JPS62161532A - Manufacture of plastic lens and so on - Google Patents

Manufacture of plastic lens and so on

Info

Publication number
JPS62161532A
JPS62161532A JP341986A JP341986A JPS62161532A JP S62161532 A JPS62161532 A JP S62161532A JP 341986 A JP341986 A JP 341986A JP 341986 A JP341986 A JP 341986A JP S62161532 A JPS62161532 A JP S62161532A
Authority
JP
Japan
Prior art keywords
resist
substrate
lens
electron beam
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP341986A
Other languages
Japanese (ja)
Inventor
Masaya Ooyama
大山 正弥
Maki Yamashita
山下 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP341986A priority Critical patent/JPS62161532A/en
Publication of JPS62161532A publication Critical patent/JPS62161532A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B15/00Driving, starting or stopping record carriers of filamentary or web form; Driving both such record carriers and heads; Guiding such record carriers or containers therefor; Control thereof; Control of operating function
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/86Re-recording, i.e. transcribing information from one magnetisable record carrier on to one or more similar or dissimilar record carriers

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To achieve the manufacture of fine lens, etc. capable of easy mass production by a method in which after a substrate has been coated with electron beam resist, the specified pattern of a lens is described on said resist by electron beam describing process, and the resist is developed, and then the residual film resist on the substrate is transferred onto the substrate by dry etching, whereby the plastic lens, etc. are produced, using said formed substrate as a female mold. CONSTITUTION:The surface of a base plate 1 is uniformly coated with electron beam resist 2a, and electron beam 3 is directed to this resist 2a by an electron beam describing device, whereby the male mold pattern of a specified lens is described. When the resist 2a is developed, the female mold pattern 26 for the specified lens out of the residual film resist remains on the substrate 1. If the substrate 1 with the residual film resist 2b is dry-etched, the pattern having been formed out of the resist 26 is transferred onto the substrate 1. While using thus formed substrate 1 as the female mold, the plastic lens 4 is manufactured by injection molding.

Description

【発明の詳細な説明】 発明の背景 この発明は、電子線描画法を利用したプラスチック・レ
ンズ等の作製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Background of the Invention The present invention relates to a method for manufacturing plastic lenses and the like using electron beam lithography.

光学式ビックア・ンブ等で用いられる微小光学系用のレ
ンズとして従来は1球面ガラス−レンズが用いられてい
たが1球面レンズ特許゛の収差を取り除くには複数のレ
ンズを組み合わせなければならず、軸合わせ、保持に高
い精度が要求され、光学系臼体も大型化することは不可
避であった。
Conventionally, a single spherical glass lens was used as a lens for micro-optical systems used in optical big amplifiers, etc., but in order to eliminate the aberrations of the single spherical lens patent, multiple lenses had to be combined. High precision was required for alignment and holding, and it was inevitable that the optical system body would also become larger.

球面ガラス会レンズに代わるプラスチック非球面レンズ
、プラスチック拳フレネル番レンズは金型を用いた射出
成形によって製造されるが、その金型は切削加工によっ
て作られる。開口径1 am以下の微小レンズの金型を
理論形状通りに加工するのはきわめて難しい。
Plastic aspherical lenses that replace spherical glass lenses and plastic Fresnel lenses are manufactured by injection molding using molds, but the molds are made by cutting. It is extremely difficult to process a mold for a microlens with an aperture diameter of 1 am or less according to its theoretical shape.

発明のIII要 この発明は、」二記に鑑み、比較的容易でかつ量産可能
な微小レンズ等の製作方法を提供することを[二1的と
する。
III. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a method for manufacturing microlenses, etc., which is relatively easy and can be mass-produced.

