JPS62174373A - Chromium target material and its production - Google Patents

Chromium target material and its production

Info

Publication number
JPS62174373A
JPS62174373A JP23220486A JP23220486A JPS62174373A JP S62174373 A JPS62174373 A JP S62174373A JP 23220486 A JP23220486 A JP 23220486A JP 23220486 A JP23220486 A JP 23220486A JP S62174373 A JPS62174373 A JP S62174373A
Authority
JP
Japan
Prior art keywords
less
target material
purity
powder
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23220486A
Other languages
Japanese (ja)
Other versions
JPH032230B2 (en
Inventor
Mutsuo Kazuyasu
一安 六夫
Takeo Mizuguchi
水口 丈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JPS62174373A publication Critical patent/JPS62174373A/en
Publication of JPH032230B2 publication Critical patent/JPH032230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Abstract

PURPOSE:To obtain a Cr target material having a good vapor deposition characteristic at a high yield by packing specific metallic Cr powder having high purity to a capsule made of a steel, etc., and hermetically sealing the capsule then subjecting the powder to hot isotropic hydrostatic molding. CONSTITUTION:The high-purity Cr powder consisting of respectively <=0.05% C and N and the balance inevitable impurities, contg. >=90% 20 mesh grain size and the balance <=10 mesh and having >=99.5% purity is packed into the steel or stainless steel capsule. The powder is hermetically sealed under <=10<-3>mmHg vacuum, and is subjected to hot isotropic hydrostatic molding (HIP) for >=30min at >=1,000 deg.C under >=500kgf/cm<2> pressure. The powder is preferably subjected to hot working at about 700-1,200 deg.C and is further preferably subjected to warm working at about <=50% working rate at preferably about >=250 deg.C after the HIP. The molding is finally heated for about >=20min at about 600-1,100 deg.C in succession thereof and is subjected to an annealing treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は乾式クロム蒸着被覆に使用する素材及びその製
造方法、いわゆるスパッタリング、イオン蒸着などのタ
ーゲツト材及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a material used for dry chromium vapor deposition coating and a method for producing the same, a target material for so-called sputtering, ion vapor deposition, etc. and a method for producing the same.

〔従来の技術〕[Conventional technology]

エレクトロニクス産業において、クロム蒸着薄膜はLS
I製造時のマスキング用、磁気ハードディスクの基盤コ
ーティング用などにスパッタリング法、イオンブレーテ
ィング法などにより製作し、盛んに利用されている。
In the electronics industry, chromium-deposited thin films are LS
It is manufactured by sputtering method, ion blating method, etc., and is widely used for masking during I manufacturing and for base coating of magnetic hard disks.

このクロムターゲット材はその要求特性として高純度の
もの、少なくとも、99.5%以上のものが要求されて
おり、それぞれの用途、装置に応じて99.9%以上、
99.99%以上などの基準のものもある。
This chromium target material is required to have high purity, at least 99.5% or higher, depending on the application and equipment.
There are also standards such as 99.99% or higher.

このような高純度クロムの製造法としては、クロム酸溶
液の電気分解法、クロム酸溶液から不純物の有機溶媒抽
出による精製クロム酸化物の水素還元法、電気分解相ク
ロムを沃素化し、これを熱分解する沃素法、または金属
カルシウム蒸気によるCa還元法などがある。電解クロ
ムは酸素、水素などのガス含有量が多い。沃素法は、8
00℃付近で沃素と反応させ、生成沃化物を昇華させて
1100〜1300℃のフィラメント上に熱分解させる
法でC10、Nなどの非金属元素をとくに低くすること
ができる。Ca還元法は高真空容器内で金属Caと粗ク
ロムとを1000℃前後に加熱するとCaが蒸発し、蒸
気圧20nwnl(gとなり、粗クロムを還元する。一
方、この蒸気は反応管中の低温域に蒸着する。このよう
にしてCa蒸気と接することによりクロム中の酸素を還
元するものであるがCaOなどが混在する。
Methods for producing such high-purity chromium include electrolysis of a chromic acid solution, hydrogen reduction of purified chromium oxide by organic solvent extraction of impurities from a chromic acid solution, and iodine of electrolytic phase chromium, which is then heated. Examples include the decomposition iodine method and the Ca reduction method using metallic calcium vapor. Electrolytic chromium has a high content of gases such as oxygen and hydrogen. The iodine method is 8
The content of nonmetallic elements such as C10 and N can be particularly reduced by reacting with iodine at around 00°C, sublimating the produced iodide, and thermally decomposing it on a filament at 1100 to 1300°C. In the Ca reduction method, metallic Ca and crude chromium are heated to around 1000°C in a high-vacuum container, and the Ca evaporates, giving a vapor pressure of 20 nwnl (g) and reducing the crude chromium. In this way, oxygen in chromium is reduced by contacting with Ca vapor, but CaO and the like are mixed therein.

