JPS62155923A - Two-stage treatment equipment for dry desulfurization and denitration - Google Patents

Two-stage treatment equipment for dry desulfurization and denitration

Info

Publication number
JPS62155923A
JPS62155923A JP60298905A JP29890585A JPS62155923A JP S62155923 A JPS62155923 A JP S62155923A JP 60298905 A JP60298905 A JP 60298905A JP 29890585 A JP29890585 A JP 29890585A JP S62155923 A JPS62155923 A JP S62155923A
Authority
JP
Japan
Prior art keywords
tower
denitration
desulfurization
denitrification
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60298905A
Other languages
Japanese (ja)
Other versions
JPH0613083B2 (en
Inventor
Seiji Iwamura
征治 岩村
Koichi Shimazaki
島崎 行一
Hisao Tsuboya
坪谷 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Sumitomo Heavy Industries Ltd
Original Assignee
Electric Power Development Co Ltd
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Sumitomo Heavy Industries Ltd filed Critical Electric Power Development Co Ltd
Priority to JP60298905A priority Critical patent/JPH0613083B2/en
Publication of JPS62155923A publication Critical patent/JPS62155923A/en
Publication of JPH0613083B2 publication Critical patent/JPH0613083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To always maintain the prescribed denitration efficiency even if SOx concn. is fluctuated by remarkable load fluctuation by providing a by-pass pipeline between an outlet of a desulfurization tower and an inlet of a denitration tower and introducing one part of exhaust gas directly into the denitration tower. CONSTITUTION:In a two-stage treatment equipment for desulfurization and denitration consisting of a desulfurization tower 1 and a denitration tower 2 wherein activated carbon is circulated and ammonia is injected, a by-pass pipe 4 is provided between an outlet of the desulfurization tower 1 and an inlet of the denitration tower 2. In case of treating low-concn. exhaust gas in an equipment designed in accordance with high-concn. SOx, SOx concn. in the inlet of the denitration tower is maintained in the prescribed range by opening a valve 5 and introducing one part of exhaust gas B to the inlet of the denitration tower 2 via the by-pass 4. By such method, the prescribed denitration efficiency can be maintained without increasing leak of the injected NH3 D even if exhaust gas of low-load SOx is treated.

Description

【発明の詳細な説明】 (技術分野) 本発明は、活性炭を使用した排ガスの乾式脱硫脱硝装置
に関し、特に大巾に負荷が変動する場合においても、効
果的に脱硝を行うことの出来る処理装置に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a dry-type desulfurization and denitration equipment for exhaust gas using activated carbon, and in particular to a treatment equipment that can effectively denitrate even when the load fluctuates widely. Regarding.

(従来技術) 一般に、活性炭を使用して排ガスの脱硫および脱硝を行
う乾式脱硫脱硝装置は、脱硫塔と脱硝塔において、これ
らの塔内を排ガスが順次通過する際に1それぞれ重点的
に脱硫および脱硝処理を行うようkなっているものであ
る◇ すなわち排ガスは、まず脱硫塔で脱硫された後、脱硝塔
で脱硝される。
(Prior art) In general, dry desulfurization and denitrification equipment that uses activated carbon to desulfurize and denitrify exhaust gas has a desulfurization tower and a denitrification tower. It is designed to perform denitrification treatment◇ That is, the exhaust gas is first desulfurized in a desulfurization tower and then denitrated in a denitrification tower.

ここで、脱硝塔において8〇−以上の脱硝率を−得、か
つNH,のリーク量を20−以下に押えるためには、脱
硝塔人口におけるSO2濃度が30〜100−である必
要がある。 しかしガス中のSo雪濃度が1000μか
ら400111mk大巾に変化する場合には、脱硝塔入
口のSO鵞濃度は50解以下となり、この状態で脱硝塔
でのNH,リークを2(UPI以下に押えようとすると
、全脱硝率を80襲以上に維持出来なくなり、反対に脱
硝率を上げようとすれば、NH3リークが増大してしま
うこととなる。
Here, in order to obtain a denitrification rate of 80 or more in the denitrification tower and to suppress the leakage amount of NH to 20 or less, the SO2 concentration in the denitrification tower must be between 30 and 100. However, when the So snow concentration in the gas changes from 1000μ to 400111 mK, the SO snow concentration at the entrance of the denitrification tower becomes less than 50, and in this state, the NH leakage in the denitrification tower is suppressed to below 2 (UPI). If you try to do this, you will not be able to maintain the total denitrification rate above 80 strokes, and if you try to increase the denitrification rate, on the other hand, the NH3 leak will increase.