この発明によるプラスチック・レンズ等の作製法は、基
板上に電子線レジストを塗布し、電子線描画法によりこ
のレジスト上にレンズ等の所定のパターンを描画し、そ
の後レジストを現像し、さらに基板上の残膜レジスト・
パターンをドライ・エッチングによって基板に転写し、
このようにしてレンズ″、tのパターンが形成された基
板を雌型としてプラスチック・レンズ等を製造すること
を特徴とする。
The method for manufacturing plastic lenses, etc. according to this invention involves applying an electron beam resist onto a substrate, drawing a predetermined pattern such as a lens on the resist using an electron beam drawing method, then developing the resist, and then applying the electron beam resist onto the substrate. Residual film resist
The pattern is transferred to the substrate by dry etching,
A feature of the present invention is that the substrate on which the lens pattern ``t'' is formed in this manner is used as a female mold to manufacture plastic lenses and the like.

この発明は、基板上の現像後のレジストの残膜率が電子
線照射量に依存することを利用して、所望のレンズ・パ
ターンのレジスト残膜を1位置に応じて異なった強さま
たは鑓の電子線を照射することにより作製している。そ
して、現像後のレジスト残膜率の場所による違いを利用
して、ドライ・エッチングによってそのレジスト残膜パ
ターンを基板上に転写している。このようにして、基板
自体をプラスチック・レンズ等の雌型とし、この雌型を
用いて射出成形その他の方法により微小プラスチック・
レンズ等、たとえばプラスチック・ブレーズド・フレネ
ル・レンズをつくることができる。
This invention takes advantage of the fact that the residual film rate of the resist after development on the substrate depends on the amount of electron beam irradiation, so that the residual film of the resist of a desired lens pattern can be formed with different strength or strength depending on one position. It is fabricated by irradiating it with an electron beam. The resist remaining film pattern is then transferred onto the substrate by dry etching, taking advantage of the difference in the resist remaining film rate depending on the location after development. In this way, the substrate itself is made into a female mold for plastic lenses, etc., and this female mold is used to mold microplastics by injection molding or other methods.
Lenses etc., for example plastic blazed Fresnel lenses, can be made.

この発明によるレンズ等の作製法によると、電子線描画
装置において電子線照射量と描画位置をコンピュータで
コントロールできるため、収差のない理想的なレンズ・
パターンが得られる。平板状でしかも11ルンズで充分
な能力を持つレンズが得られるので小型でスペースをと
らないレンズ系の構成が可能となる。研磨等の工程が省
け、製作が容易である。プラスチックを型どりして作れ
るのでご産性に優れている。レンズ形状はコンピュータ
・ソフトウェアにより決定されるので形状の変更、改良
等が自由でフレキシビリティが高い等の効果が得られる
。この発明は、レンズの他にグレーティング等の作製に
も適用できる。
According to the method for manufacturing lenses, etc. according to the present invention, since the electron beam irradiation amount and the writing position can be controlled by a computer in the electron beam lithography system, an ideal lens without aberration can be created.
A pattern is obtained. Since a lens having a flat plate shape and sufficient performance can be obtained with 11 lenses, it is possible to construct a compact lens system that does not take up much space. Processes such as polishing can be omitted and manufacturing is easy. It is highly productive because it can be made by molding plastic. Since the lens shape is determined by computer software, the shape can be freely changed and improved, resulting in high flexibility. This invention can be applied to the production of gratings and the like in addition to lenses.

実施例の説明 この実施例は、フレネル・レンズを作製するものである
DESCRIPTION OF THE EXAMPLE This example creates a Fresnel lens.

第1図において、基板1.たとえばSt表面上に電子線
レジスト2a、たとえばCMS−EX(R)(ネガ形レ
ジスト)を一様に塗布し、電子線描画装置によってこの
レジスト2a上に電子線3を照射し、所定のレンズ雌型
パターンを描画する(第1図(A))。そして、このレ
ジスト2aを現像処理すると、基板1上には残膜レジス
トによる所定のレンズ雌型パターン2bが残る(第1図
(B))。電子線レジストは、電子線の照射量を場所に
応じてコントロールすると、それを現像したのちに残る
膜の厚さが照射量に依存して場所に応じて変わる。電子
線描画装置はコンピュータで制御され、電子線の照射2
を基板上に定めた座標位置ごとに任意に変化させること
ができる。また。
In FIG. 1, substrate 1. For example, an electron beam resist 2a, such as CMS-EX(R) (negative resist), is uniformly applied on the St surface, and an electron beam 3 is irradiated onto the resist 2a by an electron beam lithography device to form a predetermined lens shape. A mold pattern is drawn (FIG. 1(A)). When this resist 2a is developed, a predetermined lens female pattern 2b remains on the substrate 1 due to the residual film resist (FIG. 1(B)). For electron beam resists, when the amount of electron beam irradiation is controlled depending on the location, the thickness of the film that remains after development changes depending on the irradiation amount and depending on the location. The electron beam drawing device is controlled by a computer, and the electron beam irradiation device 2
can be arbitrarily changed for each coordinate position defined on the substrate. Also.