このようにして得られた高純度クロムは粒状。The high-purity chromium obtained in this way is in granular form.

板状、粉状であり、ターゲット用として使用するときは
溶解鋳造、圧縮、焼結などによって成形する必要があり
、それぞれ次のような問題点がある。
They are in the form of plates or powders, and when used as targets, they must be formed by melting casting, compression, sintering, etc., and each has the following problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

クロムを溶解するには真空中または不活性ガス雰囲気中
で1880℃以上の高温加熱をする必要がある。酸素と
の反応性が強いため、高級ルツボ材、たとえばジルコニ
ア質、アルミナ質でなげねばならず、それでもなお酸素
を取り込む。すなわちルツボ材により汚染される結果と
なる。また、他方溶解鋳造は凝固収縮を生ずるため押湯
は不可欠であり、総じて全部の歩留は70%以下である
To melt chromium, it is necessary to heat it to a high temperature of 1880° C. or higher in a vacuum or an inert gas atmosphere. Because of its strong reactivity with oxygen, it must be treated with high-grade crucible materials such as zirconia and alumina, which still absorb oxygen. In other words, this results in contamination by the crucible material. On the other hand, since melt casting causes solidification shrinkage, a riser is indispensable, and the overall yield is generally less than 70%.

さらに紡造品は鋳造結晶粒が粗大化しやすく、そのまま
では熱間、温間、冷間の塑性加工は不可能であり、鋼製
またはステンレス製のカプセルにて包み、これと−緒に
塑性加工をおこなえば、小物についてはどうにか塑性加
工が可能であるが、鋳造インゴット肉厚が70Il11
1程度以上になると非常に困難である。このため、従来
はターゲツト材の製品は、鋳造インゴットそのものから
切出していたために必然的に歩留は相当劣るものであっ
た。
Furthermore, the cast crystal grains of textile products tend to become coarse, and hot, warm, and cold plastic processing is impossible if they are left untreated, so they are wrapped in a steel or stainless steel capsule, and plastic processing is carried out along with them. If you do this, it is possible to plastically process small items, but the thickness of the cast ingot is 70Il11.
It is extremely difficult when the value exceeds about 1. For this reason, in the past, target material products were cut from the cast ingot itself, which inevitably resulted in a considerably poor yield.

他方圧縮成形後、焼結する方法も提案されている。圧縮
成形をおこなう場合、潤滑剤などに起因する汚染防止、
さらに1500℃以上にもおよぶ焼結温度に起因する酸
化防止のための高純度水素の利用、および還元ガス中に
生ずる水蒸気の急速な排出法が必要である。すなわち雰
囲気中の水蒸気分圧の厳重な調整を必要とする。
On the other hand, a method of sintering after compression molding has also been proposed. When performing compression molding, prevent contamination caused by lubricants, etc.
Furthermore, there is a need for the use of high purity hydrogen to prevent oxidation due to the sintering temperatures of over 1500° C., and a method for rapidly discharging the water vapor generated in the reducing gas. In other words, strict adjustment of the water vapor partial pressure in the atmosphere is required.

かくして得られた焼結晶はなお焼結粒間に若干の細孔が
残り、顕微鏡下でamされる。そのために熱間、温間、
冷間の塑性加工が回連であり、前述のようにステンレス
などのカプセルに収納して熱間加工をしてもカプセル中
で破砕し、加工は不可能に近いものであった。さらにか
かる圧縮成形−水素気流中焼結という方法では、圧縮成
形の際残留応力の不均一のために変形、亀裂などの問題
が発生するため、等方加圧法ラバープレスなどの利用も
報告されている(特公昭60−4241号)が、この場
合も焼結後焼結粒間に細孔が残り、ターゲット部品を作
製する場合は塑性加工が不可能なため焼結晶より直接切
出し1機械加工仕上に依らざるを得なかった。
The thus obtained sintered crystals still have some pores between the sintered grains and are examined under a microscope. For that purpose, hot, warm,
Cold plastic working is repeated, and as mentioned above, even if it was placed in a capsule made of stainless steel or the like and hot worked, it would fracture in the capsule, making processing nearly impossible. Furthermore, with this method of compression molding and sintering in a hydrogen stream, problems such as deformation and cracking occur due to non-uniform residual stress during compression molding, so the use of isostatic pressure method rubber press etc. has also been reported. (Japanese Patent Publication No. 60-4241), but in this case as well, pores remain between the sintered grains after sintering, and plastic working is not possible when producing target parts, so the sintered crystal is directly cut out and machined. I had no choice but to rely on it.

