JPH0682286A - Thermal type flowmeter - Google Patents

Thermal type flowmeter

Info

Publication number
JPH0682286A
JPH0682286A JP4255949A JP25594992A JPH0682286A JP H0682286 A JPH0682286 A JP H0682286A JP 4255949 A JP4255949 A JP 4255949A JP 25594992 A JP25594992 A JP 25594992A JP H0682286 A JPH0682286 A JP H0682286A
Authority
JP
Japan
Prior art keywords
temperature
resistor
sensitive resistor
detection
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4255949A
Other languages
Japanese (ja)
Inventor
Tadashi Nomura
忠志 野村
Akira Kumada
明 久万田
Tomio Shibano
富雄 柴野
Mitsuhiro Murata
充弘 村田
Hirohito Hayashi
浩仁 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP4255949A priority Critical patent/JPH0682286A/en
Publication of JPH0682286A publication Critical patent/JPH0682286A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To drive a thermal type flowmeter with a low driving voltage, to make it small in size, to make the sensitivity thereof excellent and to reduce the manufacturing cost thereof, in regard to the thermal type flowmeter which detects a flow rate, flow velocity, etc., by executing temperature compensation of a fluid temperature. CONSTITUTION:A bridge side output voltage V11 is taken out from the side of a temperature-sensitive resistor 3 for temperature compensation of a bridge circuit 30 and given to an inverted input terminal of a differential amplifier 7, while a bridge side output voltage V12 is taken out from the side of a temperature-sensitive resistor 2 for detection and given to a noninverted input terminal of the differential amplifier 7. A differential output voltage V12-V11 is given to a resistor 4 for heating and, thereby, a control is made so that a temperature difference between the two temperature-sensitive resistors 3 and 2 are fixed. The differential output voltage given to the resistor 4 for heating becomes a detection signal of a flow rate. The resistor 4 for heating and the temperature-sensitive resistor 2 for detection are made to have a thermally integrated structure. Thereby a device is made small in size, a drive circuit is also made simple and, thereby, the manufacturing cost is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体温度の影響を補償
し、流量や流速等を測定するための熱式流量計に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type flow meter for compensating the influence of fluid temperature and measuring flow rate, flow velocity and the like.

【0002】[0002]

【従来の技術】熱式流量計は、流体温度を検知する温度
補償用感温抵抗体と、流量や流速等を検知する検出用感
温抵抗体とを有し、さらに、これらの両感温抵抗体の温
度差が常に一定となるように検出用感温抵抗体に駆動電
圧を印加して加熱する加熱手段を備えている。この加熱
に要する電圧の変化を利用して流体の流れる流量や流速
等を求める方式の熱式流量計の一例が特開昭52−10
754号に示されており、その装置の検出用感温抵抗体
設置部分を含む主要な構造の断面図を図6に示す。同図
において、細長い円筒状の部材である中空ピン21の内部
には、検出用感温抵抗体2と、この検出用感温抵抗体2
を加熱する加熱コイル23および加熱コイル支持部40が配
設されている。検出用感温抵抗体2および加熱コイル23
からはリード線24,28が引き出され、回路に接続され
る。一方、温度補償用感温抵抗体は加熱コイルを収容し
ない中空ピン21内に同様に収容され、リード線にて回路
に接続される。
2. Description of the Related Art A thermal type flow meter has a temperature compensating temperature sensitive resistor for detecting a fluid temperature and a detecting temperature sensitive resistor for detecting a flow rate, a flow velocity and the like. A heating unit is provided to apply a drive voltage to the temperature-sensitive detection resistor to heat it so that the temperature difference between the resistors is always constant. Japanese Patent Laid-Open No. 52-10 is an example of a thermal type flow meter in which a flow rate and a flow rate of a fluid are obtained by utilizing a change in voltage required for heating.
No. 754, and FIG. 6 is a cross-sectional view of the main structure of the apparatus including the detection temperature-sensitive resistor installation portion of the apparatus. In the figure, inside the hollow pin 21 which is an elongated cylindrical member, the detecting temperature-sensitive resistor 2 and the detecting temperature-sensitive resistor 2 are provided.
A heating coil 23 and a heating coil supporting portion 40 for heating the are disposed. Detection temperature-sensitive resistor 2 and heating coil 23
Lead wires 24 and 28 are drawn out from and are connected to the circuit. On the other hand, the temperature compensating temperature sensitive resistor is similarly housed in the hollow pin 21 which does not house the heating coil, and is connected to the circuit by the lead wire.

