JPS62263419A - Continuous liquid level meter - Google Patents

Continuous liquid level meter

Info

Publication number
JPS62263419A
JPS62263419A JP10703286A JP10703286A JPS62263419A JP S62263419 A JPS62263419 A JP S62263419A JP 10703286 A JP10703286 A JP 10703286A JP 10703286 A JP10703286 A JP 10703286A JP S62263419 A JPS62263419 A JP S62263419A
Authority
JP
Japan
Prior art keywords
liquid level
common electrode
temperature coefficient
positive temperature
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10703286A
Other languages
Japanese (ja)
Other versions
JPH083437B2 (en
Inventor
Etsuro Habata
悦朗 幅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10703286A priority Critical patent/JPH083437B2/en
Publication of JPS62263419A publication Critical patent/JPS62263419A/en
Publication of JPH083437B2 publication Critical patent/JPH083437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To obtain an inexpensive liquid level meter having a simple structure and capable of displaying the continuous change in a liquid level, by bringing two common electrode plates and the electrodes of positive characteristic thermistors to a conductive state. CONSTITUTION:A detection element 9 has a low heat radiation coefficient when the whole thereof is present in air and generates heat itself to reach heat equilibrium at high temp. Then, the resistance value of the element 9 becomes high and the current flowing thereto is min. At this time, common electrode plates 8 come to heat dissipating plates even when the position of a liquid level is present between adjacent positive characteristic thermistors 6 and the change of a current is alleviated and a current changes continuously. As mentioned above, a current changes continuously corresponding to the liquid level and the value thereof is read by an ammeter 11 to make it possible to know the liquid level. By this method, the continuous change in the liquid level can be displayed inexpensively by the reduced number of thermistors 6 without using a special amplifying circuit.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車などの燃料の量を正特性サーミスタの自
己発熱の程度が液中と空中とで異なることを利用して検
知し表示するもので、液面の変化を連続的に表示でき、
特に検知素子を改良した連続式液位計に関するものであ
る。
[Detailed Description of the Invention] Industrial Application Field The present invention detects and displays the amount of fuel in automobiles, etc. by utilizing the fact that the degree of self-heating of a positive temperature coefficient thermistor differs between in liquid and in air. Changes in liquid level can be displayed continuously,
In particular, it relates to a continuous liquid level meter with an improved detection element.

従来の技術 正特性サーミスタは温度が上昇するとある温度(キュリ
一温度)以上になると急激に抵抗値が上昇する性質を持
った感温抵抗体で、半導体セラミクスや高分子材料から
なっている。これに電圧を印加して自己発熱させた場合
、その素子が空中にある時とガソリンなどの液中にある
時とではその発熱温度が異なり、ひいてはその抵抗値が
異なる。
Conventional technology A positive temperature coefficient thermistor is a temperature-sensitive resistor that has the property of rapidly increasing its resistance when the temperature rises above a certain temperature (Currie temperature), and is made of semiconductor ceramics or polymeric materials. When a voltage is applied to this element to cause it to self-heat, the temperature at which it generates heat is different when it is in the air and when it is in a liquid such as gasoline, and its resistance value is also different.

このことを利用して液面センサとして用いることができ
る。
Utilizing this fact, it can be used as a liquid level sensor.

従来のこの種の液位針は負特性サーミスタを用いたもの
が実用化されている。第5図でその構成を示す。第6図
において、1はロッド状の負特性サーミスタによる検知
素子で、2はそれに固着されているニッケルなどのリー
ド線である。3は絶縁板、4は金属筒で、これらでケー
スを構成し、この中央部に上記検知素子1がリード線2
を介して固定されている。5はランプであり、検知素子
1と電源とを直列に接続しである。
Conventional liquid level needles of this type using a negative characteristic thermistor have been put into practical use. FIG. 5 shows its configuration. In FIG. 6, numeral 1 is a sensing element made of a rod-shaped negative characteristic thermistor, and numeral 2 is a lead wire made of nickel or the like fixed thereto. 3 is an insulating plate, 4 is a metal tube, these constitute a case, and the detection element 1 is connected to the lead wire 2 in the center of the case.
has been fixed through. 5 is a lamp, and the detection element 1 and a power source are connected in series.