更に以上のような問題点を解決する高クロム合金材の製
造法として特開昭55−154551号に、特定条件下
で原料粉末をカプセルに封入し、次いで熱間等方静水圧
成形、熱間加工する発明が開示されている。
Furthermore, as a manufacturing method for high chromium alloy materials that solves the above-mentioned problems, Japanese Patent Application Laid-Open No. 55-154551 describes a method in which raw material powder is encapsulated in capsules under specific conditions, followed by hot isostatic pressing and hot isostatic pressing. An invention for processing is disclosed.

本発明者らは1以上の公知技術を基に研究を行なった結
果、クロムターゲット材として最適の製造方法、および
蒸着性の優れたクロムターゲット材の発明に至ったもの
である。
As a result of research conducted by the present inventors based on one or more known techniques, they have arrived at the invention of an optimal manufacturing method for a chromium target material and a chromium target material with excellent vapor deposition properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、純度99.5%以下で、炭素、窒素をそれぞ
れ0.05%以下、残部不可避的不純物よりなり、粒度
20メツシュ以下が90%、残部10メツシュ以下であ
る高純度金属クロム粉末を熱間等方静水圧成形したこと
を特徴とするクロムターゲット材、および純度99.5
%以上で炭素、窒素をそれぞれ0.05%以下、残部不
可避的不純物よりなり、粒度20メツシュ以下が90%
、残部10メツシュ以下である高純度金属クロム粉末を
鋼またはステンレス鋼カプセルに充填し、 110−3
nnH以下で真空密封したのち、1000℃以上、50
0kgf/cm2以上の圧力で30分以上熱間等方静水
圧成形することを特徴とするクロムターゲット材の製造
方法である。なお、本願発明方法において前記熱間等方
静水圧成形後に700−1200℃の温度範囲で熱間加
工をする、更に引き続いて50%以下の加工率で塑性加
工、望ましくは250℃以上で温間加工をし、最終的に
600〜1100℃の範囲で20分以上加熱処理して焼
なまし処理する態様で実施することが望ましい。
The present invention provides high-purity metallic chromium powder with a purity of 99.5% or less, carbon and nitrogen content of 0.05% or less each, and the balance consisting of unavoidable impurities, 90% of which has a particle size of 20 mesh or less, and the remainder 10 mesh or less. A chromium target material characterized by hot isostatic pressing, and a purity of 99.5
% or more, carbon and nitrogen are each 0.05% or less, the balance is unavoidable impurities, and 90% has a particle size of 20 mesh or less.
, filling a steel or stainless steel capsule with high-purity metallic chromium powder with a balance of 10 mesh or less, 110-3
After vacuum sealing at nnH or less, 1000℃ or more, 50
This is a method for producing a chromium target material, characterized by hot isostatic pressing at a pressure of 0 kgf/cm2 or more for 30 minutes or more. In addition, in the method of the present invention, after the hot isostatic pressing, hot working is performed in a temperature range of 700-1200°C, and subsequently, plastic working is performed at a working rate of 50% or less, preferably warm at 250°C or higher. It is desirable to carry out the process in such a manner that the material is processed and finally annealed by heat treatment in the range of 600 to 1100° C. for 20 minutes or more.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

まず、ターゲツト材について説明する。First, the target material will be explained.

純度を99.5%以上としたのは、これ以下の純度では
ターゲツト材としては不向であるためである。
The reason why the purity is set to 99.5% or more is because if the purity is lower than this, it is not suitable as a target material.

また、C,Nの濃度を500PPo+以下としたのはC
1Nはクロムの延伸性に関係深く、含有量が多くなると
硬さも高くなり脆化して来る。このため、蒸着薄膜の剥
離がおこる。そのために500PPmを越えることは好
ましくない。
In addition, the concentration of C and N was set to 500 PPo+ or less because C
1N is closely related to the extensibility of chromium, and as the content increases, the hardness increases and the chromium becomes brittle. For this reason, peeling of the deposited thin film occurs. Therefore, it is not preferable to exceed 500 PPm.