【0003】この回路は、温度補償用感温抵抗体と検出
用感温抵抗体を組み込んだブリッジ回路や、加熱コイル
23に流れる電流を設定するためのポテンショメータや、
電流を一定に保つための安定化装置等を有して構成され
ており、前記ポテンショメータや安定化装置等を用いて
温度補償用感温抵抗体と検出用感温抵抗体との温度差を
一定にするよう制御されている。
This circuit includes a bridge circuit incorporating a temperature compensating temperature sensing resistor and a detecting temperature sensing resistor, and a heating coil.
A potentiometer for setting the current flowing in 23,
It is configured with a stabilizing device etc. for keeping the current constant, and the temperature difference between the temperature compensating temperature sensing resistor and the detecting temperature sensing resistor is kept constant by using the potentiometer or the stabilizing device etc. Is controlled to.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
構成によると検出用感温抵抗体2を加熱するための加熱
コイル23を検出用感温抵抗体2の周りに巻き付けるため
装置が大型で複雑であり、また、加熱コイル23に流れる
電流を制御する回路もポテンショメータ、安定化装置等
を用いているので複雑なものとなり、装置も大型化す
る。そのため、熱式流量計の小型化が難しく、製作コス
トも高価なものであった。
However, according to the conventional structure, since the heating coil 23 for heating the detecting temperature-sensitive resistor 2 is wound around the detecting temperature-sensitive resistor 2, the device is large and complicated. In addition, since the circuit for controlling the current flowing through the heating coil 23 also uses a potentiometer, a stabilizing device, etc., it becomes complicated and the device becomes large. Therefore, it is difficult to miniaturize the thermal type flow meter, and the manufacturing cost is high.

【0005】本発明は上記従来の課題を解決するために
なされたものであり、その目的は、検出用感温抵抗体設
置部分の装置構造や加熱に要する駆動電圧を制御する回
路構成を簡易化することによって小型化し、製作コスト
を低減させ、低電圧駆動の熱式流量計を提供することに
ある。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to simplify a device structure of a detection temperature sensitive resistor installation portion and a circuit configuration for controlling a driving voltage required for heating. By doing so, it is possible to reduce the size, reduce the manufacturing cost, and provide a low-voltage driven thermal type flow meter.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明の熱式流量計は、検出用感温抵抗体と温度補償用感
温抵抗体とが別個の辺に設けられてブリッジ回路が形成
され、前記検出用感温抵抗体には加熱用抵抗体が熱的に
一体的に結合されており、前記検出用感温抵抗体のブリ
ッジ辺出力電圧と温度補償用感温抵抗体のブリッジ辺出
力電圧との差動出力が前記加熱用抵抗体に加えられて検
出用感温抵抗体と温度補償用抵抗体との温度差が一定に
制御されていることを特徴としている。
In order to achieve the above object, the present invention is constructed as follows. That is, in the thermal type flow meter of the present invention, the temperature sensing resistor for detection and the temperature sensing resistor for temperature compensation are provided on separate sides to form a bridge circuit, and the temperature sensing resistor for detection is heated. The resistor for heat is thermally integrated, and the differential output between the bridge side output voltage of the temperature sensing resistor for detection and the bridge side output voltage of the temperature sensing temperature sensing resistor is used for the heating resistor. It is characterized in that the temperature difference between the temperature sensitive resistor for detection and the temperature compensating resistor applied to the body is controlled to be constant.