また脱硫脱硝装置を設計する場合、排ガス中に含まれて
いる8 0 x + N Ox濃度たより基本数値が異
なるが、一般的には高濃度、高負荷に対応して設計して
おけば、低濃度、低負荷の場合にも高効率を達成するこ
とが出来る。
In addition, when designing a desulfurization and denitrification equipment, the basic values differ depending on the concentration of 80 High efficiency can be achieved even at low concentrations and low loads.

しかし脱硫脱硝二段処理の場合には、高濃度Boxの高
負荷で設計した装置で低負荷運転を行うと、脱硫塔での
脱硫効率が上がり過ぎ、脱硝塔に入るガス中の80に濃
度が、脱硝塔における脱硝効率を維持するのに必要な濃
度30〜100隼よりも下回ってしまうことになる。 
このように脱硝塔入口のSOx濃度が低い場合には、注
入したNH3のリークが多くなり、所定の脱硝率を得る
ことが出来ない。
However, in the case of two-stage desulfurization and denitrification treatment, if low-load operation is performed with a device designed for a high concentration box with a high load, the desulfurization efficiency in the desulfurization tower will increase too much, and the concentration of 80% in the gas entering the denitrification tower will increase. , the concentration would be lower than the 30-100% concentration required to maintain the denitrification efficiency in the denitrification tower.
When the SOx concentration at the inlet of the denitrification tower is low as described above, leakage of the injected NH3 increases, making it impossible to obtain a predetermined denitrification rate.

以上のような問題から、従来の脱硫脱硝二段処理装置に
おいては、大巾なガス中のSOx濃度の変動があった場
合に十分な脱硝効率を維持するのが困難であるといった
欠点を有するものであった。
Due to the above-mentioned problems, conventional two-stage desulfurization and denitrification treatment equipment has the disadvantage that it is difficult to maintain sufficient denitrification efficiency when there are wide fluctuations in the SOx concentration in the gas. Met.

(目  的) この発明は、以上のような従来の脱硫脱硝二段処理装置
における欠点を解消するために為されたものであって、
負荷変動すなわちガス中のSOx濃度の大巾な変動があ
った場合であっても、常に所定の脱硝効率を維持するこ
との出来る乾式脱硫脱硝装置を提供することを目的とす
るものである。
(Purpose) This invention was made in order to eliminate the drawbacks of the conventional two-stage desulfurization and denitrification treatment equipment as described above.
It is an object of the present invention to provide a dry desulfurization and denitrification device that can always maintain a predetermined denitrification efficiency even when there is a load fluctuation, that is, a wide fluctuation in the SOx concentration in gas.

(構  成) この発明は、上記目的を達成するため、アンモニアが供
給される脱硫塔および脱硝塔内を排ガスが順次通過する
ことによって、排ガスの脱硫および脱硝処理を行う乾式
脱硫脱硝装置において、前記脱硫塔出口と脱硝塔入口と
の間に、排ガスの一部を直接脱硝塔に導入するためのバ
イパス配管を配設せしめたものである。
(Structure) In order to achieve the above object, the present invention provides a dry desulfurization and denitration apparatus that performs desulfurization and denitration treatment of exhaust gas by sequentially passing the exhaust gas through a desulfurization tower to which ammonia is supplied and a denitration tower. A bypass pipe is provided between the desulfurization tower outlet and the denitrification tower inlet for directly introducing a portion of the exhaust gas into the denitrification tower.

(実施例〉 以下この発明を、図面に示す実施例に基づいてさらに詳
細に説明を行う。
(Example) The present invention will be described in more detail below based on an example shown in the drawings.

第1図において、脱硫塔1および脱硝塔2には、活性炭
(4)が循環して供給されるようになっており、この脱
硫塔1に排ガス(6)が導入されるようkなっている。
In FIG. 1, activated carbon (4) is circulated and supplied to the desulfurization tower 1 and the denitrification tower 2, and the exhaust gas (6) is introduced into the desulfurization tower 1. .

 そして脱硫塔1を通過して脱硫処理された排ガスは脱
硝塔2に導入され、脱硝処理された後、排気される。 
また脱硫塔1および脱硝塔2で説伏および脱硝処理を行
った活性炭は脱離塔31C導入され、この脱離塔3にお
いて活性炭から高濃度5(h(C)が分離排出される。
The exhaust gas that has passed through the desulfurization tower 1 and has been desulfurized is introduced into the denitrification tower 2, where it is denitrified and then exhausted.
Furthermore, the activated carbon that has been subjected to denitrification and denitration treatment in the desulfurization tower 1 and the denitrification tower 2 is introduced into a desorption tower 31C, and in this desorption tower 3, high concentration 5(h(C)) is separated and discharged from the activated carbon.

なお、脱硫塔1および脱硝塔2には、それぞれ入口にお
いてアンモニア(D)が供給されるようkなっている。
Note that ammonia (D) is supplied to the desulfurization tower 1 and the denitrification tower 2 at their respective inlets.