また、使用する高純度金属クロム粉末の粒度を20メツ
シュ以下90%以上、残部10メツシュ以下としたのは
、それ以上の粗粒が混じると熱間加工時に破砕するため
である。
Furthermore, the particle size of the high-purity metal chromium powder used is set to 90% or less of 20 mesh or less, and the remainder to 10 mesh or less, because if larger coarse particles are mixed in, they will be crushed during hot working.

次に本発明ターゲツト材の製造方法について説明する。Next, a method for manufacturing the target material of the present invention will be explained.

使用する高純度金属クロム粉末については上述の通りで
ある。
The high purity metallic chromium powder used is as described above.

前記高純度金属クロム粉末を鋼またはステンレス製カプ
セルに10’ nn11g以下の真空条件下で密封する
が、これは10すmm1gを越えると、原料粉末に付着
しているガスや水分等の除去が十分に行なわれないため
である。この際カプセルの肉厚は4mm以下が望ましい
The high-purity metal chromium powder is sealed in a steel or stainless steel capsule under vacuum conditions with a weight of 10 mm or less, but if it exceeds 10 mm or 1 g, gases, moisture, etc. attached to the raw material powder can be removed sufficiently. This is because it will not be done. In this case, the wall thickness of the capsule is preferably 4 mm or less.

次に高純度金属クロム粉末を充填したこのカプセルを熱
間等方静水圧圧密装置i!(HIP)により、1000
℃以上で圧力500kgf/adで0.5時間以上圧密
する。
Next, this capsule filled with high-purity metal chromium powder is placed in a hot isostatic pressure compaction machine i! (HIP), 1000
Consolidation is performed at a temperature of 500 kgf/ad or more at a temperature of 0.5 hours or more.

この方法によるとたとえば200 mmφ程度の素材の
中心にても十分圧密効果が及んでおり、顕微鏡観察によ
っても、粒子間に細孔は検知されない。
According to this method, the compaction effect is sufficient even in the center of a material of, for example, about 200 mmφ, and no pores are detected between the particles even by microscopic observation.

また密度もほぼ理論密度に到達している。Moreover, the density has almost reached the theoretical density.

かくして得られた圧密品をカプセルのまま850〜11
50℃で熱間加工を行なえば容易に板状のもの。
The compressed product obtained in this way is 850 to 11
It can be easily made into a plate by hot working at 50°C.

棒状のものを作り得る。加熱温度を850〜1150℃
とするのは、850℃未満では加工時割れが生ずる危険
があり、また1150℃を越えると熱間加工が困難なた
めである。
You can make stick-shaped things. Heating temperature 850-1150℃
This is because if the temperature is lower than 850°C, there is a risk of cracking during processing, and if the temperature exceeds 1150°C, hot working is difficult.

このように850〜1150℃にて熱間加工を行なえば
If hot working is performed at 850 to 1150°C in this way.

その後さらに塑性加工が可能となる。特に、加工率50
%以下、250℃以上の温間にて加工すると、結晶粒が
繊細になり、靭性が向上し、このため研削などの機械加
工が容易となる。さらにカプセルの肉厚の検知を可能に
し、目標寸法に精度よく仕上げることができるようにな
る。そのため製品歩留が向上する。
After that, further plastic working becomes possible. In particular, the processing rate is 50
% or less, and when processed at a temperature of 250° C. or higher, the crystal grains become finer and the toughness improves, making machining such as grinding easier. Furthermore, it becomes possible to detect the wall thickness of the capsule, allowing it to be finished to target dimensions with high accuracy. Therefore, product yield is improved.

この温間加工前の焼なましは必ずしも必要でなく、加工
率、硬さなどにより決める。
This annealing before warm working is not necessarily necessary, and is determined depending on the processing rate, hardness, etc.

最終的には、結晶粒を微細化させない温度域、時間で焼
なましを行なう。
Finally, annealing is performed within a temperature range and for a time that does not cause grain refinement.

以上の工程が終了したら最終的にはカプセル部は除去さ
れる。カプセル部を研削除去して、希望とする寸法のも
のに作ることができ、塩酸または王水でエッチすればク
ロム質と容易に区別することができる。
After the above steps are completed, the capsule portion is finally removed. It can be made into desired dimensions by removing the capsule, and can be easily distinguished from chromium by etching with hydrochloric acid or aqua regia.