【0007】[0007]

【作用】流体の流れによって検出用感温抵抗体から流量
に応じた放熱が起こり、検出用感温抵抗体の温度が下が
り、抵抗値が変化し、検出用感温抵抗体側のブリッジ辺
出力電圧が変化する。そして、検出用感温抵抗体側のブ
リッジ辺出力電圧と温度補償用感温抵抗体側のブリッジ
辺出力電圧との差動出力が流量として検出される。差動
出力電圧は加熱用抵抗体に加えられ、加熱用抵抗体の発
熱によって検出用感温抵抗体が放熱による温度低下分だ
け暖められ、検出用感温抵抗体と温度補償用感温抵抗体
との温度差が一定になるように制御される。
[Function] The temperature of the sensing temperature sensitive resistor decreases and the resistance value changes due to the heat flow from the sensing temperature sensing resistor caused by the flow of the fluid, the resistance value changes, and the bridge side output voltage on the sensing temperature sensing resistor side. Changes. Then, a differential output between the bridge side output voltage on the temperature sensing resistor side for detection and the bridge side output voltage on the temperature sensing resistor side for temperature compensation is detected as the flow rate. The differential output voltage is applied to the heating resistor, and the heat generated by the heating resistor heats the temperature sensitive resistor for detection by the amount of the temperature drop due to heat dissipation, and the temperature sensitive resistor for detection and the temperature sensitive resistor for temperature compensation. Is controlled so that the temperature difference between and becomes constant.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明による熱式流量計の一実施例の回路図が図
1に示されている。ブリッジ回路30の入力端子9は駆動
電源42側に接続され、他方の入力端子10はグランド側に
接続されている。入力端子9と出力端子11の間に固定抵
抗体5が接続され、出力端子11と入力端子10の間は温度
補償用感温抵抗体3が接続されている。一方、入力端子
9と出力端子12の間には固定抵抗体6が接続され、出力
端子12と入力端子10の間には検出用感温抵抗体2が接続
されている。温度補償用感温抵抗体3と検出用感温抵抗
体2は同じ抵抗温度係数をもつNTCサーミスタを使用
している。温度補償用感温抵抗体3は流体温度を検知
し、検出用感温抵抗体2は気体等の流量や流速を検知す
るものである。検出用感温抵抗体2は図2に示すよう
に、加熱用抵抗体4と熱的に一体形成されている。すな
わち、熱伝導率の高い基板19の表面に検出用感温抵抗体
2が配置され、この基板19の裏面には、加熱用抵抗体4
が前記検出用感温抵抗体2と対向する位置に配置されて
いる。加熱用抵抗体4は加熱に必要な十分な電流が流れ
るよう抵抗値が小さいものを使用している。
Embodiments of the present invention will be described below with reference to the drawings. A circuit diagram of an embodiment of the thermal type flow meter according to the present invention is shown in FIG. The input terminal 9 of the bridge circuit 30 is connected to the drive power source 42 side, and the other input terminal 10 is connected to the ground side. The fixed resistor 5 is connected between the input terminal 9 and the output terminal 11, and the temperature compensating temperature sensitive resistor 3 is connected between the output terminal 11 and the input terminal 10. On the other hand, the fixed resistor 6 is connected between the input terminal 9 and the output terminal 12, and the detection temperature-sensitive resistor 2 is connected between the output terminal 12 and the input terminal 10. The temperature compensating temperature sensitive resistor 3 and the detecting temperature sensitive resistor 2 use NTC thermistors having the same temperature coefficient of resistance. The temperature compensating temperature sensitive resistor 3 detects a fluid temperature, and the detecting temperature sensitive resistor 2 detects a flow rate or a flow velocity of gas or the like. As shown in FIG. 2, the detection temperature-sensitive resistor 2 is thermally integrated with the heating resistor 4. That is, the detection temperature-sensitive resistor 2 is arranged on the front surface of the substrate 19 having a high thermal conductivity, and the heating resistor 4 is provided on the back surface of the substrate 19.
Are arranged at positions facing the detection temperature-sensitive resistor 2. As the heating resistor 4, one having a small resistance value is used so that a sufficient current necessary for heating flows.

