JPS62162923A - Continuous level gage - Google Patents

Continuous level gage

Info

Publication number
JPS62162923A
JPS62162923A JP453586A JP453586A JPS62162923A JP S62162923 A JPS62162923 A JP S62162923A JP 453586 A JP453586 A JP 453586A JP 453586 A JP453586 A JP 453586A JP S62162923 A JPS62162923 A JP S62162923A
Authority
JP
Japan
Prior art keywords
sensing element
liquid level
electrodes
liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP453586A
Other languages
Japanese (ja)
Inventor
Etsuro Habata
悦朗 幅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP453586A priority Critical patent/JPS62162923A/en
Publication of JPS62162923A publication Critical patent/JPS62162923A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate overheating in a liquid and to reduce consumption electric power by using a positive characteristic thermistor as a detecting element and providing both electrodes on one plane of the element and making it possible to indicate a continuous change of a liquid level by simple constitution. CONSTITUTION:When the detecting element 6 using the positive characteristic thermistor with long-sized shape is in the air, the heat dissipation coefficient is reduced and the detecting element 6 generates heat for itself and attains thermal equilibrium with high temperature. In this way, a resistance value of the element 6 is made high and stable. On the other hand, the resistance value is reduced when the whole element 6 is in gasoline. Then, an electric current value of the element 6 is changed in a straight line according to the dipping. Further, the electrodes 7 are provided on one plane of the element 6 and the heat is generated only on a surface part between both the electrodes and generation of heat on the surface or the inside without the electrodes of the element 6 is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車などの燃料の量を、正特性サーミスタの
自己発熱の程度が液中と空中とで異なることを利用して
検知し表示するもので、液面の変化を連続的に表示でき
る連続式液位計に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention detects and displays the amount of fuel in automobiles, etc. by utilizing the fact that the degree of self-heating of a positive temperature coefficient thermistor differs between in liquid and in air. , relates to a continuous liquid level gauge that can continuously display changes in liquid level.

従来の技術 正特性サーミスタは、温度が上昇するとある温度(キュ
リ一温度)以上になると急激に抵抗値が上昇する性質を
持った感温抵抗体で、半導体セラミクスや高分子材料か
らなっている。これに電圧を印加して自己発熱させた場
合、その素子が空中にある時とガソリンなどの液中にあ
る時とでは温度が異なり、ひいてはその抵抗値が異なる
ことを利用して液面センサとして用いることができる。
Conventional technology A positive temperature coefficient thermistor is a temperature-sensitive resistor that has the property of rapidly increasing its resistance when the temperature rises above a certain temperature (Currie temperature), and is made of semiconductor ceramics or polymer materials. If a voltage is applied to this element to generate self-heating, the temperature will be different when the element is in the air and when it is in a liquid such as gasoline, and the resistance value will also be different. This can be used as a liquid level sensor. Can be used.

従来のこの種の液位針は、負特性サーミスタを用いたも
のが実用化されている。第7図でその構成を示す。第7
図において、1はロッド状の負特性サーミスタによる検
知素子で、2はそれに固着されているニッケルなどのリ
ード線である。3は絶縁板、4は金嬌筒で、これらでケ
ースを構成し、この中央部に前記検知素子1がリード線
2を介して固定されている。6はランプであり、これに
検知素子1と電源とを直列に接続しである。
Conventional liquid level needles of this type that use a negative characteristic thermistor have been put into practical use. FIG. 7 shows its configuration. 7th
In the figure, numeral 1 is a sensing element made of a rod-shaped negative characteristic thermistor, and numeral 2 is a lead wire made of nickel or the like fixed thereto. Reference numeral 3 denotes an insulating plate, and 4 denotes a metal tube, which together constitute a case, to the center of which the detection element 1 is fixed via a lead wire 2. 6 is a lamp, to which the detection element 1 and a power source are connected in series.