以上の処理工程は、従来の脱硫脱硝二段処理装置の処理
工程と同様である。
The above treatment steps are similar to those of a conventional two-stage desulfurization and denitrification treatment device.

本発明は上記処理装置の脱硫塔1の入口と脱硝塔2の入
口との間にバイパス4を設け、排ガスの)の一部を直接
脱硝塔2!′c導入するようkなっているものである。
In the present invention, a bypass 4 is provided between the inlet of the desulfurization tower 1 and the inlet of the denitrification tower 2 of the above-mentioned treatment equipment, and a part of the exhaust gas is directly transferred to the denitrification tower 2! 'c is introduced.

 バイパス4の途中に設けられた切替バルブ5によって
供給量をiI1節出来るようになっている。
A switching valve 5 provided in the middle of the bypass 4 makes it possible to control the supply amount by iI1.

上記脱硫脱硝二段処理装置によれば、高濃度SOx (
800〜1000e)で計画された装置で、低濃度(4
00〜600ppm)の排ガスを処理しようとする場合
、パルプ5を開け、排ガスBの一部をバイパス4を介し
て脱硝塔2の入口に導き、脱硝塔入口でのSOx濃度が
30〜100111mの範囲で維持されるようコントウ
ールしてやれば、低負荷’f30xの排ガスについても
常に所定の脱硝効率を維持することが可能となるもので
ある。 なお、゛ この発明は、ガス中のSO2濃度が
4,0%以上変動する場合に有効である。
According to the above-mentioned two-stage desulfurization and denitrification treatment equipment, high concentration SOx (
800-1000e), with equipment designed for low concentrations (4
00 to 600 ppm), the pulp 5 is opened and a part of the exhaust gas B is guided to the inlet of the denitration tower 2 via the bypass 4, so that the SOx concentration at the entrance of the denitrification tower is in the range of 30 to 100111 m. If it is controlled so that the denitrification efficiency is maintained at all times, it is possible to always maintain a predetermined denitrification efficiency even for exhaust gas with a low load of f30x. Note that this invention is effective when the SO2 concentration in the gas fluctuates by 4.0% or more.

第2図は、NH3リークが一定の場合(出口NH3が1
0騨の場合)の脱硝塔入口のSOx濃度と脱硝率との関
係を示したものであって、この図からSOx濃度が30
〜1100vIIの範囲において80で以上の脱硝率が
得られることが分る。
Figure 2 shows the case where the NH3 leak is constant (the outlet NH3 is 1
This figure shows the relationship between the SOx concentration at the inlet of the denitrification tower and the denitrification rate when the SOx concentration is 30
It can be seen that a denitrification rate of 80 or higher can be obtained in the range of ~1100vII.

(効 果ン 入口との間にバイパス配管を設け、排ガス中のSOx濃
度の変動に応じて排ガスの一部を脱硝塔に直接導入する
ことが出来るよりたしたことにより、高濃度SOxで計
画された装置で、低濃度の排ガスを処理する場合であっ
ても、脱硝塔入口のSOx濃度を一定に維持できること
kよって、大巾な負荷変動にもかかわらず常に所定の脱
硝効率を得ることが出来るという優れた効果を有するも
のである。
(By installing a bypass pipe between the inlet of the denitrification tower and making it possible to directly introduce a portion of the flue gas into the denitrification tower in response to fluctuations in the SOx concentration in the flue gas, it is possible to Even when processing low-concentration exhaust gas, the SOx concentration at the inlet of the denitrification tower can be maintained constant, making it possible to always obtain the specified denitrification efficiency despite wide load fluctuations. This has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略構成図、第2図
はNH3リークが一定の場合の脱硝塔入口のSOx濃度
と脱硝率との関係を示す図である。 1・・・・・・脱硫塔     2・・・・・・脱硝塔
4・・・・・・バイパス    5・・・・・・切替バ
ルブB・・・・・・排カス     D・・・・・・ア
ンモニア特許出願人 電源開発株式会社外1名 =7−
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing the relationship between the SOx concentration at the inlet of the denitrification tower and the denitrification rate when the NH3 leak is constant. 1... Desulfurization tower 2... Denitrification tower 4... Bypass 5... Switching valve B... Exhaust scum D...・Ammonia patent applicant: 1 person other than Electric Power Development Co., Ltd. = 7-

Claims (1)