【0009】ブリッジ30の温度補償用感温抵抗体3側の
出力端子11からブリッジ辺出力電圧V11が取り出され、
差動増幅器7の反転入力端子に加えられる。検出用感温
抵抗体2側の出力端子12からはブリッジ辺出力電圧V12
が取り出され、差動増幅器7の非反転入力端子に加えら
れる。差動増幅器7からは差動出力電圧V12−V11が取
り出され、この差動出力電圧はトランジスタ8のベース
側に加えられる。トランジスタ8のコレクタ側はブリッ
ジ回路30の入力端子9側に接続される。トランジスタ8
のエミッタ側は加熱用抵抗体4の一端に接続しており、
差動出力電圧V12−V11に対応する電流が増幅されて加
熱用抵抗体4に加えられている。加熱用抵抗体4の他端
はグランド側に接続している。
The bridge side output voltage V 11 is taken out from the output terminal 11 of the temperature compensating temperature sensing element 3 of the bridge 30.
It is applied to the inverting input terminal of the differential amplifier 7. From the output terminal 12 on the temperature sensitive resistor 2 side for detection, the bridge side output voltage V 12
Is taken out and added to the non-inverting input terminal of the differential amplifier 7. The differential output voltage V 12 -V 11 is taken out from the differential amplifier 7, and this differential output voltage is applied to the base side of the transistor 8. The collector side of the transistor 8 is connected to the input terminal 9 side of the bridge circuit 30. Transistor 8
The emitter side of is connected to one end of the heating resistor 4,
The current corresponding to the differential output voltage V 12 -V 11 is amplified and applied to the heating resistor 4. The other end of the heating resistor 4 is connected to the ground side.

【0010】本実施例では温度補償用感温抵抗体3と検
出用感温抵抗体2との温度差を一定、例えば温度差が10
℃のときに、ブリッジ回路30は平衡状態になるようにブ
リッジ各辺の抵抗値が設定されている。流量又は流速の
検出信号は端子13若しくは端子14より取り出される。
In the present embodiment, the temperature difference between the temperature compensating temperature sensitive resistor 3 and the detecting temperature sensitive resistor 2 is constant, for example, the temperature difference is 10.
The resistance value of each side of the bridge is set so that the bridge circuit 30 is in a balanced state at the temperature of ° C. The detection signal of the flow rate or the flow velocity is taken out from the terminal 13 or the terminal 14.