このような液位針において、検知素子1が空中にある時
はその検知素子1の熱放散係数が小さくなるので発熱し
やすく温度が高くなる。そのため検知素子1の抵抗が小
さくなり、流れる電流が大きくランプ5が点灯する。ま
た、金属筒4が液中にある時は透孔aから液が入り、検
知素子1が液に浸漬される。この時は検知素子1の熱が
液に奪われ、熱放散係数が大きくなるので、検知素子1
の抵抗が大きくなって回路に流れる電流が少なくなり、
ランプ5が消灯する。
In such a liquid level needle, when the sensing element 1 is in the air, the heat dissipation coefficient of the sensing element 1 becomes small, so that it is easy to generate heat and the temperature becomes high. Therefore, the resistance of the detection element 1 becomes small, and the current flowing becomes large, causing the lamp 5 to light up. Further, when the metal tube 4 is in the liquid, the liquid enters through the through hole a, and the sensing element 1 is immersed in the liquid. At this time, the heat of the sensing element 1 is taken away by the liquid and the heat dissipation coefficient increases, so the sensing element 1
The resistance increases and the current flowing through the circuit decreases,
Lamp 5 goes out.

第6図、第7図はさらに別の従来例で第5図に示した負
特性サー ミスタを複数個用い、液面の変化を段階的に
表示できるものである。(例えば実開昭57−1059
30号公報) 発明が解決しようとする問題点 このように従来の液位針は負特性サーミスタの自己発熱
の量が液中と空気中で大きく異なること金利用して、そ
の抵抗値が液中と空気中で異なp、流れる電流の大小に
よりランプが点灯及び消灯する−ものである。そのため
非常に簡単な回路で液の有無が表示できる。しかしなが
ら、検知素子が1ケであるため、表示できる液位は検知
素子が液中にあるか空中にあるかというただ一点のみで
あり、液位の変化を連続的に表示することができなかっ
た。そのため上述したように検知素子を複数個用いる構
造も考案されているが、これでも液位を段階的に表示す
るだけで、連続的に液位の量を表示することはできなか
った。
FIGS. 6 and 7 show yet another conventional example in which a plurality of the negative characteristic thermistors shown in FIG. 5 are used to display changes in the liquid level step by step. (For example, Utility Model No. 57-1059
(No. 30) Problems to be Solved by the Invention As described above, the conventional liquid level needle uses gold to reduce the resistance value of the negative characteristic thermistor, which differs greatly in the amount of self-heating in the liquid and in the air. The lamp turns on and off depending on the magnitude of the current that flows and the p varies in the air. Therefore, the presence or absence of liquid can be displayed using a very simple circuit. However, since there is only one sensing element, the liquid level that can be displayed is only one point, whether the sensing element is in the liquid or in the air, and changes in liquid level cannot be displayed continuously. . Therefore, as described above, a structure using a plurality of sensing elements has been devised, but even this structure only displays the liquid level in stages, but cannot continuously display the amount of liquid level.

また、検知素子に負特性サーミスタを用いているため、
周囲温度が上昇すると液中にある場合でも検知素子の温
度が上昇し、液温の上昇が犬きくなっていた。
In addition, since a negative characteristic thermistor is used as the detection element,
As the ambient temperature rises, the temperature of the sensing element rises even when it is submerged in liquid, making the rise in liquid temperature more difficult.

本発明はこのような問題点を解決するもので、簡単な構
造で液位の連続した変化を表示できる安価な連続式液位
計を提供することを目的とするものである。
The present invention solves these problems, and aims to provide an inexpensive continuous liquid level meter that has a simple structure and can display continuous changes in liquid level.

問題点を解決するための手段 この問題点を解決するために本発明は、相対向する面に
電極が設けられた複数の正特性サーミスタと金属からな
る2枚の共通電極板とからなり、その2枚の共通電極板
と上記正特性サーミスタの電極とが導通するようにして
、2枚の共通電極板の間に正特性サーミスタがそれぞれ
間隔をおいて固着されて構成された検知素子と、その検
知素子に接続された電源と、その検知素子に流れる電流
の表示装置とからなるものである。
Means for Solving the Problem In order to solve this problem, the present invention consists of a plurality of positive temperature coefficient thermistors having electrodes on opposing surfaces and two common electrode plates made of metal. A sensing element comprising positive temperature coefficient thermistors fixed at intervals between two common electrode plates such that the two common electrode plates are electrically connected to the electrodes of the positive temperature coefficient thermistor, and the detection element. It consists of a power source connected to the detector, and a display device for displaying the current flowing through the sensing element.

