JPS6215961B2 - - Google Patents

Info

Publication number
JPS6215961B2
JPS6215961B2 JP53035634A JP3563478A JPS6215961B2 JP S6215961 B2 JPS6215961 B2 JP S6215961B2 JP 53035634 A JP53035634 A JP 53035634A JP 3563478 A JP3563478 A JP 3563478A JP S6215961 B2 JPS6215961 B2 JP S6215961B2
Authority
JP
Japan
Prior art keywords
film
transparent conductive
gas
sputtering
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53035634A
Other languages
Japanese (ja)
Other versions
JPS54127598A (en
Inventor
Yutaka Takato
Sadatoshi Takechi
Kozo Yano
Tomio Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3563478A priority Critical patent/JPS54127598A/en
Publication of JPS54127598A publication Critical patent/JPS54127598A/en
Publication of JPS6215961B2 publication Critical patent/JPS6215961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はスパツタリングにより形成された金属
酸化物の透明導電膜に関するものである。 金属酸化物による透明導電膜としては不純物を
ドープした酸化錫、あるいは酸化インジウム膜が
よく知られている。これらの物質で形成された薄
膜は可視域で非常に高い光の透過率を持ち、かつ
電気伝導度も非常に大きく、透明導電膜として優
れた特性をもつ。 これらの物質のうち酸化錫(SnO2)をドープし
た酸化インジウム(IN2O3)膜は光の透過特性が
良く、電気伝導度も酸化アンチモン(Sb2O3)を
ドープしたSnO2膜より大きく、かつエツチング
も容易であり、デイスプレイ用透明電極形成に適
しているため広く透明導電膜として用いられてい
る。 一般にIN2O3の薄膜は以下に述べるような性質
を持つている。化学量論的に完全に近い、即ち酸
素の点欠陥の数の極めて少ない、In2O3の薄膜は
可視域の短波長端付近での光の吸収が大きく、目
視では黄色を帯びて見え、このような膜は不純物
のドープにもかかわらず電気伝導度はかなり小さ
い。酸素の欠陥の数が増加すると、可視域短波長
端での光吸収は減少し、膜は透明となり、電気伝
導度も増加する。これは、酸素の欠陥がドナーと
して働き自由電子を供給し、自由電子によりバル
スタイン=モス シフト(Burstein=Moss
Shift)により光の透過特性が変化するためであ
る。このように酸素の欠陥数の多少、即ち化学量
論的組成からのずれがIn2O3膜の電気的及び光学
的性質に極めて重要な役割をもつ。 SnO2をドープしたIn2O3膜はスプレー法、真空
蒸着法、スパツタリング法などで作られてきた
が、スパツタリング法での膜の形成は、In2O3
微少量のSnO2を混合した焼結体をターゲツトと
し、Arイオンでスパツタする方法、あるいはIn
−Snの合金をターゲツトとし、酸素ガスにより
化成スパツタで膜を形成し、続いて還元処理を行
なう方法、あるいは熱処理を行なう方法などがあ
るが、膜形成後の処理の必要でない前者が生産性
の面から見て優れている。また前者で、特にDC
スパツタにより膜を形成すれば基板の温度を上げ
る事なく透明導電膜を積層する事も可能である。 In2O3膜の電気的あるいは光学的性質は、In2O3
中の酸素の欠陥数の量に強く依存している。この
ためアルゴン(Ar)イオンでスパツタする際、
Arガス中の酸素ガスの量を調節すると、In2O3
の性質を変化させることが可能となる。 第1図にRFスパツタリングでSnO2を約12W%
ドープしたIn2O3膜を形成させた場合のArガス中
の酸素ガス混入量(%)と、それに伴なうIn2O3
膜の面抵抗(Ω/□)との関係を示す。この時の
条件は膜厚3500Å、高周波電力300W、圧力4×
10-2torrである。この図より明らかなように
In2O3膜の電気抵抗はAr中の酸素ガス量の増加と
ともに急激に増加している。透明導電膜の良否の
目安としてT/Rs(T:光透過率、Rs:面抵
抗)の大小を比べる方法がある。Ar中の酸素ガ
ス濃度とT/Rsとの関係を第2図に示す。ただ
し、図中黒丸は4000ÅにおけるT/Rsの、白丸
は6000ÅにおけるT/Rsの値をそれぞれ示す。
この図よりも明らかなように酸素ガスの比率が増
加することによりT/Rの値は低下し、透明導電
膜としての性能は悪化する。 本発明は、この酸素ガスによる透明導電膜の性
能悪化に鑑み、スパツタリングに用いるArガス
などの不活性ガス中に水素ガスを少量添加するこ
とにより透明導電膜としての性能を向上させたも
のである。第1表に、Arガスに酸素ガスを少量
混入したもの、Arガスに還元性ガスとして水素
ガスを少量混入したものおよびAr純ガスを用い
てスパツタリングを行なつた場合の面抵抗(Ω/
□)、T/Rsのそれぞれの値を示す。
The present invention relates to a transparent conductive film of metal oxide formed by sputtering. As transparent conductive films made of metal oxides, impurity-doped tin oxide or indium oxide films are well known. Thin films formed from these materials have extremely high light transmittance in the visible range and extremely high electrical conductivity, and have excellent properties as transparent conductive films. Among these materials, an indium oxide (IN 2 O 3 ) film doped with tin oxide (SnO 2 ) has good light transmission characteristics, and its electrical conductivity is also higher than that of an SnO 2 film doped with antimony oxide (Sb 2 O 3 ). It is large, easy to etch, and suitable for forming transparent electrodes for displays, so it is widely used as a transparent conductive film. In general, IN 2 O 3 thin films have the following properties. A thin film of In 