このようにして作ったターゲツト材は使用中にガスを発
生することもなく、蒸着クロムの厚さの不均一、またタ
ーゲツト板の肌荒れ、消耗の不均一などの欠陥は全くな
い。鋳造のままのターゲツト材では結晶粒の粗大不揃い
のためにピット発生、また焼結晶ターゲットではガス気
孔に由来すると考えられるピット発生のトラブルが発生
して再研磨は不可避であったが、I(IPmによるター
ゲツト材ではこれらはなくなった。なお、最終時の焼な
ましは残留応力の除去のためで、これが残留すると機械
加工後、またはスパッタリング使用時変形を起こすため
である。
The target material produced in this manner does not generate gas during use and has no defects such as uneven thickness of deposited chromium, rough surface of the target plate, or uneven wear. In the as-cast target material, pits occur due to coarse and irregular crystal grains, and in the case of fired crystal targets, pits occur due to gas pores, making re-polishing unavoidable. These problems disappeared in the target material produced by the method.Final annealing was performed to remove residual stress, which would cause deformation after machining or during sputtering.

〔実施例〕〔Example〕

実施例1 純度99.6%、C120ppm、 N 80ppm、
 0400ppmの純クロム粉末で、90%以上が48
メツシュ以下で残部10メツシュ以下の粒度のものを鋼
製のカプセル(径60φ、長さ280mm、肉厚2 r
m )に10−’ +mHgの真空下で密封した。これ
を1180℃で100100O/airの圧力で1時間
HI Pにて圧密した。圧密化後の純度、C,N、O量
は粉末時と変動がなかった(以下の実施例も同様)。こ
れより直径10mmφ、長10nwnの鍛造試験片を切
出し、鍛造試験機により高温で衝撃エネルギーを加えて
変形率と亀裂の発生の有無を調べた。結果を図に示す。
Example 1 Purity 99.6%, C 120 ppm, N 80 ppm,
0400ppm pure chromium powder, more than 90% is 48
A steel capsule (diameter 60 φ, length 280 mm, wall thickness 2 r
m) was sealed under a vacuum of 10-' + mHg. This was consolidated by HIP at 1180° C. and a pressure of 100,100 O/air for 1 hour. The purity, C, N, and O content after compaction did not vary from that of the powder (the same applies to the following examples). From this, a forged test piece with a diameter of 10 mmφ and a length of 10 nwn was cut out, and impact energy was applied at high temperature using a forging tester to examine the deformation rate and the presence or absence of cracks. The results are shown in the figure.

700〜1050℃の範囲では35〜45%の変形率ま
で亀裂のないことがわかった。
It was found that there was no cracking in the range of 700 to 1050°C up to a deformation rate of 35 to 45%.

変形率とは、(Ql−Q□)xtOO/Q□で表わす。The deformation rate is expressed as (Ql-Q□)xtOO/Q□.

Q□、Q2は鍛造前後の長さを示す。Q□ and Q2 indicate the length before and after forging.

実施例2 純度99.99%、C18ppm、 N 10ppm、
 030ppmの沃化物分解法によって製造した純クロ
ム粒を粉砕し90%以上を28メツシュ以下、残部10
メツシュ以下として、これを5US304ステンレス製
のカプセル(内径240nwnφ、高さ40nvn、肉
厚3m)に充填し、10’ n+mHgにて真空吸引し
て密封した。このカプセルをHIPにて1200℃、1
00100O/a+fにて1時間圧密したのち、カプセ
ルに包んだまま950〜1150℃の範囲にて熱間加工
し、全体を12mの板にしたのち、ステンレスカプセル
を取除いて9mmのクロム板を作った。950℃にて1
時間加熱徐冷して焼なまししたのち、スパッタリング用
ターゲットに切削加工仕上した。
Example 2 Purity 99.99%, C18ppm, N 10ppm,
Pure chromium grains produced by the iodide decomposition method at 0.30 ppm are crushed, 90% or more are 28 mesh or less, and the remainder is 10
The mixture was packed into a 5US304 stainless steel capsule (inner diameter 240nwnφ, height 40nvn, wall thickness 3m) and sealed by vacuum suction at 10'n+mHg. This capsule was heated at 1200℃ in HIP for 1
After consolidating at 00100O/a+f for 1 hour, hot working in the range of 950 to 1150℃ while still encased in the capsule, the whole was made into a 12m plate, and the stainless steel capsule was removed to make a 9mm chrome plate. Ta. 1 at 950℃
After being annealed by heating and slowly cooling for a period of time, it was finished by cutting into a sputtering target.

スパッタリング性の評価をおこなったが、作業は安定し
ていて、結晶粒間ピッティングも少なく。
We evaluated the sputtering properties and found that the work was stable and there was little pitting between grains.