このような液位針において、検知素子1が空中にある時
は、検知素子1の熱放散係数が小さいため、発熱しやす
く温度が高くなる。そのため検知素子1の抵抗が小さく
なり、流れる電流が犬きく、ランプ5が点灯する。また
、金属筒4が液中にある時は、透孔aから液が入り、検
知素子1が液に浸漬される。この時は検知素子1の熱が
液に奪われ、熱放散係数が犬きくなるので、検知素子1
の抵抗が大きくなって回路に流れる電流が少なくなり、
ランプ5が消灯する。
In such a liquid level needle, when the sensing element 1 is in the air, since the heat dissipation coefficient of the sensing element 1 is small, it is easy to generate heat and the temperature becomes high. Therefore, the resistance of the sensing element 1 becomes smaller, the current flowing becomes stronger, and the lamp 5 lights up. Further, when the metal cylinder 4 is in the liquid, the liquid enters through the through hole a, and the sensing element 1 is immersed in the liquid. At this time, the heat of the sensing element 1 is taken away by the liquid, and the heat dissipation coefficient becomes small, so the sensing element 1
The resistance increases and the current flowing through the circuit decreases,
Lamp 5 goes out.

第8図、第9図はさらに別の従来例で、第7図に示した
負特性サーミスタを複数個用い、液面の変化を段階的に
表示できるものである。(実開昭57−105930号
公報) 発明が解決しようとする問題点 従来の液位針は、負特性サーミスタの自己発熱の量が液
中と空気中で大きく異なることを利用して、その抵抗値
が液中と空気中で異なり、流れる電流の大小により、ラ
ンプが点灯及び消灯するものである。そのため、非常に
簡単な回路で液の有無が表示できる。しかしながら、検
知素子が1ケであるため、表示できる液位は検知素子が
液中にあるか空中にあるかという、ただ一点のみであり
、液位の変化を連続的に表示することができなかつた。
FIGS. 8 and 9 show still another conventional example, in which a plurality of the negative characteristic thermistors shown in FIG. 7 are used to display changes in the liquid level step by step. (Utility Model Publication No. 57-105930) Problems to be Solved by the Invention Conventional liquid level needles take advantage of the fact that the amount of self-heating of a negative characteristic thermistor differs greatly between liquid and air to increase its resistance. The value is different in the liquid and in the air, and the lamp turns on and off depending on the magnitude of the current flowing. Therefore, the presence or absence of liquid can be displayed using a very simple circuit. However, since there is only one sensing element, the liquid level that can be displayed is only one point, whether the sensing element is in the liquid or in the air, and changes in the liquid level cannot be displayed continuously. Ta.

そのため、検知素子を複数個用いる構造も考案されてい
るが、これでも液位を段階的に表示するだけで、連続的
に液位の量を表示することはできなかった。
Therefore, a structure using a plurality of sensing elements has been devised, but even this can only display the liquid level in stages, but cannot continuously display the amount of liquid level.

また、検知素子に負特性サーミスタを用いているため周
囲温度が上昇すると液中にある場合でも検知素その温度
が上昇し、液温の上昇が犬きくなっていた。
Furthermore, since a negative characteristic thermistor is used as the sensing element, when the ambient temperature rises, the temperature of the sensing element rises even when it is in the liquid, making it difficult for the liquid temperature to rise.

問題点を解決するための手段 この問題点を解決するために本発明は、液面の変化に伴
ない浸漬する長さが変化するように固定された正特性サ
ーミスタからなる長尺の検知素子と、その検知素子に直
列に接続された電源及びその直列回路に流れる電流の表
示装置からなり、前記検知素その両電極を結ぶ線の方向
が液面に平行になるようにし、かつその両電極は検知素
その同一面上に付与したものである。
Means for Solving the Problem In order to solve this problem, the present invention uses a long sensing element consisting of a positive temperature coefficient thermistor fixed so that the immersion length changes as the liquid level changes. , consisting of a power supply connected in series to the sensing element and a display device for the current flowing through the series circuit, and the direction of the line connecting both electrodes of the sensing element is parallel to the liquid level, and both electrodes are The sensing element was applied on the same surface.

