JPS62190612A - Manufacture of zinc oxide conductive film - Google Patents

Manufacture of zinc oxide conductive film

Info

Publication number
JPS62190612A
JPS62190612A JP3236886A JP3236886A JPS62190612A JP S62190612 A JPS62190612 A JP S62190612A JP 3236886 A JP3236886 A JP 3236886A JP 3236886 A JP3236886 A JP 3236886A JP S62190612 A JPS62190612 A JP S62190612A
Authority
JP
Japan
Prior art keywords
film
zinc oxide
conductive film
oxide conductive
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3236886A
Other languages
Japanese (ja)
Inventor
舜平 山崎
阿部 雅芳
邦夫 鈴木
武 深田
金花 美樹雄
篠原 久人
真人 薄田
克彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3236886A priority Critical patent/JPS62190612A/en
Publication of JPS62190612A publication Critical patent/JPS62190612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Liquid Crystal (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、太陽電池、液晶表示パネル、その他、産業上
巾広く用いられている透光性導電膜のうち酸化亜鉛導電
膜の作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a zinc oxide conductive film among light-transmitting conductive films widely used in solar cells, liquid crystal display panels, and other industries.

従来の透明導電膜にはAu等の金属薄物を用いるものと
、SnO□、InzOt等の金属酸化物を用いるものと
がある。金属薄膜はその高い導電性の為、低抵抗の膜を
作りやすい反面、可視域での吸収が大きい為、高透過率
が得に<<、かつ膜の強度が劣るという欠点をもってい
る。一方金属酸化物は適度の導電性と高透過率そのうえ
優れた膜強度をもっているので幅広く応用されている。
Conventional transparent conductive films include those using thin metals such as Au, and those using metal oxides such as SnO□ and InzOt. Metal thin films have high conductivity, making it easy to create films with low resistance; however, they have the drawback of high absorption in the visible range, resulting in high transmittance and poor film strength. On the other hand, metal oxides have appropriate conductivity, high transmittance, and excellent film strength, so they are widely used.

現在、一般に知られている金属酸化物はネサ膜と呼ばれ
るSn0g膜、1nzO+膜、ITO膜等でこれらのう
ちIn2O2膜とITO膜は比抵抗が10〜4Ωcm程
、SnO□膜が10−’Ωcm程の膜質の物が得られて
いる。
Currently, generally known metal oxides include Sn0g film called Nesa film, 1nzO+ film, and ITO film. Among these, In2O2 film and ITO film have a resistivity of about 10 to 4 Ωcm, and SnO□ film has a resistivity of 10-'Ωcm. A material with a film quality of about 100% was obtained.

さらに最近、酸化亜鉛膜ZnOがITO膜と同程度の光
透過性を有し、原材料が安価であるために注目されてい
る。
Furthermore, recently, a zinc oxide film, ZnO, has attracted attention because it has a light transmittance comparable to that of an ITO film and its raw materials are inexpensive.

しかしながら、公知のスパッタ法などで作製されたZn
O膜はその比抵抗が、10−2(9cm )程度しか得
られず実用にはあまり向いていなかった。
However, Zn produced by known sputtering method etc.
The O film had a specific resistance of only about 10-2 (9 cm2) and was not very suitable for practical use.

本発明は、この問題を解決するものであり、従来の製造
装置をそのまま利用してより低抵抗なZnO膜を作製す
る方法に関するものである。
The present invention solves this problem and relates to a method for producing a ZnO film with lower resistance using conventional production equipment as is.

この問題を解決するために、従来は酸化物被膜を作製す
る際に不必要または悪影響を及ぼすと考えられていた還
元性気体である水素を少量添加して酸化物被膜を形成す
ることを特徴とするものである。
In order to solve this problem, the oxide film is formed by adding a small amount of hydrogen, which is a reducing gas that was conventionally thought to be unnecessary or have a negative effect when creating an oxide film. It is something to do.