使用中も肌荒れなどなく蒸着膜も均等であり良好な膜が
得られた。鋳造品、焼結晶の切出法によるターゲツト材
では、50時間のスパッタ一時間毎に平面研削が必要で
あるのに対し、本ターゲットでは肌荒れもなく、研削も
不必要であった。
Even during use, there was no roughening of the skin, and the deposited film was uniform and good. Target materials made by cutting out cast products or fired crystals require surface grinding every hour of sputtering for 50 hours, but this target did not have rough surfaces and did not require grinding.

実施例3 Cr純度99.7%、C800ppm、 N 500p
pmの純Cr粉を−28メツシュ95%に粉砕し、 S
US304mカプセル(180x40nm)に10−s
mmHgの真空下で充填し、これを1180℃1010
00)c/dの圧力下で圧密した。次いでこれを実施例
2と同様な方法で圧延し、153φX8++w++tの
ターゲットを作った。
Example 3 Cr purity 99.7%, C800ppm, N 500p
pm pure Cr powder is crushed to -28 mesh 95%, S
10-s in US304m capsule (180x40nm)
Filled under a vacuum of mmHg and heated to 1180℃1010
00) Consolidated under pressure of c/d. This was then rolled in the same manner as in Example 2 to produce a target of 153φX8++w++t.

スパッタリング方式により、1200人の薄膜を作製し
てフレメンステストにより剥離性を比較した。
Thin films were prepared by 1200 people using the sputtering method, and their removability was compared using the Flemens test.

50g荷重で実施した結果、剥離が生じた。一方。As a result of carrying out the test with a load of 50 g, peeling occurred. on the other hand.

実施例2のターゲットから得られた薄膜では1200人
にて60gの荷重にても全く剥離は認められなかった・ 実施例4 実施例2と同様にして全体を12nwaの板とし、さら
に880℃にて1時間加熱焼なましをしたのち、600
°Cにて温間加工を行ない、10nwnの板厚とした。
In the thin film obtained from the target of Example 2, no peeling was observed at all even under a load of 60 g by 1200 people. Example 4 A 12 nwa plate was formed as a whole in the same manner as Example 2, and further heated to 880°C. After heating and annealing for 1 hour,
Warm working was performed at °C to give a plate thickness of 10 nwn.

これを850℃で30分焼なまししたのち、カプセルを
削除して8.4冊のクロム板を作った。組織は、細長く
伸びた結晶粒と一部再結晶した混合組織となっており、
硬さはt(v150であった。ターゲツト材に機械加工
したが、edgeの欠けなどのトラブルがなく、靭性が
高く取扱い易いものであった6実施例5 Cr純度990g%、C170ppm、 N 330p
pm、 0400ppmの水素還元法で得られたクロム
を粉砕し、28メツシュ以下のものを95%、残部10
メツシュ以下として、これを内径1601wwφ、高さ
40++w++のステンレス製カプセルに充填し、10
’ nwHHの真空中で密封し、これを1200℃、1
000気圧にて1.5時間、HIP!@にて圧密した。
After annealing this at 850°C for 30 minutes, the capsules were removed and 8.4 chrome plates were made. The structure is a mixed structure with elongated crystal grains and some recrystallization.
The hardness was t(v150). Although the target material was machined, there were no problems such as edge chipping, and it had high toughness and was easy to handle.6 Example 5 Cr purity 990g%, C170ppm, N 330p
pm, 0400 ppm chromium obtained by hydrogen reduction method is crushed, 95% is less than 28 mesh, and the remainder is 10
Fill it into a stainless steel capsule with an inner diameter of 1601wwφ and a height of 40++w++, and
' nwHH sealed in vacuum and heated at 1200°C for 1
HIP! for 1.5 hours at 000 atm! Consolidated at @.

これをステンレス製カプセルのまま850〜1050℃
の範囲内にて熱間加工して20mm板厚とした。さらに
これを冷間で16mmの板厚まで加工し、850℃にて
1時間焼なましをおこない、冷間で13mmの板厚に仕
上げた。途中カプセルの亀裂、その他のトラブルはなか
った。さらに850℃にて焼なまししたのち、カプセル
を切削除去して9■厚の純クロム製スパッタリングター
ゲットを作製した。スパッタリング性の評価、蒸着膜の
耐剥離性などをおこない、満足すべき結果が得られた。
This is kept in a stainless steel capsule at 850-1050℃.
The plate was hot worked within the range of 20 mm in thickness. Further, this was cold worked to a thickness of 16 mm, annealed at 850° C. for 1 hour, and finished to a thickness of 13 mm by cold working. There were no cracks in the capsule or other troubles during the flight. After further annealing at 850°C, the capsule was cut and removed to produce a pure chromium sputtering target with a thickness of 9 cm. Satisfactory results were obtained by evaluating the sputtering properties and peeling resistance of the deposited film.