その変化パターンもソフトウェアにより自由に定めまた
は選択することができる。
The change pattern can also be freely determined or selected by software.

このようにして所定のレンズ雌型パターンの残膜レジス
ト2bをもつ驕板lを、たとえばCF4ガスによってド
ライ・エッチングする。レジストは時間の経過にしたが
って少しずつ削られてゆき、レジストがなくなって基板
が露出した部分では基板それ自体がエツチングされてい
く。レジスj・の薄い部分は早くレジストがなくなり、
レジストの厚い部分は遅くレジストがなくなるので、レ
ジストの薄い方から順に基板が削られる。このようにし
てレジスト2bで形成されていたパターンが基板1上に
転写される(第1図(C))。レジストと基板とではエ
ツチング速度が違うので、レジストのエツチング速度を
e 、基板のエツチング速度をe2とすると、パターン
が基板に転写された時点で縦方向にe 2 / e を
倍だけ伸長または圧縮された形となる。
In this way, the plate 1 having the residual film resist 2b having a predetermined lens female pattern is dry etched using, for example, CF4 gas. The resist is gradually removed over time, and in the areas where the resist is gone and the substrate is exposed, the substrate itself is etched. The thin part of the resist will quickly run out of resist.
The thicker parts of the resist run out slower, so the substrate is scraped from the thinner parts of the resist. In this way, the pattern formed with the resist 2b is transferred onto the substrate 1 (FIG. 1(C)). The etching speed of the resist and the substrate are different, so if the etching speed of the resist is e and the etching speed of the substrate is e2, then when the pattern is transferred to the substrate, it will be stretched or compressed in the vertical direction by twice e2/e. It becomes a shape.

このようにして形成された基板1を雌型として射出成形
によって、プラスチック・レンズ4を作製する(第1図
(D))。
A plastic lens 4 is produced by injection molding using the substrate 1 thus formed as a female mold (FIG. 1(D)).

レンズ・パターンが形成された基板1を雌型としてプラ
スチック・レンズ4を成形するやり方にはいくつかあろ
う。たとえば、第2図(A)に示すように、四部5aを
もつ金型5の四部5a内に基板1を収め、上から紫外線
硬化樹脂を流し込み、この樹脂を紫外線の照射によって
硬化させることにより、レンズ4ができる。
There are several ways to mold the plastic lens 4 using the substrate 1 on which the lens pattern is formed as a female mold. For example, as shown in FIG. 2(A), the substrate 1 is placed in the four parts 5a of a mold 5 having four parts 5a, an ultraviolet curing resin is poured from above, and this resin is cured by irradiation with ultraviolet rays. Lens 4 is completed.

また、2つの割型6,7を用い、一方の割型6の凹部6
aに雌型4を収め、両型6,7を向いあオ)せにして接
合する。そして割型7の凹部7a内に樹脂を射出する。
Also, using two split molds 6 and 7, the recess 6 of one split mold 6
Place the female mold 4 in a, and join the two molds 6 and 7 facing each other. Then, resin is injected into the recess 7a of the split mold 7.

最後に、−例としてフレネルφレンズの雌型パターンに
ついて定量的に説明しておく。
Finally, as an example, the female pattern of the Fresnel φ lens will be quantitatively explained.

フレネル・レンズのM型パターン形状G (r)は次式
で表わされる。
The M-type pattern shape G (r) of the Fresnel lens is expressed by the following equation.