以下に実施例により本発明を説明する 実施例 本実施例では従来より公知のアゲネトロンスパッタリン
グ装置を用いて行った。6インチのZn0(99,9χ
)焼結体ターゲットを用い基板とターゲットの間隔は9
0鶴であり、不活性ガスとしてArを用いスパッタリン
グガス圧は1.2Pa、印加電力300Wで一定とし添
加する水素量及び膜形成温度条件を種々変えてZnO導
電膜を作製した。その結果を表1に示す。
EXAMPLES The present invention will now be explained with reference to examples. In this example, a conventionally known agenetron sputtering apparatus was used. 6 inch Zn0 (99,9χ
) Using a sintered target, the distance between the substrate and target is 9
A ZnO conductive film was prepared by using Ar as an inert gas, keeping the sputtering gas pressure constant at 1.2 Pa, and the applied power at 300 W, and varying the amount of hydrogen added and the film forming temperature conditions. The results are shown in Table 1.

表1 また比較の為に各温度において水素を添加しないで、Z
nO膜を作製した。その結果を表2に示す。
Table 1 For comparison, Z
An nO film was produced. The results are shown in Table 2.

表2 尚、表1表2の基板温度の欄において加熱せずと表示が
ある時の実際の基板温度は、スパッタリング時の輻射熱
の為若干の違いがあり30℃〜50℃の範囲で一定であ
った これらの実施例及び比較例より明らかなようにZnO膜
を作製する際に水素を少量添加すると、その比抵抗は最
大で2ケタ以上改善されることが判明した。また水素を
添加すると、基板温度を下げてゆくにしたがい、ZnO
膜の抵抗値が下がってくることが判明した。これは水素
を添加しない場合の現象と全く逆である。
Table 2 In addition, in the substrate temperature column of Table 1 and Table 2, the actual substrate temperature when it is indicated that it is not heated is constant within the range of 30°C to 50°C, although there may be slight differences due to radiant heat during sputtering. As is clear from these Examples and Comparative Examples, it has been found that when a small amount of hydrogen is added when producing a ZnO film, the specific resistance can be improved by two orders of magnitude or more at most. Furthermore, when hydrogen is added, as the substrate temperature is lowered, ZnO
It was found that the resistance value of the membrane decreased. This is completely opposite to the phenomenon when no hydrogen is added.

また、これらのZnO膜の光の透過率の代表的な値を表
3に示す。
Further, Table 3 shows typical values of the light transmittance of these ZnO films.

表3 (膜厚はすべて3000人) このように透過率は水素の添加の有無、温度の差にかか
わらず、はぼ一定で良好な透過性を示した。
Table 3 (All film thicknesses were 3,000 people) As described above, the transmittance was almost constant regardless of whether hydrogen was added or not, and regardless of the temperature difference, indicating good permeability.

図1に表1の結果をまとめて示す曲線(1) (2) 
(3)(4)は各々0°C1加熱せず100°C,15
0℃の基板温度に対応する。これより明らかなように、
水素分圧比で1.5〜2.5χ付近が最も低抵抗を示し
ている。また0℃においては、水素分圧比10χでも1
0−’(0cm)台の比抵抗値であり、基板加熱せずと
0℃では0.05χでも同様に10−’(0cm)台の
比抵抗を有していた。
Figure 1 shows the curves (1) (2) that summarize the results in Table 1.
(3) and (4) are respectively 0°C100°C without heating, 15
Corresponds to a substrate temperature of 0°C. As is clearer from this,
The lowest resistance is shown around a hydrogen partial pressure ratio of 1.5 to 2.5χ. Furthermore, at 0°C, even with a hydrogen partial pressure ratio of 10χ, 1
The resistivity value was on the order of 0-' (0 cm), and even at 0.05χ at 0° C. without heating the substrate, the resistivity was on the order of 10-' (0 cm).

このように、従来の装置を使用し、還元性気体である水
素を少量添加することにより、より低抵抗なZnO膜を
形成することができる。
In this way, by using a conventional device and adding a small amount of hydrogen, which is a reducing gas, it is possible to form a ZnO film with lower resistance.

さらに、この時基板温度を室温以下に保持し、ZnO膜
を形成することは、非常に有効であった。
Furthermore, it was very effective to maintain the substrate temperature below room temperature and form the ZnO film at this time.

本実施例では、ZnOのターゲ・7トを用いArガス中
に水素を添加したが、Znターゲットを用いArガスと
02ガスによる反応性スパッタリング時に水素を添加し
ても同様である。
In this example, hydrogen was added to Ar gas using a ZnO target, but the same effect can be obtained by adding hydrogen during reactive sputtering using Ar gas and O2 gas using a Zn target.