〔発明の効果〕〔Effect of the invention〕

以上説明のように本発明によれば、蒸着性の良好なりロ
ムターゲットを高歩留で製造することが可能であり工業
上有益である。
As described above, according to the present invention, it is possible to produce a ROM target with good vapor deposition properties at a high yield, which is industrially useful.

【図面の簡単な説明】[Brief explanation of drawings]

第り図は実施例1における鍛造試験結果である。各温度
において、亀裂の発生をみない変形率の限度を示したも
のである。これにより区域Aは亀裂の発生しない範囲を
示すものである。 第 l 図 加M温泉℃
Figure 2 shows the forging test results in Example 1. This shows the limit of the deformation rate without cracking at each temperature. As a result, area A indicates a range in which no cracks occur. Figure l KaM hot spring ℃

Claims (1)

【特許請求の範囲】 1 純度99.5%以上で炭素、窒素をそれぞれ0.0
5%以下、残部不可避的不純物からなり、粒度20メッ
シュ以下が90%以上、残部10メッシュ以下である高
純度金属クロム粉末を熱間等方静水圧成形したことを特
徴とするクロムターゲット材。 2 純度99.5%以上で炭素、窒素をそれぞれ0.0
5%以下、残部不可避的不純物からなり、粒度20メッ
シュ以下が90%以上、残部10メッシュ以下である高
純度金属クロム粉末を鋼またはステンレス鋼カプセルに
充填し、10^−^3mmHg以下で真空密封したのち
1000℃以上、500kgf/cm^2以上の圧力で
30分以上熱間等方静水圧成形することを特徴とするク
ロムターゲット材の製造方法。 3 熱間等方静水圧成形後、700〜1200℃の温度
範囲で熱間加工する特許請求の範囲第2項記載のクロム
ターゲット材の製造方法。 4 熱間等方静水圧成形後、700〜1200℃の温度
範囲で熱間加工し、さらに50%以下の加工率で塑性加
工を行なう特許請求の範囲第2項記載のクロムターゲッ
ト材の製造方法。 5 塑性加工が50%以下の加工率、250℃以上の温
度で実施される特許請求の範囲第4項記載のクロムター
ゲット材の製造方法。 6 塑性加工後、600〜1100℃の範囲で20分以
上加熱して焼なまし処理する特許請求の範囲第4項ない
し第5項のいずれかに記載のクロムターゲット材の製造
方法。
[Claims] 1. Purity of 99.5% or more and 0.0% carbon and 0.0% nitrogen each
A chromium target material obtained by hot isostatically forming a high-purity metallic chromium powder having a particle size of 5% or less, the remainder consisting of unavoidable impurities, 90% or more having a particle size of 20 mesh or less, and the remainder 10 mesh or less. 2. Purity 99.5% or higher, carbon and nitrogen each 0.0
Fill a steel or stainless steel capsule with high-purity metallic chromium powder, which consists of 5% or less, the balance being unavoidable impurities, 90% or more having a particle size of 20 mesh or less, and the remainder 10 mesh or less, and vacuum-sealing at 10^-^3mmHg or less. A method for producing a chromium target material, which is then subjected to hot isostatic pressing at a temperature of 1000° C. or higher and a pressure of 500 kgf/cm^2 or higher for 30 minutes or longer. 3. The method for producing a chromium target material according to claim 2, wherein hot isostatic pressing is followed by hot working in a temperature range of 700 to 1200°C. 4. The method for producing a chromium target material according to claim 2, wherein after hot isostatic pressing, hot working is performed in a temperature range of 700 to 1200°C, and further plastic working is performed at a working rate of 50% or less. . 5. The method for producing a chromium target material according to claim 4, wherein the plastic working is performed at a working rate of 50% or less and a temperature of 250° C. or more. 6. The method for producing a chromium target material according to any one of claims 4 to 5, which comprises annealing by heating at a temperature of 600 to 1100° C. for 20 minutes or more after plastic working.
JP23220486A 1985-10-04 1986-09-30 Chromium target material and its production Granted JPS62174373A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-221457 1985-10-04
JP22145785 1985-10-04

Publications (2)

Publication Number Publication Date
JPS62174373A true JPS62174373A (en) 1987-07-31
JPH032230B2 JPH032230B2 (en) 1991-01-14

Family

ID=16767023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23220486A Granted JPS62174373A (en) 1985-10-04 1986-09-30 Chromium target material and its production

Country Status (1)

