsui Kinzoku Mining, CF-T9DA-SV manufactured by Fukuda Metal Foil & Powder Co., Ltd.). Even if it changed to, the same improvement effect was obtained. Further, even when the prepreg 2 in the laminate 5 was changed to another prepreg (prepreg 3, prepreg 4), the same improvement effect was obtained.
 積層体5、積層体50、積層体51のそれぞれに関して、アンテナ特性をシミュレーション評価した。シミュレーションに際しては、電磁界解析シミュレータ(ダッソー・システムズ社製、CST MICROWAVE STUDIO)を用い、積層体をモデリングし、積層体に28GHz帯の4素子パッチアレイアンテナを形成して、その放射特性を解析した。積層体50、積層体5、積層体51の28GHzにおける利得は、この順に、12.1dBi、12.2dBi、12.4dBiであり、積層体5は積層体50に対して1%、積層体51は積層体50に対して3%の改善率を示した。
 所定の厚さの第1の樹脂層を有する積層体(積層体5、51)から形成されるアンテナは、前記第1の樹脂層を有さない積層体(積層体50)のそれに比較して、アンテナ特性が向上していることが確認された。
The antenna characteristics of each of the laminate 5, the laminate 50, and the laminate 51 were evaluated by simulation. At the time of the simulation, the laminated body was modeled using an electromagnetic field analysis simulator (CST MICROWAVE STUDIO, manufactured by Dassault Systèmes), a four-element patch array antenna of 28 GHz band was formed on the laminated body, and its radiation characteristics were analyzed. . The gains at 28 GHz of the stacked body 50, the stacked body 5, and the stacked body 51 are 12.1 dBi, 12.2 dBi, and 12.4 dBi in this order, and the stacked body 5 is 1% of the stacked body 50 and the stacked body 51 is Showed an improvement rate of 3% with respect to the laminate 50.
The antenna formed from the laminate (laminates 5 and 51) having the first resin layer having a predetermined thickness is compared with the antenna (laminate 50) having no first resin layer. It was confirmed that the antenna characteristics were improved.
 本発明の積層体は、プリント基板の材料として有用である。
 なお、2018年09月18日に出願された日本特許出願2018-173428号、2019年01月22日に出願された日本特許出願2019-008497号及び2019年03月07日に出願された日本特許出願2019-041110号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The laminate of the present invention is useful as a material for a printed circuit board.
Japanese Patent Application No. 2018-173428 filed on Sep. 18, 2018, Japanese Patent Application No. 2019-008497 filed on Jan. 22, 2019, and Japanese Patent Application No. 2007-008497 filed on Mar. 07, 2019 The entire contents of the specification, claims, abstract, and drawings of the application No. 2019-041110 are incorporated herein by reference and incorporated in the specification of the present invention.
 10 積層体、
 12 金属箔、
 14 第1の樹脂層、
 16 第2の樹脂層。
10 laminate,
12 metal foil,
14 first resin layer,
16 Second resin layer.

Claims (15)