【0011】本実施例は上記のように構成されており、
次にその動作を説明する。流体の流れによって検出用感
温抵抗体2の温度が放熱によって冷やされると、検出用
感温抵抗体2の抵抗値が上がる。ブリッジ辺出力電圧V
12は上がり、ブリッジ辺出力電圧V11との差動出力電圧
12−V11は上がる。この差動出力電圧V12−V11はト
ランジスタ8によって増幅され、加熱用抵抗体4に加え
られて発熱し、加熱用抵抗体4と熱的に一体形成されて
いる検出用感温抵抗体2の温度が上昇し、抵抗値が下が
る。この結果、ブリッジ出力電圧V12が下がり、ブリッ
ジ出力電圧V11との差動出力電圧V12−V11が小さくな
り、この電圧V12−V11は温度補償用感温抵抗体3と検
出用感温抵抗体2の温度差が10℃になるまで加熱用抵抗
体4に加えられ、検出用感温抵抗体2を暖める。検出用
感温抵抗体2が流体の流れによって放熱され温度が低下
した分を暖めるために加熱用抵抗体4の加熱に加えられ
た電圧が流量又は流速の検出信号として取り出される。
This embodiment is constructed as described above,
Next, the operation will be described. When the temperature of the detection temperature-sensitive resistor 2 is cooled by heat dissipation due to the flow of the fluid, the resistance value of the detection temperature-sensitive resistor 2 increases. Bridge side output voltage V
12 rises, and the differential output voltage V 12 −V 11 with the bridge side output voltage V 11 rises. The differential output voltage V 12 -V 11 is amplified by the transistor 8, is applied to the heating resistor 4 to generate heat, and the detection temperature-sensitive resistor 2 that is thermally integrally formed with the heating resistor 4. The temperature rises and the resistance decreases. As a result, lower the bridge output voltage V 12, the differential output voltage V 12 -V 11 of the bridge output voltage V 11 decreases, detection and this voltage V 12 -V 11 are temperature compensation temperature sensing resistor 3 It is added to the heating resistor 4 until the temperature difference of the temperature sensitive resistor 2 reaches 10 ° C. to warm the detecting temperature sensitive resistor 2. The voltage applied to the heating of the heating resistor 4 is taken out as a detection signal of the flow rate or the flow velocity in order to warm the temperature of which the temperature sensitive resistor 2 for detection is radiated by the flow of the fluid and the temperature is lowered.

【0012】本実施例は上記のように加熱用抵抗体4と
検出用感温抵抗体2が熱的に一体となった構成をしてい
るので、加熱コイル23を使用した従来例よりも装置を小
型に、かつ、簡易な構成にできる。また、熱的に一体化
した構成をしているので、加熱用抵抗体4の発熱は、検
出用感温抵抗体2へ熱効率良く伝熱される。その結果、
感度良く流量や流速が検出できるようになる。さらに、
加熱用抵抗体4は抵抗値が小さいものであるから、電源
電圧は低電圧、例えば5Vで駆動できる。駆動回路も、
従来のようなポテンショメータや安定化装置等を必要と
しないので簡易になる。したがって、本実施例の熱式流
量計によれば、小型化されて、製造コストも大幅に低減
できるようになる。
In this embodiment, since the heating resistor 4 and the detecting temperature-sensitive resistor 2 are thermally integrated as described above, the apparatus is more advantageous than the conventional example using the heating coil 23. Can be downsized and have a simple structure. Further, because of the thermally integrated configuration, the heat generated by the heating resistor 4 is efficiently transferred to the detection temperature-sensitive resistor 2. as a result,
The flow rate and flow velocity can be detected with high sensitivity. further,
Since the heating resistor 4 has a small resistance value, it can be driven with a low power supply voltage, for example, 5V. The drive circuit also
It is simple because it does not require a potentiometer or a stabilizing device as in the conventional case. Therefore, according to the thermal type flow meter of the present embodiment, the size can be reduced and the manufacturing cost can be significantly reduced.

【0013】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、本実
施例では、検出用感温抵抗体2と加熱用抵抗体4との熱
的一体化構造を、図2に示すように熱伝導率の高い基板
19の表裏片面ずつに配置したが、図3に示すように前記
基板19の同一面上に、近接して検出用感温抵抗体2と加
熱用抵抗体4を配置してもよい。
The present invention is not limited to the above-mentioned embodiment, and various embodiments can be adopted. For example, in the present embodiment, a thermally integrated structure of the detection temperature-sensitive resistor 2 and the heating resistor 4 has a substrate with high thermal conductivity as shown in FIG.
Although they are arranged on the front and back sides of 19 respectively, as shown in FIG. 3, the detection temperature-sensitive resistor 2 and the heating resistor 4 may be arranged in close proximity on the same surface of the substrate 19.