作用 この構成による作用を説明する。まず、正特性サーミス
タは温度が上昇すると、ある温度(キュリ一温度)以上
で急激に抵抗値が上昇する感温抵抗体で、チタン酸バリ
ウム系の半導体セラミクスや、高分子樹脂に導電粉を混
合したものなので作成できる。この正特性サーミスタで
構成された長尺の検知素子に電圧を印加し、検知素子全
体が空中にある時、検知素子は自己発熱し、抵抗が大き
くなっである温度で熱平衡に達する。この時、回路に流
れる電流もある一定の電流で安定する。その電流値は電
流の表示装置で表示されている。そして、液位が増加し
て検知素その端部から次第に浸漬されていくと、その浸
漬された部分の温度が低くなり、そこの部分の抵抗が小
さくなる。すると、検知素その一部の抵抗が減少するの
で、電流はそれに応じて増大する。一方検知素子全体が
液中に浸漬すると、電流は最も大きくなる。このように
液位に応じて電流が連続的に変化し、その値を電流表示
装置で読み取ることができる。また、検知素その両電極
を結ぶ線を液面に垂直にした場合、検知素その空中にあ
る部分と、液中にある部分が直列に接続されたようにな
り、空中にある部分の抵抗値が高くなり、そこに電圧が
集中し液中の部分に電圧が印加されなくなる。そのため
、検知素その両電極を結ぶ線は液面に平行である必要が
ある。
Effect The effect of this configuration will be explained. First, a positive temperature coefficient thermistor is a temperature-sensitive resistor whose resistance value increases rapidly when the temperature rises above a certain temperature (Currie temperature), and is made of barium titanate-based semiconductor ceramics or a polymer resin mixed with conductive powder. It can be created because it was created. When a voltage is applied to a long sensing element made of this positive temperature coefficient thermistor and the entire sensing element is in the air, the sensing element self-heats, its resistance increases, and it reaches thermal equilibrium at a certain temperature. At this time, the current flowing through the circuit also stabilizes at a certain constant current. The current value is displayed on a current display device. Then, as the liquid level increases and the sensing element is gradually immersed from its end, the temperature of the immersed part becomes lower and the resistance of that part becomes smaller. Then, since the resistance of a portion of the sensing element decreases, the current increases accordingly. On the other hand, when the entire sensing element is immersed in the liquid, the current becomes the largest. In this way, the current changes continuously depending on the liquid level, and its value can be read on the current display device. Also, if the line connecting both electrodes of the sensing element is made perpendicular to the liquid level, the part of the sensing element in the air and the part in the liquid will be connected in series, and the resistance value of the part in the air will be becomes high, the voltage is concentrated there, and no voltage is applied to the part in the liquid. Therefore, the line connecting both electrodes of the sensing element must be parallel to the liquid surface.

また、検知素子に設けられた両電極は同一平面上に設け
られているため、発熱部は検知素その一平面部に集中し
、検知素その形状が大きくても発熱量が少なく、消費電
力が少なくなる。
In addition, since both electrodes on the sensing element are provided on the same plane, the heat generating part is concentrated on one plane of the sensing element, so even if the sensing element is large in shape, the amount of heat generated is small and power consumption is reduced. It becomes less.

実施例 第1図は本発明の一実施例による連続式液位針を示す構
成図である。第1図において、6は正特性サーミスタに
よる検知素子で、例えば常温抵抗値16Ω、キュリ一温
度6o″C1形状は厚さ1ff×幅2 ** X長さ1
oOflの長尺な板状である。この検知素子6は液面の
変化に伴ない浸漬する長さが変化する1ように取付け[
られる。7は前記正特性サーミスタの一平面の両端部に
平行に設けられた焼付銀などの電極であり、この両電極
7を結ぶ線の方向が液面と平行となるように検知素子6
は固定される。8は検知素子6に直列に接続された電源
で12V、9は電流計で、検知素子6に流れる電流を表
示するものである。
Embodiment FIG. 1 is a block diagram showing a continuous liquid level needle according to an embodiment of the present invention. In Fig. 1, 6 is a detection element using a positive temperature coefficient thermistor, for example, the resistance at room temperature is 16 Ω, the Curie temperature is 6 o'', and the shape of C1 is 1 ff in thickness x 2 in width ** x length 1
It is a long plate shape of oOfl. This sensing element 6 is installed so that the immersion length changes as the liquid level changes [1].
It will be done. Reference numeral 7 denotes electrodes made of baked silver or the like that are provided parallel to both ends of one plane of the positive temperature coefficient thermistor.
is fixed. Reference numeral 8 denotes a power supply connected in series to the detection element 6 at 12V, and reference numeral 9 denotes an ammeter that displays the current flowing through the detection element 6.

今、検知素子全体が空中にある時は、熱放散係数が小さ
いので検知素子は自己発熱し、高い温度で熱平衡に達す
る。そのため検知素その抵抗値は高くなって安定する。
Now, when the entire sensing element is in the air, the heat dissipation coefficient is small, so the sensing element self-heats and reaches thermal equilibrium at a high temperature. Therefore, the resistance value of the sensing element becomes high and stable.