作用 この構成による作用を説明する。今、正特性サーミスタ
は温度が上昇すると、ある温度(キュリ一温度)以上で
急激に抵抗値が上昇する感温抵抗体で、チタン酸バリウ
ム系の半導体セラミクスや高分子樹脂に導電粉を混合し
たものなので作成できる。この正特性サーミスタの複数
個を間隔をおいて一直線状に配置し、その両側から金属
からなる共通電極板を正特性サーミスタの電極と導通す
るように固着されて構成された検知素子に電圧を印加し
、検知素子全体が空中にある時、検知素子は自己発熱し
、抵抗が大きくなっである温度で熱平衡に達する。この
時、回路に流れる電流もある一定の電流で安定する。そ
の電流値は電流の表示装置で表示されている。また、液
位が増加して検知素子の端部から次第に浸漬されていく
と、浸漬された正特性サーミスタの温度が低くなり、そ
の抵抗が小さくなるので電流はそれに応じて増大する。
Effect The effect of this configuration will be explained. Nowadays, positive temperature coefficient thermistors are temperature-sensitive resistors whose resistance value increases rapidly above a certain temperature (Currie temperature) when the temperature rises, and they are made of barium titanate-based semiconductor ceramics or polymer resins mixed with conductive powder. Since it is a thing, it can be created. A voltage is applied to a sensing element configured by arranging a plurality of these positive temperature coefficient thermistors in a straight line at intervals, and fixing a common electrode plate made of metal from both sides so as to be electrically conductive with the electrodes of the positive temperature coefficient thermistors. However, when the entire sensing element is in the air, the sensing element self-heats, its resistance increases, and it reaches thermal equilibrium at a certain temperature. At this time, the current flowing through the circuit also stabilizes at a certain constant current. The current value is displayed on a current display device. Furthermore, as the liquid level increases and the sensing element is gradually immersed from the end, the temperature of the immersed positive temperature coefficient thermistor becomes lower and its resistance becomes smaller, so the current increases accordingly.

さらに、検知素子全体が液中に浸漬すると電流は最も犬
きくなる。そして、液面の位置が隣り合う正特性サーミ
スタの間にあった場合でも金属の共通電極板が放熱板と
なるので、電流の変化は緩和され、電流が連続的に変化
する。このように液位に応じて電流が連続的に変化し、
その値を電流表示装置で読み取ることができる。
Furthermore, the current becomes the strongest when the entire sensing element is immersed in the liquid. Even if the liquid level is between adjacent positive temperature coefficient thermistors, the metal common electrode plate serves as a heat sink, so changes in current are moderated and the current changes continuously. In this way, the current changes continuously depending on the liquid level,
Its value can be read on a current display.

実施例 第1図は本発明の一実施例による連続式液位計を示す回
路図であり、第2図はその検知素子に用いられる正特性
サーミスタの斜視図である。第1図、第2図において6
は正特性サーミスタで、7はその相対向する面に設けら
れた銀などの電極である。8Ii黄銅板などによる共通
電極板で、それらの間に上記正特性サーミスタ6が4ケ
、それぞれ間隔をおいて固着されている。この固着は正
特性サーミスタ6の電極7と共通電極板8とを半田(図
示せず)などによって接着することとより行われている
。、9は上述のようにして構成された検知素子、10は
電源、11は電流計である。ここで、検知素子9の共通
電極板8と電源10と電流計11は直列に接続されてい
る。
Embodiment FIG. 1 is a circuit diagram showing a continuous liquid level meter according to an embodiment of the present invention, and FIG. 2 is a perspective view of a positive temperature coefficient thermistor used as a detection element thereof. 6 in Figures 1 and 2
is a positive temperature coefficient thermistor, and 7 is an electrode made of silver or the like provided on its opposing surfaces. The common electrode plate is made of a 8Ii brass plate or the like, and the four positive temperature coefficient thermistors 6 are fixed therebetween at intervals. This fixation is performed by bonding the electrode 7 of the PTC thermistor 6 and the common electrode plate 8 with solder (not shown) or the like. , 9 is a sensing element configured as described above, 10 is a power source, and 11 is an ammeter. Here, the common electrode plate 8 of the sensing element 9, the power source 10, and the ammeter 11 are connected in series.