  1.  金属箔、テトラフルオロエチレン系ポリマーを含む樹脂材料に由来する第1の樹脂層、フッ素含有量が0~40質量%のマトリックス樹脂を含むプリプレグに由来する第2の樹脂層をこの順に有し、前記第1の樹脂層の厚さが1.0~20μmである、積層体。 A metal foil, a first resin layer derived from a resin material containing a tetrafluoroethylene-based polymer, and a second resin layer derived from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass, in this order; A laminate wherein the thickness of the first resin layer is 1.0 to 20 μm.
  2.  前記第1の樹脂層の少なくとも一部と前記第2の樹脂層の少なくとも一部が接している、請求項1に記載の積層体。 The laminate according to claim 1, wherein at least a part of the first resin layer is in contact with at least a part of the second resin layer.
  3.  前記第2の樹脂層が、フッ素原子を有さない硬化性マトリックス樹脂を含むプリプレグの硬化物からなる層である、請求項1又は2に記載の積層体。 3. The laminate according to claim 1, wherein the second resin layer is a layer made of a cured product of a prepreg containing a curable matrix resin having no fluorine atom. 4.
  4.  前記第1の樹脂層が、さらに結着樹脂を含む前記樹脂材料に由来する樹脂層である、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the first resin layer is a resin layer derived from the resin material further including a binder resin.
  5.  前記結着樹脂を含む樹脂材料における前記結着樹脂の割合が、テトラフルオロエチレン系ポリマーに対して25質量%以下である、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the ratio of the binder resin in the resin material containing the binder resin is 25% by mass or less based on the tetrafluoroethylene-based polymer.
  6.  前記テトラフルオロエチレン系ポリマーの融点が、260~320℃である、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the melting point of the tetrafluoroethylene-based polymer is 260 to 320 ° C.
  7.  前記第1の樹脂層が、テトラフルオロエチレン系ポリマーを溶融して形成された層に由来する層である、請求項1~6のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the first resin layer is a layer derived from a layer formed by melting a tetrafluoroethylene-based polymer.
  8.  前記第1の樹脂層の厚さに対する前記第2の樹脂層の厚さの比が1以上である、請求項1~7のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein a ratio of a thickness of the second resin layer to a thickness of the first resin layer is 1 or more.
  9.  前記第1の樹脂層の厚さに対する金属箔の厚さの比が1以上である、請求項1~8のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 8, wherein a ratio of a thickness of the metal foil to a thickness of the first resin layer is 1 or more.
  10.  前記第1の樹脂層の厚さが、2~18μmである、請求項1~9のいずれか一項に記載の積層体。 (10) The laminate according to any one of (1) to (9), wherein the thickness of the first resin layer is 2 to 18 μm.
  11.  前記金属箔の表面粗さが、1μm未満である、請求項1~10のいずれか一項に記載の積層体。 積 層 The laminate according to any one of claims 1 to 10, wherein the metal foil has a surface roughness of less than 1 µm.
  12.  前記金属箔の厚さが、2~30μmである、請求項1~11のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 11, wherein the thickness of the metal foil is 2 to 30 μm.
  13.  請求項1~12のいずれか一項に記載の積層体の金属箔をエッチング処理して伝送回路を形成してプリント基板を得る、プリント基板の製造方法。 A method for manufacturing a printed circuit board, comprising: forming a transmission circuit by etching the metal foil of the laminate according to any one of claims 1 to 12 to obtain a printed circuit board.
  14.  金属材料からなる伝送回路、テトラフルオロエチレン系ポリマーに由来する第1の樹脂層、フッ素含有量が0~40質量%のマトリックス樹脂を含むプリプレグに由来する第2の樹脂層をこの順に有し、前記第1の樹脂層の厚さが1.0~20μmである、プリント基板。 A transmission circuit made of a metal material, a first resin layer derived from a tetrafluoroethylene-based polymer, and a second resin layer derived from a prepreg containing a matrix resin having a fluorine content of 0 to 40% by mass, in this order; A printed circuit board, wherein the thickness of the first resin layer is 1.0 to 20 μm.
  15.  請求項14に記載のプリント基板から形成されたアンテナ。 An antenna formed from the printed circuit board according to claim 14.
PCT/JP2019/035758 2018-09-18 2019-09-11 Laminate, printed board, and method for manufacturing same WO2020059606A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207036348A KR20210058748A (en) 2018-09-18 2019-09-11 Laminate, printed circuit board, and manufacturing method thereof
CN201980060574.9A CN112703107B (en) 2018-09-18 2019-09-11 Laminate, printed board, and method for producing same
JP2020548406A JP7400722B2 (en) 2018-09-18 2019-09-11 Laminate, printed circuit board and manufacturing method thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018173428 2018-09-18
JP2018-173428 2018-09-18
JP2019-008497 2019-01-22
JP2019008497 2019-01-22
JP2019041110 2019-03-07
JP2019-041110 2019-03-07

Publications (1)

Publication Number Publication Date
WO2020059606A1 true WO2020059606A1 (en) 2020-03-26