この時の電流は100mAであった。逆に、検知素子全
体がガソリン中にある時は抵抗は低くなり、電流は40
0mAであった。また、検知素その端部から順次浸漬し
ていくと、電流値はそれに応じて100m人から400
mAまでほぼ直線的に変化する。
The current at this time was 100 mA. Conversely, when the entire sensing element is submerged in gasoline, the resistance is low and the current is 40
It was 0mA. In addition, if the sensing element is immersed sequentially from its end, the current value will vary from 100 m to 400 m.
It changes almost linearly up to mA.

このように特別な増幅回路を用いずに、非常に簡単な構
成で、電流の変化を読み取るだけで、液位の変化を連続
的に示すことができる。また、正特性サーミスタを用い
ているので、自己温度制御作用を有し、検知素その表面
温度は周囲温度が上昇してもほぼ一定で過熱することは
ない。また、電極は検知素その一平面上に設けられてい
るので、発熱はそれらの両電極間の表面部のみで行われ
、検知素その電極のない面や内部での発熱は少なく、形
状が大きくても液中での放熱が少なくなるので抵抗が高
くなり、消費電力が少なくなる。これらの様子を第2図
に示しである。第2図において、人は本発明の検知素子
による電流で、Bは同形状で、電極が対向する最大面に
設けられた検知素その電流の様子である。
In this way, with a very simple configuration and without using a special amplification circuit, changes in liquid level can be continuously indicated simply by reading changes in current. Furthermore, since a positive temperature coefficient thermistor is used, it has a self-temperature control function, and the surface temperature of the sensing element remains almost constant even when the ambient temperature rises, and does not overheat. In addition, since the electrode is provided on one plane of the sensing element, heat generation occurs only on the surface between the two electrodes, and there is little heat generation on the surface or inside of the sensing element where there is no electrode, and the shape is large. However, since there is less heat dissipated in the liquid, the resistance increases and power consumption decreases. These conditions are shown in FIG. In FIG. 2, the person shows the current generated by the sensing element of the present invention, and B shows the current flowing through the sensing element which has the same shape and is provided on the largest surface facing the electrodes.

第3図は正特性サーミスタによる検知素その別の実施例
の斜視図である。第3図已において、10は正特性サー
ミスタで、11はそれの一平面の両端部に平行につけら
れた銀などの電極である。第4図に示す12はこの小さ
な正特性サーミスタ1Qを並列に複数個はぼ密着させて
、黄銅板などの共通電極13を用いて半田など(図示せ
ず)で固着した検知素子である。一般に、正特性サーミ
スタなどのセラミックはもろくて、本発明に用いるよう
な長尺な形状を作成するのが困難であるが、第4図に示
したような構成で検知素子を構成すると、小さな形状の
正特性サーミスタを用いることができ、歩留まりが良く
、簡単に長尺な検知素子を作成することができる。
FIG. 3 is a perspective view of another embodiment of the sensing element using a positive temperature coefficient thermistor. In FIG. 3, 10 is a positive temperature coefficient thermistor, and 11 is an electrode made of silver or the like attached in parallel to both ends of one plane thereof. Reference numeral 12 shown in FIG. 4 is a sensing element in which a plurality of small positive temperature coefficient thermistors 1Q are closely connected in parallel and fixed with solder or the like (not shown) using a common electrode 13 such as a brass plate. In general, ceramics such as positive temperature coefficient thermistors are brittle and it is difficult to create a long shape as used in the present invention, but if the sensing element is configured as shown in Fig. A positive temperature coefficient thermistor can be used, the yield is high, and a long sensing element can be easily produced.

第5図は、温度補償を簡単な構成で広い温度範囲で使用
可能にした本発明の別の実施例である。
FIG. 5 shows another embodiment of the present invention in which temperature compensation can be used over a wide temperature range with a simple configuration.