2 O 3 with near perfect stoichiometry, that is, with an extremely small number of oxygen point defects, absorbs a lot of light near the short wavelength end of the visible range, and appears yellowish to the naked eye. Although such a film is doped with impurities, its electrical conductivity is quite low. As the number of oxygen defects increases, light absorption at the short wavelength end of the visible range decreases, the film becomes transparent, and electrical conductivity increases. This is because oxygen defects act as donors and supply free electrons, which cause Burstein-Moss shift.
This is because the light transmission characteristics change depending on the shift). As described above, the number of oxygen defects, that is, the deviation from the stoichiometric composition, plays a very important role in the electrical and optical properties of the In 2 O 3 film. In 2 O 3 films doped with SnO 2 have been made by spraying methods, vacuum evaporation methods, sputtering methods, etc., but the film formation by sputtering method involves mixing a small amount of SnO 2 with In 2 O 3 . A method of sputtering with Ar ions using a sintered body as a target, or a method of sputtering with Ar ions, or an In
-There are methods such as forming a film by chemical sputtering using oxygen gas as a target, followed by reduction treatment, or heat treatment, but the former method, which does not require any treatment after film formation, increases productivity. Excellent from the outside. Also, the former, especially DC
If the film is formed by sputtering, it is possible to stack transparent conductive films without raising the temperature of the substrate. The electrical or optical properties of the In 2 O 3 film are
It is strongly dependent on the amount of oxygen defects in it. For this reason, when sputtering with argon (Ar) ions,
By adjusting the amount of oxygen gas in Ar gas, it is possible to change the properties of the In 2 O 3 film. Figure 1 shows SnO2 of about 12W% by RF sputtering.
Amount (%) of oxygen gas mixed in Ar gas and the accompanying In 2 O 3 when forming a doped In 2 O 3 film
The relationship with the sheet resistance (Ω/□) of the film is shown. The conditions at this time were film thickness 3500Å, high frequency power 300W, pressure 4×
10 -2 torr. As is clear from this figure
The electrical resistance of the In 2 O 3 film increases rapidly as the amount of oxygen gas in Ar increases. As a measure of the quality of a transparent conductive film, there is a method of comparing the magnitude of T/ Rs (T: light transmittance, Rs : sheet resistance). FIG. 2 shows the relationship between the oxygen gas concentration in Ar and T/R s . However, in the figure, the black circles indicate the value of T/R s at 4000 Å, and the white circles indicate the value of T/R s at 6000 Å.
As is clear from this figure, as the ratio of oxygen gas increases, the T/R value decreases, and the performance as a transparent conductive film deteriorates. In view of the deterioration of the performance of a transparent conductive film due to oxygen gas, the present invention improves the performance of the transparent conductive film by adding a small amount of hydrogen gas to an inert gas such as Ar gas used for sputtering. . Table 1 shows the sheet resistance (Ω/
□), the respective values of T/R s are shown.