【0014】また、図4のように断熱性の基板39の上に
加熱用抵抗体4を固定して、さらにその上に検出用感温
抵抗体2を固定してもよい。この構造をとる場合は、加
熱用抵抗体4が発熱したとき断熱性の基板39を介して外
部へ放熱することはほとんどなく、直接検出用感温抵抗
体2に伝熱される。したがって、図2や図3のように熱
伝導性の基板19を介して加熱用抵抗体4から検出用感温
抵抗体2に伝熱するよりも、より熱効率が良くなるの
で、流量や流速の検出感度が向上し、消費電力も節減さ
れる。さらに、図5のように基板を省略して検出用感温
抵抗体2と加熱用抵抗体4を直接固定したものでもよ
い。この場合も、図4と同様に、加熱用抵抗体4の発熱
は検出用感温抵抗体2に直接伝熱されるので、図2や図
3に示される構造をとる場合よりも熱効率が良く、検出
感度が向上する。また、基板がないので材料費を節減で
きる。
Further, as shown in FIG. 4, the heating resistor 4 may be fixed on the heat insulating substrate 39, and the detection temperature sensitive resistor 2 may be further fixed thereon. In the case of adopting this structure, when the heating resistor 4 generates heat, there is almost no heat radiation to the outside through the heat insulating substrate 39, and the heat is directly transferred to the detection temperature-sensitive resistor 2. Therefore, as compared with the case where heat is transferred from the heating resistor 4 to the detection temperature-sensitive resistor 2 via the thermally conductive substrate 19 as shown in FIGS. Detection sensitivity is improved and power consumption is also reduced. Further, as shown in FIG. 5, the detection temperature sensitive resistor 2 and the heating resistor 4 may be directly fixed by omitting the substrate. Also in this case, as in the case of FIG. 4, the heat generation of the heating resistor 4 is directly transferred to the detection temperature-sensitive resistor 2, so that the thermal efficiency is better than in the case of adopting the structure shown in FIG. 2 or 3. The detection sensitivity is improved. Further, since there is no substrate, the material cost can be reduced.

【0015】また、本実施例では検出用感温抵抗体2と
温度補償用感温抵抗体3としてNTCサーミスタを使用
したが、温度変化に対して抵抗値が変化するものであれ
ば、抵抗温度係数が負の他の抵抗体でもよく、また、抵
抗温度係数が正のものでもよい。ただし、抵抗温度係数
が正の抵抗体を使用したときはブリッジ回路30から差動
増幅器7への接続の仕方は反転入力端子と非反転入力端
子が逆になる。さらに、ブリッジ回路30は検出用感温抵
抗体2と温度補償用感温抵抗体3との温度差が10℃で平
衡となるように設定しているが、任意の温度でよい。
In this embodiment, the NTC thermistor is used as the detecting temperature sensitive resistor 2 and the temperature compensating temperature sensitive resistor 3. However, if the resistance value changes with temperature, the resistance temperature Other resistors having a negative coefficient may be used, or a resistor having a positive temperature coefficient of resistance may be used. However, when a resistor having a positive temperature coefficient of resistance is used, the connection method from the bridge circuit 30 to the differential amplifier 7 is reversed between the inverting input terminal and the non-inverting input terminal. Further, the bridge circuit 30 is set so that the temperature difference between the temperature sensing resistor 2 for detection and the temperature sensing resistor 3 for temperature compensation is balanced at 10 ° C., but any temperature may be set.