【特許請求の範囲】 アンモニアが注入される脱硫塔および脱硝塔内を排ガス
が順次通過することによって、排ガス中の脱硫および脱
硝処理を行う乾式脱硫脱硝二段処理装置において、 前記脱硫塔出口と脱硝塔入口との間に、排ガスの一部を
直接前記脱硝塔に導入するための、バイパス配管を配設
せしめたことを特徴とする乾式脱硫脱硝二段処理装置。
[Scope of Claims] A two-stage dry desulfurization and denitration treatment device that performs desulfurization and denitration treatment in flue gas by sequentially passing the flue gas through a desulfurization tower into which ammonia is injected and a denitrification tower, comprising: a desulfurization tower outlet and a denitration tower; A two-stage dry desulfurization and denitrification treatment apparatus, characterized in that a bypass pipe is provided between the tower inlet and a bypass pipe for directly introducing a part of the exhaust gas into the denitrification tower.
JP60298905A 1985-12-28 1985-12-28 Dry desulfurization denitration two-stage treatment device Expired - Lifetime JPH0613083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298905A JPH0613083B2 (en) 1985-12-28 1985-12-28 Dry desulfurization denitration two-stage treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298905A JPH0613083B2 (en) 1985-12-28 1985-12-28 Dry desulfurization denitration two-stage treatment device

Publications (2)

Publication Number Publication Date
JPS62155923A true JPS62155923A (en) 1987-07-10
JPH0613083B2 JPH0613083B2 (en) 1994-02-23

Family

ID=17865682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298905A Expired - Lifetime JPH0613083B2 (en) 1985-12-28 1985-12-28 Dry desulfurization denitration two-stage treatment device

Country Status (1)

Country Link
JP (1) JPH0613083B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872675A (en) * 2012-09-21 2013-01-16 中冶长天国际工程有限责任公司 Buffer, bypass device, and absorption tower and adsorption tower provided with bypass device
CN105363340A (en) * 2015-06-09 2016-03-02 洛阳安德路石化设备有限公司 Activated carbon dry-method smoke purifying method and device capable of achieving simultaneous desulfurization and denitrification
CN106268235A (en) * 2016-09-28 2017-01-04 中石化节能环保工程科技有限公司 Oil field fuel oil injection boiler tail gas desulfurization denitration processing system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101330700B1 (en) * 2011-10-28 2013-11-18 현대제철 주식회사 Apparatus for purifying exhaust gas and controlling method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872675A (en) * 2012-09-21 2013-01-16 中冶长天国际工程有限责任公司 Buffer, bypass device, and absorption tower and adsorption tower provided with bypass device
CN105363340A (en) * 2015-06-09 2016-03-02 洛阳安德路石化设备有限公司 Activated carbon dry-method smoke purifying method and device capable of achieving simultaneous desulfurization and denitrification
CN105363340B (en) * 2015-06-09 2018-03-09 洛阳安德路石化设备有限公司 A kind of simultaneous SO_2 and NO removal activated carbon dry-method fume gas purification method and purifier
CN106268235A (en) * 2016-09-28 2017-01-04 中石化节能环保工程科技有限公司 Oil field fuel oil injection boiler tail gas desulfurization denitration processing system

Also Published As

Publication number Publication date
JPH0613083B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
Chang et al. Effects of metal chelates on wet flue gas scrubbing chemistry
JPS5940052B2 (en) Electron beam multistage irradiation exhaust gas desulfurization and denitrification method and equipment
EP0962247A3 (en) Removal of NOx and SOx emissions from gaseous effluents
RU2712609C2 (en) METHOD AND DEVICE FOR REMOVING NOx AND N2O OF GAS
DE60011282D1 (en) METHOD FOR EXHAUST GAS PLASMA TREATMENT
JPS62155923A (en) Two-stage treatment equipment for dry desulfurization and denitration
EP3647659B1 (en) Gas combustion treatment method
DE60114213D1 (en) EXHAUST TREATMENT DEVICE WITH FLOW REGULATOR
CN205659550U (en) System for high -efficient SOx/NOx control that unites
JPS6359730B2 (en)
JPH10109017A (en) Operation of denitration device and waste gas purifying device
JPH09299762A (en) Waste gas treating system
JPH11151424A (en) Waste gas treating device for boiler
JP3202419B2 (en) Method for reducing nitrogen oxides in flue gas
JPH11128686A (en) Apparatus for denitrificating stack gas
JPS534706A (en) Exhaust gas circuration sintering method
JPS5637036A (en) Treatment of nitrogen oxides in exhaust gas
JPS5334670A (en) Treating method for exhaust gas
JPS55109436A (en) Nh3 pouring rate control method
JPH0760061A (en) Process and device for exhaust gas denitration
JPS56141820A (en) Flue gas denitrification method
JPH0416215A (en) Ammonia injection controlling method for nitrogen oxide removing apparatus
JPS5918117B2 (en) Method for purifying wastewater containing nitrite ions
JPH07213858A (en) Gas treating device
JPS5874126A (en) Treatment for waste gas