また、スパッタリングターゲット中にAIまたはAha
3を1〜5w L2程度混入しても同様の結果が得られ
る。
Also, AI or Aha in the sputtering target
Similar results can be obtained even if approximately 1 to 5w L2 of 3 is mixed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ZnO膜の比抵抗と作製時の水素分圧比の関
係を示す。
FIG. 1 shows the relationship between the resistivity of the ZnO film and the hydrogen partial pressure ratio during fabrication.

Claims (1)

【特許請求の範囲】 1、亜鉛または酸化亜鉛を主成分とするスパッタリング
ターゲットにより酸化亜鉛導電膜をスパッタリングさせ
て所定の基板に酸化亜鉛導電膜を作製する方法において
、スパッタリング用気体に水素が添加されていることを
特徴とする酸化亜鉛導電膜の作製方法 2、特許請求の範囲第1項において、前記水素は分圧比
10.0%以下の割合で添加されたことを特徴とする酸
化亜鉛導電膜の作製方法
[Claims] 1. In a method of sputtering a zinc oxide conductive film using a sputtering target containing zinc or zinc oxide as a main component to produce a zinc oxide conductive film on a predetermined substrate, hydrogen is added to the sputtering gas. A method 2 for manufacturing a zinc oxide conductive film, characterized in that in claim 1, the hydrogen is added at a partial pressure ratio of 10.0% or less. How to make
JP3236886A 1986-02-17 1986-02-17 Manufacture of zinc oxide conductive film Pending JPS62190612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3236886A JPS62190612A (en) 1986-02-17 1986-02-17 Manufacture of zinc oxide conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3236886A JPS62190612A (en) 1986-02-17 1986-02-17 Manufacture of zinc oxide conductive film

Publications (1)

Publication Number Publication Date
JPS62190612A true JPS62190612A (en) 1987-08-20

Family

ID=12357002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3236886A Pending JPS62190612A (en) 1986-02-17 1986-02-17 Manufacture of zinc oxide conductive film

Country Status (1)

Country Link
JP (1) JPS62190612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249540A (en) * 2005-03-14 2006-09-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for forming transparent electroconductive thin-film with low resistance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127598A (en) * 1978-03-27 1979-10-03 Sharp Corp Process for fabricating transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54127598A (en) * 1978-03-27 1979-10-03 Sharp Corp Process for fabricating transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249540A (en) * 2005-03-14 2006-09-21 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Method for forming transparent electroconductive thin-film with low resistance

Similar Documents

Publication Publication Date Title
US4399015A (en) Method for fabricating an indium tin oxide film for a transparent electrode
US5045235A (en) Transparent conductive film
JPS62122011A (en) Transparent conducting film and manufacture of the same
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
JP3163015B2 (en) Transparent conductive film
JPH0784654B2 (en) Method for manufacturing sputtering target for ITO transparent conductive film
JPS62190612A (en) Manufacture of zinc oxide conductive film
JPH0987833A (en) Production of transparent electrically conductive film
JPS6196609A (en) Transparent conductive film
CN111638610A (en) Flexible intelligent light adjusting film with high visible light transmittance and heat insulation and preparation method thereof
JPH06293956A (en) Zinc oxide transparent conductive film, its formation and sputtering target used therefor
JPS62190613A (en) Manufacture of zinc oxide conductive film
JPH0315107A (en) Conductive metal oxide sintered body and its application
JPH01283369A (en) Sputtering target for forming electrically conductive transparent ito film
JPH054768B2 (en)
JPH0344464A (en) Sputtering target for electrically conductive transparent ito film
JPS6293804A (en) Transparent conductor film and formation of the same
JPH04293769A (en) Ito sputtering target for forming film at low temperature
JPS60220505A (en) Transparent conductive film and method of forming same
JPH1040740A (en) Transparent conductive film and transparent conductive material
CN112981345B (en) Method for manufacturing transparent conductive electrode of all-solid-state electrochromic device without annealing
JPH03199373A (en) Sputtering target for forming electrically conductive transparent ito film
JPS6139321A (en) Method of producing tin oxide conductive film
JPH03295114A (en) Target for manufacturing transparent conductive film
JPH07224383A (en) Method for making indium-tin oxide film high in resistance