【0016】[0016]

【発明の効果】本発明は、以上説明したように、検出用
感温抵抗体設置部分においては、検出用感温抵抗体と加
熱用抵抗体が熱的に一体形成される簡易な構造をとって
いるので熱効率が良く、したがって感度も良く、小型に
できる。さらに、駆動回路においても、ブリッジ回路か
らの差動出力が加熱抵抗体に加わるので、従来のような
ポテンショメータや安定化装置等は必要とせず、温度補
償用感温抵抗体3と検出用感温抵抗体2との温度差を一
定にする回路は極めて簡易となり、小型化される。した
がって、低電圧駆動で製造コストの安価な熱式流量計を
提供できる。
As described above, the present invention has a simple structure in which the detecting temperature sensitive resistor and the heating resistor are thermally integrally formed in the detecting temperature sensitive resistor installation portion. Therefore, the thermal efficiency is good, and therefore the sensitivity is good and the size can be reduced. Further, also in the drive circuit, since the differential output from the bridge circuit is added to the heating resistor, the conventional potentiometer, stabilizing device, etc. are not required, and the temperature compensating temperature sensing resistor 3 and the detecting temperature sensing resistor 3 are not required. The circuit for keeping the temperature difference from the resistor 2 constant becomes extremely simple and downsized. Therefore, it is possible to provide a thermal type flow meter that is driven at a low voltage and has a low manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱式流量計の一実施例の回路図で
ある。
FIG. 1 is a circuit diagram of an embodiment of a thermal type flow meter according to the present invention.

【図2】同実施例に係る熱式流量計の検出用感温抵抗体
設置部分の断面図である。
FIG. 2 is a sectional view of a detection temperature-sensitive resistor installation portion of the thermal type flow meter according to the embodiment.

【図3】同実施例に係る熱式流量計の検出用感温抵抗体
設置部分の他の構造を示す断面図である。
FIG. 3 is a cross-sectional view showing another structure of a detection temperature-sensitive resistor installation portion of the thermal type flow meter according to the embodiment.

【図4】同実施例に係る熱式流量計の検出用感温抵抗体
設置部分の他の構造を示す断面図である。
FIG. 4 is a cross-sectional view showing another structure of the detecting temperature-sensitive resistor installation portion of the thermal type flow meter according to the embodiment.

【図5】同実施例に係る熱式流量計の検出用感温抵抗体
設置部分の他の構造を示す断面図である。
FIG. 5 is a cross-sectional view showing another structure of the detecting temperature-sensitive resistor installation portion of the thermal type flow meter according to the embodiment.

【図6】従来の熱式流量計の検出用感温抵抗体設置部分
の断面図である。
FIG. 6 is a cross-sectional view of a detection temperature-sensitive resistor installation portion of a conventional thermal type flow meter.

【符号の説明】 2 検出用感温抵抗体 3 温度補償用感温抵抗体 4 加熱用抵抗体 V11,V12 ブリッジ辺出力電圧[Explanation of symbols] 2 temperature sensitive resistor for detection 3 temperature sensitive resistor for temperature compensation 4 heating resistor V 11 , V 12 bridge side output voltage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 充弘 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 (72)発明者 林 浩仁 京都府長岡京市天神二丁目26番10号 株式 会社村田製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuhiro Murata, 2-10-10 Tenjin, Tenjin, Nagaokakyo, Kyoto Stock company Murata Manufacturing Co., Ltd. Murata Manufacturing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検出用感温抵抗体と温度補償用感温抵抗
体とが別個の辺に設けられてブリッジ回路が形成され、
前記検出用感温抵抗体には加熱用抵抗体が熱的に一体的
に結合されており、前記検出用感温抵抗体のブリッジ辺
出力電圧と温度補償用感温抵抗体のブリッジ辺出力電圧
との差動出力が前記加熱用抵抗体に加えられて検出用感
温抵抗体と温度補償用抵抗体との温度差が一定に制御さ
れている熱式流量計。
1. A temperature sensitive resistor for detection and a temperature sensitive resistor for temperature compensation are provided on separate sides to form a bridge circuit,
A heating resistor is thermally and integrally coupled to the detecting temperature-sensitive resistor, and a bridge-side output voltage of the detecting temperature-sensitive resistor and a bridge-side output voltage of the temperature compensating temperature-sensitive resistor. A thermal flow meter in which a differential output from the heating resistor is applied to the heating resistor to control the temperature difference between the temperature-sensitive resistor for detection and the temperature-compensating resistor to be constant.
JP4255949A 1992-08-31 1992-08-31 Thermal type flowmeter Pending JPH0682286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4255949A JPH0682286A (en) 1992-08-31 1992-08-31 Thermal type flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4255949A JPH0682286A (en) 1992-08-31 1992-08-31 Thermal type flowmeter