今、検知素子9全体が空中にある時は熱放散係数が小さ
いので、検知素子9は自己発熱し、高い温度で熱平衡に
達する。そのため検知素子9の抵抗値は高くなり、流れ
る電流は最も少ない。この時、液面の位置が隣り合う2
つの正特性サーミスタ6の間にあった場合でも、共通電
極板8が放熱板となるので、電流の変化は緩和され電流
が連続的に変化する。このように液位に応じて電流が連
続的に変化し、その値を電流計11で読み取り液位を知
ることができる。第3図はこれらの様子を表わすグラフ
で、横軸は液位を示し、0は検知素子9が空中にある時
で、1は検知素子9全体が液中にあることを示す。乙の
領域は検知素子9の正特性サーミスタ6が液中にある部
分で、bの領域は液位が正特性サーミスタ6のないとこ
ろである。
Now, when the entire sensing element 9 is in the air, the heat dissipation coefficient is small, so the sensing element 9 self-heats and reaches thermal equilibrium at a high temperature. Therefore, the resistance value of the sensing element 9 becomes high, and the current flowing through it becomes the smallest. At this time, two liquid levels are adjacent to each other.
Even when the common electrode plate 8 is between two positive temperature coefficient thermistors 6, the change in current is relaxed and the current changes continuously because the common electrode plate 8 acts as a heat sink. In this way, the current changes continuously according to the liquid level, and the value can be read with the ammeter 11 to determine the liquid level. FIG. 3 is a graph showing these situations, where the horizontal axis indicates the liquid level, where 0 indicates that the sensing element 9 is in the air, and 1 indicates that the entire sensing element 9 is in the liquid. The region B is a portion where the PTC thermistor 6 of the sensing element 9 is in the liquid, and the region B is a portion where the PTC thermistor 6 is not present in the liquid level.

このように液位の変化に応じて流れる電流の変化はaの
領域とbの領域で少し違うものの、はぼなめらかに直線
となっている。
In this way, although the changes in the current flowing in accordance with the changes in the liquid level are slightly different between the areas a and b, they form a smooth straight line.

第4図は本発明の別の実施例に用いる検知素子を示す斜
視図である。第4図において、12は正特性サーミスタ
で、13はその相対向する面に設けられた銀などの電極
である。14は黄銅板などによる共通電極板で、それら
の間に上記正特注サーミスタ12が4ケそれぞれ間隔を
おいて固着されて込る。この固着は正特性サーミスタ1
2の電極13と共通電極板14とを半田(図示せず)な
どによって接着することにより行われている。Cは共通
電極板14の正特性サーミスタ12の固着されていない
部分て、この部分の共通電極板14の幅は正特性サーミ
スタ12が固着しである部分より広くなっている。その
ため共通電電板14の放熱板としての機能がより発揮さ
れ、Cの部分を液面が変化する時の電流の変化は第1図
に示したものより大きくなって、電流の変化は全体とし
てなめらかになる。
FIG. 4 is a perspective view showing a sensing element used in another embodiment of the present invention. In FIG. 4, 12 is a positive temperature coefficient thermistor, and 13 is an electrode made of silver or the like provided on its opposing surfaces. Reference numeral 14 denotes a common electrode plate made of a brass plate or the like, between which the four custom-made thermistors 12 are fixed at intervals. This fixation is caused by the positive characteristic thermistor 1
This is done by bonding the second electrode 13 and the common electrode plate 14 with solder (not shown) or the like. C is a portion of the common electrode plate 14 to which the PTC thermistor 12 is not fixed, and the width of the common electrode plate 14 in this portion is wider than the portion to which the PTC thermistor 12 is fixed. Therefore, the function of the common electrical board 14 as a heat dissipation plate is better exhibited, and the change in current when the liquid level changes in the part C becomes larger than that shown in Fig. 1, and the change in current is smooth as a whole. become.

発明の効果 以上のように本発明によれば、検知素子として複数個の
正特性サーミスタをそれぞれ間隔をおいて並べ、放熱板
を兼ねた共通電極板で固着した構成のため、特別な増幅
回路を用いることなく、少ない正特性サーミスタの数で
、安価に液位の連続した変化を表示でき、また液中での
過熱の恐れのない実用的価値の犬なるものである。
Effects of the Invention As described above, according to the present invention, a plurality of positive temperature coefficient thermistors are arranged at intervals as sensing elements, and are fixed by a common electrode plate that also serves as a heat sink, so that a special amplifier circuit is not required. It is a device of practical value that can display continuous changes in the liquid level at low cost with a small number of positive temperature coefficient thermistors without using it, and there is no fear of overheating in the liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による連続式液位計を示す構
成図、第2図はこれに用いる正特性サーミスタの斜視図
、第3図はその動作の様子を示すグラフ、第4図は本発
明の他の実施例に用いる検知素子の斜視図、第5図、第
6図、第7図はそれぞれ従来の液位針を示す構成図であ
る。 6.12・・・・・・正特性サーミスタ、7,13・・
・・・・電極、8,14・・・・・・共通電極板、9・
・・・・・検知素子、1o・・・・・・電源、11・・
・・・・電流計。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
2 図 第3図 ′   液位−I
Fig. 1 is a configuration diagram showing a continuous liquid level gauge according to an embodiment of the present invention, Fig. 2 is a perspective view of a positive temperature coefficient thermistor used therein, Fig. 3 is a graph showing its operation, and Fig. 4 1 is a perspective view of a sensing element used in another embodiment of the present invention, and FIGS. 5, 6, and 7 are configuration diagrams showing conventional liquid level needles, respectively. 6.12...Positive characteristic thermistor, 7,13...
... Electrode, 8, 14 ... Common electrode plate, 9.
...Detection element, 1o...Power supply, 11...
...Ammeter. Name of agent: Patent attorney Toshio Nakao and 1 other person
2 Figure 3' Liquid level-I