G(r)−(d/2π) ・([(πr2)ハλf)](mod2 yr月d−λ
/(n−1) ただし。
G(r)-(d/2π) ・([(πr2)haλf)](mod2 yr month d-λ
/(n-1) However.

r:レンズの中心からの距離 d;レンズの厚さ λ;レンズに入射する光の波長 f:レンズの焦点距離 n:レンズ構成物質の屈折率 この形状G(r)が第3図に最も太い実線で示されてい
る。
r: Distance from the center of the lens d; Lens thickness λ; Wavelength of light incident on the lens f: Focal length of the lens n: Refractive index of lens constituent material This shape G(r) is the thickest in Figure 3. Indicated by a solid line.

上式を用いると、レンズ中心からの距離rと電子線の照
射時間D (r)との関係は、電子線の加速電圧20K
V、プローブ電流!、3X 10−IOAのとき1次の
ように表わされる。
Using the above formula, the relationship between the distance r from the lens center and the electron beam irradiation time D (r) is given by the acceleration voltage of the electron beam 20K.
V, probe current! , 3X 10-IOA, it is expressed as linear.

D (r) −2,75 ・E(0,Br 2) / (2λf )](IIlo
d O,8)+1.4 この式にしたがってレジスト上に電子線照射をし、現像
を行なえば、基板−Lにフレネル・レンズ雌型パターン
のレジスト膜が残る。
D (r) −2,75 ・E (0, Br 2) / (2λf )] (IIlo
dO,8)+1.4 If the resist is irradiated with an electron beam and developed according to this formula, a resist film with a female Fresnel lens pattern will remain on the substrate -L.

上の説明は、ネガ形レジストの場合であるが。The above explanation is for a negative resist.

ポジ形レジストを用いることによってもこの発明は実施
できることはいうまでもない。
It goes without saying that the present invention can also be practiced by using a positive resist.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)から(D)は、この発明の方法を実施する
工程を順を追って説明するためのTl程図。 第2図(A)および(B)はプラスチック・レンズの成
形工程の例をそれぞれ示す断面図、第3図はフレネル・
レンズの雌型パターンを示す図である。 1・・・基板、    2a・・・レジスト。 2b・・・レジスト・パターン。 3・・・電子線。 4・・・プラスチック・レンズ。 以  上 第1図 (A) (B) (C) (D) 第2図 (A) (日]
FIGS. 1(A) to 1(D) are Tl diagrams for sequentially explaining the steps of carrying out the method of the present invention. Figures 2 (A) and (B) are cross-sectional views showing examples of the plastic lens molding process, and Figure 3 is a Fresnel lens molding process.
It is a figure which shows the female pattern of a lens. 1...Substrate, 2a...Resist. 2b...Resist pattern. 3...Electron beam. 4...Plastic lens. Above Figure 1 (A) (B) (C) (D) Figure 2 (A) (Japanese)

Claims (1)

【特許請求の範囲】 基板上に電子線レジストを塗布し、 電子線描画法によりレジスト上にレンズ等の所定のパタ
ーンを描画し、その後レジストを現像し、 さらに基板上の残膜レジスト・パターンをドライ・エッ
チングによって基板に転写し、 このようにしてレンズ等のパターンが形成された基板を
雌型としてプラスチック・レンズ等を製造する。 プラスチック・レンズ等の作製法。
[Claims] An electron beam resist is applied onto a substrate, a predetermined pattern such as a lens is drawn on the resist using an electron beam drawing method, the resist is then developed, and the remaining film resist pattern on the substrate is further removed. The pattern is transferred onto a substrate by dry etching, and the substrate on which the lens pattern is formed is used as a female mold to manufacture plastic lenses and the like. Method for manufacturing plastic lenses, etc.
JP341986A 1986-01-13 1986-01-13 Manufacture of plastic lens and so on Pending JPS62161532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP341986A JPS62161532A (en) 1986-01-13 1986-01-13 Manufacture of plastic lens and so on

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP341986A JPS62161532A (en) 1986-01-13 1986-01-13 Manufacture of plastic lens and so on

Publications (1)

Publication Number Publication Date
JPS62161532A true JPS62161532A (en) 1987-07-17