Publications (1)

Publication Number Publication Date
JPH0682286A true JPH0682286A (en) 1994-03-22

Family

ID=17285821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4255949A Pending JPH0682286A (en) 1992-08-31 1992-08-31 Thermal type flowmeter

Country Status (1)

Country Link
JP (1) JPH0682286A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442895B1 (en) * 1995-10-07 2004-09-24 로베르트 보쉬 게엠베하 Measurement resistance temperature control device and temperature control method for detection of charge amount of distribution medium
US6982768B2 (en) 1996-02-20 2006-01-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2018047836A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device
CN107807253A (en) * 2016-09-08 2018-03-16 株式会社村田制作所 Anemometry device and air-quantity measuring device
WO2019031329A1 (en) * 2017-08-05 2019-02-14 株式会社村田製作所 Wind speed measurement device and air flow measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442895B1 (en) * 1995-10-07 2004-09-24 로베르트 보쉬 게엠베하 Measurement resistance temperature control device and temperature control method for detection of charge amount of distribution medium
US6982768B2 (en) 1996-02-20 2006-01-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2018047836A1 (en) * 2016-09-08 2018-03-15 株式会社村田製作所 Wind-speed measurement device and wind-volume measurement device
CN107807253A (en) * 2016-09-08 2018-03-16 株式会社村田制作所 Anemometry device and air-quantity measuring device
CN107807253B (en) * 2016-09-08 2020-01-17 株式会社村田制作所 Wind speed measuring device and wind volume measuring device
US10823750B2 (en) 2016-09-08 2020-11-03 Murata Manufacturing Co., Ltd. Wind speed measuring device and airflow measuring device
WO2019031329A1 (en) * 2017-08-05 2019-02-14 株式会社村田製作所 Wind speed measurement device and air flow measurement device
US11243223B2 (en) 2017-08-05 2022-02-08 Murata Manufacturing Co., Ltd. Airflow velocity measuring apparatus and airflow rate measuring apparatus

Similar Documents

Publication Publication Date Title
JP2842729B2 (en) Thermal flow sensor
US3838248A (en) Temperature control device for thermostatic oven
JPH0682286A (en) Thermal type flowmeter
US5522261A (en) Fluid flow direction and velocity monitor and temperature compensating circuit therefor
JPH05231899A (en) Intake air amount detector
JP3601404B2 (en) Peltier control device and Peltier element control method
CN113091940A (en) Heating and temperature measuring integrated wind speed and direction sensor
US5750893A (en) Thermally sensing type flowing velocity measuring apparatus
JP3153787B2 (en) Heat conduction parameter sensing method and sensor circuit using resistor
JPH06109510A (en) Thermal flowmeter
JPH0674805A (en) Heat sensing flow rate sensor
JP3095322B2 (en) Thermal air flow detector
JPH09218065A (en) Thermal flowrate sensor
JPH06249864A (en) Wind speed sensor
JPH0663800B2 (en) Heater temperature control circuit
JPS5814616Y2 (en) Cooling temperature control circuit for small cooler
JPH0843162A (en) Thermal air flow rate detector
JP2003315129A (en) Thermal flow measuring instrument
SU1016747A1 (en) Hot-wire anenometer
JP2002228501A (en) Thermal air flow meter
JP2000329599A (en) Thermal type current meter
JPS6091211A (en) Hot wire type air flowmeter
JPH04116464A (en) Fluid velocity sensor
JPH0631374Y2 (en) Thermal flow sensor
JP2610580B2 (en) Thermal flow velocity detector