Claims (2)

【特許請求の範囲】[Claims] (1)相対向する面に電極が設けられた複数の正特性サ
ーミスタと金属からなる2枚の共通電極板とからなり、
その2枚の共通電極板と上記正特性サーミスタの電極と
導通するようにして、2枚の共通電極板の間に正特性サ
ーミスタがそれぞれ間隔をおいて固着されて構成された
検知素子と、その検知素子に接続された電源と、その検
知素子に流れる電流の表示装置とからなる連続式液位計
(1) Consisting of a plurality of positive temperature coefficient thermistors with electrodes provided on opposing surfaces and two common electrode plates made of metal,
A sensing element comprising positive temperature coefficient thermistors fixed at intervals between the two common electrode plates so as to be electrically connected to the electrodes of the positive temperature coefficient thermistor, and the detection element. A continuous liquid level gauge that consists of a power source connected to a power source and a display device that indicates the current flowing through the sensing element.
(2)正特性サーミスタと共通電極板の接していない箇
所の共通電極板の幅が接している箇所の幅よりも大きい
特許請求の範囲第1項記載の連続式液位計。
(2) The continuous liquid level meter according to claim 1, wherein the width of the common electrode plate at a portion where the positive temperature coefficient thermistor and the common electrode plate are not in contact is greater than the width at a portion where the positive temperature coefficient thermistor and the common electrode plate are in contact.
JP10703286A 1986-05-09 1986-05-09 Continuous level gauge Expired - Lifetime JPH083437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10703286A JPH083437B2 (en) 1986-05-09 1986-05-09 Continuous level gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10703286A JPH083437B2 (en) 1986-05-09 1986-05-09 Continuous level gauge

Publications (2)

Publication Number Publication Date
JPS62263419A true JPS62263419A (en) 1987-11-16
JPH083437B2 JPH083437B2 (en) 1996-01-17

Family

ID=14448788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10703286A Expired - Lifetime JPH083437B2 (en) 1986-05-09 1986-05-09 Continuous level gauge

Country Status (1)

Country Link
JP (1) JPH083437B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010116A1 (en) * 1989-12-28 1991-07-11 Hope Bjoern R A method and a device for determining the positions of boundary layers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991010116A1 (en) * 1989-12-28 1991-07-11 Hope Bjoern R A method and a device for determining the positions of boundary layers

Also Published As

Publication number Publication date
JPH083437B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US4246786A (en) Fast response temperature sensor and method of making
JPS6066145A (en) External atmosphere detecting device
EP0437325A2 (en) Temperature sensors
JPS5937773B2 (en) temperature detection device
JPH0197144A (en) Charge completion detector
US4246787A (en) Fast response temperature sensor and method of making
JPS62263419A (en) Continuous liquid level meter
US3696294A (en) Rms voltage or current sensor
JPH0643915B2 (en) Continuous level gauge
JPS62251621A (en) Liquid level detector
JP2567441B2 (en) Measuring method of thermal conductivity, measuring device and thermistor
JPS62162926A (en) Continuous level gage
JPS62284217A (en) Liquid level detector
JPS62162923A (en) Continuous level gage
JPH075050A (en) Temperature sensor
JPS585220Y2 (en) Ekimen Kenchiki
KR102611603B1 (en) Matrix structure type temperature sensor device for battery pack
JPH0643916B2 (en) Continuous level gauge
JPH0232222A (en) Temperature sensor
JPH0625695B2 (en) Infrared detector
RU1795307C (en) Electronic thermometer
JPS62285024A (en) Liquid level detector
JPH0486524A (en) Liquid level detector
SU1004896A1 (en) Thermoresonance converter
JPS6196416A (en) Liquid level sensor