【表】【table】

【表】 この表からも明らかなように少量の水素ガスを
混入させたArガスを用いてスパツタリングをす
ることにより面抵抗が非常に小さく、T/Rs
値も大きい極めて良質な透明導電膜を作成でき
る。 しかしながら添加する水素濃度が大きくなると
透過率が低下し、T/Rsの値が小さくなるた
め、あまりに多くの量の水素を添加することは好
ましくなく5%程度が限界と思われる。 以上のように本発明によれば、5%以下という
微量な水素ガスを不活性ガスに混入させた状態で
スパツタリングを行うことにより可視光短波長側
の透明性および電気特性にすぐれた金属酸化物に
よる透明導電膜を容易に得ることができる。ま
た、本発明によればわずかな真空漏れや残留ガス
による汚染の影響を避けることも可能で、量産時
に問題となる真空引きの時間を大幅に短縮する事
も可能である。さらに本発明によれば、従来より
行なわれている真空蒸着法と比較しても、膜の付
着速度をかなり高速とすることが可能となる。
[Table] As is clear from this table, by sputtering using Ar gas mixed with a small amount of hydrogen gas, an extremely high-quality transparent conductive film with extremely low sheet resistance and high T/R s value can be obtained. can be created. However, as the concentration of hydrogen added increases, the transmittance decreases and the value of T/R s decreases, so it is not preferable to add too much hydrogen, and about 5% is considered to be the limit. As described above, according to the present invention, metal oxides with excellent transparency and electrical properties on the short wavelength side of visible light can be produced by sputtering with a trace amount of hydrogen gas of 5% or less mixed in an inert gas. A transparent conductive film can be easily obtained. Further, according to the present invention, it is possible to avoid the effects of slight vacuum leaks and contamination due to residual gas, and it is also possible to significantly shorten the evacuation time, which is a problem during mass production. Further, according to the present invention, it is possible to achieve a considerably higher film deposition rate than the conventional vacuum evaporation method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスパツタリングにArガスを用いた場
合に、Arガス中に混入させる酸素ガスの濃度と
作成された透明導電膜の面抵抗との関係を示す
図、第2図はArガス中に混入させる酸素ガスの
濃度とT/Rs(透明度/面抵抗)との関係を示
す図である。
Figure 1 shows the relationship between the concentration of oxygen gas mixed into Ar gas and the sheet resistance of the transparent conductive film created when Ar gas is used for sputtering. FIG. 3 is a diagram showing the relationship between the concentration of oxygen gas and T/R s (transparency/sheet resistance).

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物をターゲツトとし、水素ガスを5
%以下の分量だけ混合させた不活性ガスを主成分
とする雰囲気ガス中でスパツタリングを行い、金
属酸化物を主成分とする透明導電膜を作成したこ
とを特徴とする透明導電膜の製造方法。
1 Targeting metal oxide, hydrogen gas
A method for producing a transparent conductive film, characterized in that a transparent conductive film containing a metal oxide as a main component is produced by sputtering in an atmospheric gas containing an inert gas as a main component mixed in an amount of less than 1%.
JP3563478A 1978-03-27 1978-03-27 Process for fabricating transparent conductive film Granted JPS54127598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3563478A JPS54127598A (en) 1978-03-27 1978-03-27 Process for fabricating transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3563478A JPS54127598A (en) 1978-03-27 1978-03-27 Process for fabricating transparent conductive film

Publications (2)

Publication Number Publication Date
JPS54127598A JPS54127598A (en) 1979-10-03
JPS6215961B2 true JPS6215961B2 (en) 1987-04-10

Family

ID=12447296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3563478A Granted JPS54127598A (en) 1978-03-27 1978-03-27 Process for fabricating transparent conductive film

Country Status (1)

Country Link
JP (1) JPS54127598A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209009A (en) * 1982-05-28 1983-12-05 株式会社日立製作所 Method of forming transparent conductive film
JPS62190612A (en) * 1986-02-17 1987-08-20 株式会社半導体エネルギー研究所 Manufacture of zinc oxide conductive film
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
GB0006801D0 (en) * 2000-03-22 2000-05-10 Pilkington Plc Coating glass
DE10023459A1 (en) * 2000-05-12 2001-11-15 Balzers Process Systems Gmbh Depositing transparent conducting indium-tin oxide layers on substrate used in the production of transparent conducting electrodes in organic LED displays comprises using combined HF/DC sputtering of indium-tin oxide target
JP2011091063A (en) * 2011-02-09 2011-05-06 Inst Of Materials Research & Engineering Transparent electrode material which is improved for improvement of performance of oled device

Also Published As

Publication number Publication date
JPS54127598A (en) 1979-10-03

Similar Documents

Publication Publication Date Title
US3483110A (en) Preparation of thin films of vanadium dioxide
US5045235A (en) Transparent conductive film
JP3970719B2 (en) Sputtering target based on titanium dioxide
JPS6215961B2 (en)
JPH02168507A (en) Fluorine doped tin oxide film and method of reducing resistance thereof
EP0159531B1 (en) Thin film el panel
JPH0344465A (en) Production of sputtering target for electrically conductive transparent ito film
JPH1088332A (en) Sputtering target, transparent conductive coating and its production
JPH0371510A (en) Transparent conductive film
JP2000281346A (en) Uv-transparent electric conductor
JP3634394B2 (en) High resistance indium oxide film
US4605285A (en) Electrochromic device
JPH0343911A (en) Transparent electricity conductive film
JP3355610B2 (en) Method for increasing resistance of tin-doped indium oxide film
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JPS647445B2 (en)
JPH04341707A (en) Transparent conductive film
JPS62227082A (en) Formation of electrically conductive transparent film
JPH0765167B2 (en) Sputtering target for ITO transparent conductive film
JP3197623B2 (en) Method of forming transparent conductive thin film
JP2941086B2 (en) Transparent electrode
JPS6380413A (en) Transparent conductor
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
JPH10183333A (en) Formation of transparent conductive film