14は長尺の正特性サーミスタによる検知素子で、前述
したように液への浸漬長さに応じてその抵抗値は変化す
る。16は同様に正特性サーミスタによる温度補償用素
子で、常に液中にあるいは空中にあるか、または形状を
大きくして、液中と空中での発熱量の差をほとんどなく
し、その抵抗は周囲温度のみによってきまるようにした
ものである。
Reference numeral 14 denotes a sensing element consisting of a long positive temperature coefficient thermistor, and as described above, its resistance value changes depending on the length of immersion in the liquid. Similarly, numeral 16 is a temperature compensation element using a positive temperature coefficient thermistor, which is always in the liquid or in the air, or has a large shape to almost eliminate the difference in heat generation between the liquid and the air, and its resistance is proportional to the ambient temperature. It was decided only by

16は交叉コイル比率計である。この交叉コイル比率計
16は、交叉した2つのコイルを用いて、その2つのコ
イルに流れる電流の比を表示できるものである。そして
、一方のコイルC1には検知素子14に流れる電流を流
し、他方のコイルC2には温度補償用素子16に流れる
電流を流す。ここで、温度補償用素子を用いない場合、
検知素子に流れる電流は液中と空中で大きく異なるが、
さらに周囲温度によっても異なり、広い温度範囲で電流
値のみで液位を表示することは困難であった。
16 is a crossed coil ratio meter. This crossed coil ratio meter 16 uses two crossed coils and can display the ratio of currents flowing through the two coils. A current flowing to the sensing element 14 is passed through one coil C1, and a current flowing to the temperature compensation element 16 is passed through the other coil C2. Here, if no temperature compensation element is used,
The current flowing through the sensing element differs greatly between liquid and air, but
Furthermore, it differs depending on the ambient temperature, making it difficult to display the liquid level using only the current value over a wide temperature range.

なお、第6図で17は鉄などの磁性体、18は指針であ
る。
In addition, in FIG. 6, 17 is a magnetic material such as iron, and 18 is a pointer.

第5図に示す実施例では、温度補償用素子を用い、検知
素子に流れる電流と温度補償用素子に流れる電流との比
が、液位が一定であれば周囲温度が変っても一定にし、
広い温度範囲で液位の表示を可能にしたものである。ま
た、両者に流れる電流の比を表示するのに、交叉コイル
比率計を用いると、簡単で安価にその電流の比を表示で
きる。
In the embodiment shown in FIG. 5, a temperature compensation element is used, and the ratio of the current flowing through the sensing element and the current flowing through the temperature compensation element is kept constant even if the ambient temperature changes as long as the liquid level is constant.
This makes it possible to display the liquid level over a wide temperature range. Furthermore, if a crossed coil ratio meter is used to display the ratio of the currents flowing through both, the ratio of the currents can be displayed easily and inexpensively.

第6図aは温度補償用素子を用いない場合の検知素子に
流れる電流11の様子を示し、周囲温度によって特性が
犬きく変化していることが解る。
FIG. 6a shows the state of the current 11 flowing through the sensing element when no temperature compensation element is used, and it can be seen that the characteristics vary considerably depending on the ambient temperature.

一方、第6図すは温度補償用素子を用い、それに流れる
電流12と11 との比i1/i2の様子を示したもの
である。この場合、12/i+ は周囲温度によらず、
液面の変化のみによって決まっている。
On the other hand, FIG. 6 shows the ratio i1/i2 of currents 12 and 11 flowing through a temperature compensating element. In this case, 12/i+ does not depend on the ambient temperature,
It is determined only by changes in the liquid level.

なお、本実施例では検知素その形状を板状のものと、半
田で接合したもののみを示したが、棒状あるいはフィル
ム状、薄膜状のものでも良い。また、直列回路の中に適
宜、固定抵抗を挿入しても良い。
In this embodiment, only plate-like sensing elements and solder-bonded sensing elements are shown, but rod-like, film-like, or thin-film-like sensing elements may also be used. Further, a fixed resistor may be inserted into the series circuit as appropriate.