Family

ID=69888708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035758 WO2020059606A1 (en) 2018-09-18 2019-09-11 Laminate, printed board, and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP7400722B2 (en)
KR (1) KR20210058748A (en)
CN (1) CN112703107B (en)
TW (1) TWI821399B (en)
WO (1) WO2020059606A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112600050A (en) * 2020-10-20 2021-04-02 陕西斯瑞新材料股份有限公司 Auxiliary processing technology for copper foil flexible connection metal with high tear resistance
WO2022196617A1 (en) * 2021-03-17 2022-09-22 Agc株式会社 Metal-clad laminate and wiring board
JP7476721B2 (en) 2020-08-21 2024-05-01 Agc株式会社 Manufacturing method of laminate and laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176842A (en) * 1986-01-30 1987-08-03 株式会社日立製作所 Laminated board and manufacture thereof
JPH05259635A (en) * 1992-03-13 1993-10-08 Nitto Denko Corp Circuit board
JP2007123737A (en) * 2005-10-31 2007-05-17 Nippon Pillar Packing Co Ltd Board material and printed-circuit board
JP2016023294A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same
WO2018212285A1 (en) * 2017-05-18 2018-11-22 Agc株式会社 Fluorocarbon resin film and laminate, and production method for thermally-pressed laminate
WO2019131805A1 (en) * 2017-12-27 2019-07-04 Agc株式会社 Dispersion, metal laminate plate, and production method for printed board
WO2019142747A1 (en) * 2018-01-19 2019-07-25 Agc株式会社 Method for producing resin-equipped metal foil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286669B2 (en) * 2004-12-09 2013-09-11 旭硝子株式会社 Laminate for printed wiring boards
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
JP6565936B2 (en) * 2014-12-26 2019-08-28 Agc株式会社 LAMINATED BOARD AND FLEXIBLE PRINTED BOARD MANUFACTURING METHOD
JP2017002115A (en) 2015-06-04 2017-01-05 Apc株式会社 Fluorine resin film, laminated body, and method for producing the laminated body
JP6781580B2 (en) 2016-07-08 2020-11-04 株式会社アドヴィックス Vehicle braking device
JP6728529B2 (en) 2016-07-15 2020-07-22 住友電工ファインポリマー株式会社 Prepreg and multilayer board
KR102353961B1 (en) * 2016-07-22 2022-01-21 에이지씨 가부시키가이샤 Liquid composition and manufacturing method of film and laminate using the liquid composition
JP7151709B2 (en) 2017-07-07 2022-10-12 Agc株式会社 Method for manufacturing laminate, method for manufacturing laminate and flexible printed circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176842A (en) * 1986-01-30 1987-08-03 株式会社日立製作所 Laminated board and manufacture thereof
JPH05259635A (en) * 1992-03-13 1993-10-08 Nitto Denko Corp Circuit board
JP2007123737A (en) * 2005-10-31 2007-05-17 Nippon Pillar Packing Co Ltd Board material and printed-circuit board
JP2016023294A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Resin film-provided prepreg and metal-clad laminate and printed wiring board using the same
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same
WO2018212285A1 (en) * 2017-05-18 2018-11-22 Agc株式会社 Fluorocarbon resin film and laminate, and production method for thermally-pressed laminate
WO2019131805A1 (en) * 2017-12-27 2019-07-04 Agc株式会社 Dispersion, metal laminate plate, and production method for printed board
WO2019142747A1 (en) * 2018-01-19 2019-07-25 Agc株式会社 Method for producing resin-equipped metal foil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476721B2 (en) 2020-08-21 2024-05-01 Agc株式会社 Manufacturing method of laminate and laminate
CN112600050A (en) * 2020-10-20 2021-04-02 陕西斯瑞新材料股份有限公司 Auxiliary processing technology for copper foil flexible connection metal with high tear resistance
CN112600050B (en) * 2020-10-20 2022-04-22 陕西斯瑞新材料股份有限公司 Auxiliary processing technology for copper foil flexible connection metal with high tear resistance
WO2022196617A1 (en) * 2021-03-17 2022-09-22 Agc株式会社 Metal-clad laminate and wiring board

Also Published As

Publication number Publication date
TW202021799A (en) 2020-06-16
JPWO2020059606A1 (en) 2021-08-30
KR20210058748A (en) 2021-05-24
CN112703107B (en) 2023-05-02
CN112703107A (en) 2021-04-23
TWI821399B (en) 2023-11-11
JP7400722B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
US11370200B2 (en) Fluororesin film and laminate, and method for producing hot pressed laminate
EP3489299A1 (en) Liquid composition, and method for manufacturing film and layered body using same
CN113348208B (en) Dispersion liquid
CN112236302B (en) Method for producing resin-coated metal foil, laminate, and printed board
WO2020059606A1 (en) Laminate, printed board, and method for manufacturing same
CN112203844B (en) Method for producing resin-coated metal foil and resin-coated metal foil
WO2020158604A1 (en) Laminate, method for producing same, method for producing composite laminate, and method for producing polymer film
JP7176533B2 (en) Method for manufacturing resin-coated metal foil
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
JP2020070401A (en) Dispersion liquid
JP2020083990A (en) Manufacturing method of composite, and composite
JP2020146970A (en) Laminate and production method of laminate
JP7452534B2 (en) Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate
KR102667496B1 (en) Method for manufacturing resin-attached metal foil
WO2020171024A1 (en) Laminate, and method for producing laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863262

Country of ref document: EP

Kind code of ref document: A1