Family

ID=11556857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP341986A Pending JPS62161532A (en) 1986-01-13 1986-01-13 Manufacture of plastic lens and so on

Country Status (1)

Country Link
JP (1) JPS62161532A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261601A (en) * 1988-04-13 1989-10-18 Omron Tateisi Electron Co Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens
US5148322A (en) * 1989-11-09 1992-09-15 Omron Tateisi Electronics Co. Micro aspherical lens and fabricating method therefor and optical device
US5359684A (en) * 1988-10-27 1994-10-25 Omron Corporation Optical lensed coupler for use with a planar waveguide
US5603870A (en) * 1993-02-22 1997-02-18 Lucent Technologies Inc. Optical fiber connector techniques
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same
JP2001312044A (en) * 2000-05-01 2001-11-09 Ricoh Opt Ind Co Ltd Density distribution mask and method for manufacturing three-dimensional structure using the same
JP2006000978A (en) * 2004-06-18 2006-01-05 Konica Minolta Holdings Inc Silicon substrate processing method, die for optical element, mother die of die for optical element, optical element, and diffraction grating

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261601A (en) * 1988-04-13 1989-10-18 Omron Tateisi Electron Co Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens
US5359684A (en) * 1988-10-27 1994-10-25 Omron Corporation Optical lensed coupler for use with a planar waveguide
US5148322A (en) * 1989-11-09 1992-09-15 Omron Tateisi Electronics Co. Micro aspherical lens and fabricating method therefor and optical device
US5345336A (en) * 1989-11-09 1994-09-06 Omron Tateisi Electronics Co. Micro aspherical lens and fabricating method therefor and optical device
US5608577A (en) * 1991-08-30 1997-03-04 Mitsui Petrochemical Industries, Ltd. Optical mirror and optical device using the same
US5603870A (en) * 1993-02-22 1997-02-18 Lucent Technologies Inc. Optical fiber connector techniques
JP2001312044A (en) * 2000-05-01 2001-11-09 Ricoh Opt Ind Co Ltd Density distribution mask and method for manufacturing three-dimensional structure using the same
JP4678640B2 (en) * 2000-05-01 2011-04-27 リコー光学株式会社 Concentration distribution mask and three-dimensional structure manufacturing method using the same
JP2006000978A (en) * 2004-06-18 2006-01-05 Konica Minolta Holdings Inc Silicon substrate processing method, die for optical element, mother die of die for optical element, optical element, and diffraction grating

Similar Documents

Publication Publication Date Title
JP4401383B2 (en) Structured device manufacturing
US6989932B2 (en) Method of manufacturing micro-lens
US6432328B2 (en) Method for forming planar microlens and planar microlens obtained thereby
US20050162733A1 (en) Method of fabricating diffractive lens array and UV dispenser used therein
US20050147925A1 (en) System and method for analog replication of microdevices having a desired surface contour
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
US9278490B2 (en) Method for manufacturing a two-dimensional polymer optical waveguide
JPS62161532A (en) Manufacture of plastic lens and so on
CN112649905B (en) Preparation method of fly-eye lens with free-form surface substrate
US7781155B2 (en) Fabrication method of micro-lens and fabrication method of master for micro-lens
US20170090294A1 (en) High-volume replication of diffractive optical elements
CN110927835A (en) Method for manufacturing grating micro-lens array by utilizing strain modulation self-assembly and product
CN113740942B (en) Micro-lens array grating and preparation method and application thereof
KR100647283B1 (en) Manufacturing method of micro-lens
JPS62161533A (en) Manufacture of plastic lens and so on
JPS6144628A (en) Preparation of fresnel microlens
JPH02196201A (en) Production of microlens array
JP3165167B2 (en) Micro lens and manufacturing method thereof
US20220137269A1 (en) Method of manufacturing a plurality of optical elements and product thereof
JPH03200106A (en) Optical waveguide lens
JPH0545501A (en) Composite type optical element and production thereof
JPH0552481B2 (en)
JPH04340903A (en) Composite optical element and production thereof
JPS6144627A (en) Preparation of fresnel microlens
JPH07108612A (en) Manufacture of relief type diffraction grating