発明の効果 以上のように、本発明は検知素子として長尺な正特性サ
ーミスタを用い、それの一平面上に両電極を設けること
により、特別な増幅回路を用いることなく、簡単な構成
で、液位の連続した変化を表示でき、また液中での過熱
の恐れがなく、かつ消費電力の少ない実用的価値大なる
ものである。
Effects of the Invention As described above, the present invention uses a long positive temperature coefficient thermistor as a detection element, and by providing both electrodes on one plane of the thermistor, the present invention has a simple configuration without using a special amplification circuit. It has great practical value as it can display continuous changes in the liquid level, there is no risk of overheating in the liquid, and it consumes less power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による連続式液位計を示す概
略構成図、第2図は同液位計としての動作の様子を示す
グラフ、第3図及び第4図は本発明に用いる検知素その
構成例を説明する斜視図、第5図は本発明における連続
式液位計の他の実施例を示す回路図、第6図a、bは同
液位計の動作の様子を説明するグラフ、第7図、第8図
及び第9図はそれぞれ従来の液位計を示す概略構成図及
び回路図である。 6112.14・・・・・・検知素子、7,11・・・
・・・電極、8・・・・・・電源、9・・・・・・電流
計、10・・・・・・正特性サーミスタ。 6−−−オ剣矢ロ素モ弘 7−−−電腫 B −−一電1原 第1図       q−電=A寸 第2図 第3図   ′〜・54図 第6図
FIG. 1 is a schematic configuration diagram showing a continuous liquid level meter according to an embodiment of the present invention, FIG. 2 is a graph showing the operation of the same liquid level meter, and FIGS. 3 and 4 are according to the present invention. A perspective view illustrating an example of the configuration of the sensing element used, FIG. 5 is a circuit diagram showing another embodiment of the continuous liquid level meter according to the present invention, and FIGS. 6 a and b show the operation of the same liquid level meter. The graphs to be described, FIG. 7, FIG. 8, and FIG. 9 are respectively a schematic configuration diagram and a circuit diagram showing a conventional liquid level gauge. 6112.14...Detection element, 7,11...
... Electrode, 8 ... Power supply, 9 ... Ammeter, 10 ... Positive characteristic thermistor. 6---Okenya Romohiro 7---Electroma B ---Ichiden 1 original Figure 1 q-Electric = A dimension Figure 2 Figure 3 '~・54 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 液面の変化に伴ない浸漬する長さが変化するように固定
された正特性サーミスタからなる長尺の検知素子と、そ
の検知素子に直列に接続された電源と、その検知素子に
流れる電流の表示装置とからなり、前記検知素子の両電
極を結ぶ線の方向が液面に平行で、かつその両電極は検
知素子の同一面上に付与されている連続式液位計。
A long sensing element consisting of a positive temperature coefficient thermistor fixed so that the immersion length changes as the liquid level changes, a power supply connected in series to the sensing element, and a current flowing through the sensing element. A continuous liquid level meter comprising a display device, a line connecting both electrodes of the sensing element is parallel to the liquid level, and both electrodes are provided on the same surface of the sensing element.
JP453586A 1986-01-13 1986-01-13 Continuous level gage Pending JPS62162923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP453586A JPS62162923A (en) 1986-01-13 1986-01-13 Continuous level gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP453586A JPS62162923A (en) 1986-01-13 1986-01-13 Continuous level gage

Publications (1)

Publication Number Publication Date
JPS62162923A true JPS62162923A (en) 1987-07-18

Family

ID=11586736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP453586A Pending JPS62162923A (en) 1986-01-13 1986-01-13 Continuous level gage

Country Status (1)

Country Link
JP (1) JPS62162923A (en)

Similar Documents

Publication Publication Date Title
US4373392A (en) Sensor control circuit
CA2030064A1 (en) Glass-ceramic temperature sensor for heating ovens
US5465618A (en) Thermal flow sensor and heat-sensitive resistor therefor
JP2545740B2 (en) Temperature sensor
JPS62162923A (en) Continuous level gage
JPS62162924A (en) Continuous level gage
JPS62162926A (en) Continuous level gage
JPH02298814A (en) Rotational angle sensor
JP2567441B2 (en) Measuring method of thermal conductivity, measuring device and thermistor
JPH0643916B2 (en) Continuous level gauge
JPS62251621A (en) Liquid level detector
JPS62263419A (en) Continuous liquid level meter
JPH0682286A (en) Thermal type flowmeter
JPS6034048B2 (en) displacement detection device
JPH02264827A (en) Liquid level detector
JPH0486524A (en) Liquid level detector
JPH05107099A (en) Liquid level meter
SU1185253A1 (en) Electric current meter in a conductor
US20200064378A1 (en) Electric current sensor
JPH03237324A (en) Temperature sensor
KR100244902B1 (en) Air flow speed sensor element and its measurement circuit
JPS5942667Y2 (en) light detection device
RU1795307C (en) Electronic thermometer
SU1198391A1 (en) Cryogen temperature-sensitive element
JP2596170Y2 (en) Positive thermistor velocity converter