Country Link
JP (1) JPS62174373A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150356A (en) * 1989-11-02 1991-06-26 Hitachi Metals Ltd Tungsten or molybdenum target and production thereof
EP1746173A2 (en) * 2005-07-22 2007-01-24 Heraeus, Inc. Enhanced sputter target manufacturing method
EP1923481A2 (en) * 2005-07-22 2008-05-21 Heraeus, Inc. Enhanced sputter target manufacturing method
CN103785838A (en) * 2012-11-01 2014-05-14 宁波江丰电子材料有限公司 Chromium target production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126451A (en) * 1977-03-30 1978-11-21 Airco, Inc. Manufacture of plates by powder-metallurgy
JPS55154551A (en) * 1979-05-18 1980-12-02 Mitsubishi Metal Corp Manufacture of high chromium alloy material
JPS5792103A (en) * 1980-10-04 1982-06-08 Heraeus Gmbh W C Manufacture of target from chromium or chromium base alloy
JPS5855502A (en) * 1981-09-28 1983-04-01 Toyo Soda Mfg Co Ltd Preparation of metal chromium plate
JPS604241A (en) * 1983-06-22 1985-01-10 Nec Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126451A (en) * 1977-03-30 1978-11-21 Airco, Inc. Manufacture of plates by powder-metallurgy
JPS55154551A (en) * 1979-05-18 1980-12-02 Mitsubishi Metal Corp Manufacture of high chromium alloy material
JPS5792103A (en) * 1980-10-04 1982-06-08 Heraeus Gmbh W C Manufacture of target from chromium or chromium base alloy
JPS5855502A (en) * 1981-09-28 1983-04-01 Toyo Soda Mfg Co Ltd Preparation of metal chromium plate
JPS604241A (en) * 1983-06-22 1985-01-10 Nec Corp Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150356A (en) * 1989-11-02 1991-06-26 Hitachi Metals Ltd Tungsten or molybdenum target and production thereof
EP1746173A2 (en) * 2005-07-22 2007-01-24 Heraeus, Inc. Enhanced sputter target manufacturing method
EP1746173A3 (en) * 2005-07-22 2007-05-09 Heraeus, Inc. Enhanced sputter target manufacturing method
EP1923481A2 (en) * 2005-07-22 2008-05-21 Heraeus, Inc. Enhanced sputter target manufacturing method
EP1923481A3 (en) * 2005-07-22 2008-06-18 Heraeus, Inc. Enhanced sputter target manufacturing method
CN103785838A (en) * 2012-11-01 2014-05-14 宁波江丰电子材料有限公司 Chromium target production method
CN103785838B (en) * 2012-11-01 2016-06-01 宁波江丰电子材料股份有限公司 The making method of chromium target

Also Published As

Publication number Publication date
JPH032230B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
JP3103359B2 (en) Method of manufacturing tungsten-titanium sputtering target
KR102490248B1 (en) Powder metallurgy sputtering target and its production method
US5242481A (en) Method of making powders and products of tantalum and niobium
EP0118380B1 (en) Microstructural refinement of cast metal
US7566415B2 (en) Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders
EP1785502A1 (en) Direct rolling of cast gamma titanium aluminide alloys
JP6573629B2 (en) High purity refractory metal powders and their use in sputtering targets that can have disordered texture
CN102069189A (en) Powder metallurgy method for preparing high-purity materials
EP0203197B1 (en) Process for producing super-heat-resistant alloy material
EP0488996B1 (en) Sintered magnesium-based composite material and process for preparing same
JP2757287B2 (en) Manufacturing method of tungsten target
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
JPS62174373A (en) Chromium target material and its production
US5344605A (en) Method of degassing and solidifying an aluminum alloy powder
JPS61502546A (en) Zinc soluble metal powder and its manufacturing method
CN112626431B (en) Preparation method of prestressed bolt for medical ultrasonic transducer
EP0217303B1 (en) Nickel aluminide base compositions consolidated from powder
EP0568705B1 (en) Method for degassing and solidifying aluminum alloy powder
JPH03285040A (en) Manufacture of powder high speed steel
JPS6058289B2 (en) Manufacturing method of high chromium alloy material
JP2508631B2 (en) Metal chrome processing method
CN114672682B (en) High-performance powder metallurgy titanium alloy part and preparation method thereof
CN117488159A (en) TiNbZrTa refractory high-entropy alloy and preparation method thereof
JPH07100629A (en) Production of high-density material
CN117165824A (en) High-strength refractory high-entropy alloy with low density and excellent tensile plasticity, and preparation method and application thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees