JPS5874126A - Treatment for waste gas - Google Patents

Treatment for waste gas

Info

Publication number
JPS5874126A
JPS5874126A JP56170789A JP17078981A JPS5874126A JP S5874126 A JPS5874126 A JP S5874126A JP 56170789 A JP56170789 A JP 56170789A JP 17078981 A JP17078981 A JP 17078981A JP S5874126 A JPS5874126 A JP S5874126A
Authority
JP
Japan
Prior art keywords
absorption tower
absorption
tower
slurry
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56170789A
Other languages
Japanese (ja)
Inventor
Naoharu Shinoda
篠田 直晴
Atsushi Tatani
多谷 淳
Susumu Okino
進 沖野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP56170789A priority Critical patent/JPS5874126A/en
Publication of JPS5874126A publication Critical patent/JPS5874126A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To eliminate the need for any oxidizing device and to improve desulfurization rates in desulfurization of waste gases by a wet lime gypsum method by conducting the waste gases into absorption towers in two stages and controlling the compsn. of slurry for absorbing of SO2 contg. Ca compds. CONSTITUTION:In desulfurization of waste gases by a wet lime gypsum method, waste gases are conducted successively into the 1st absorbing tower 202 and the 2nd absorbing tower 204; at the same time, slurry 206 for absorption of SO2 contg. calcium compds. is conducted into the tower 202 and the slurry extracted therefrom into the tower 204. The rate of absorption of SO2 in the tower 202 is made to >=50% the total rate of absorption of SO2 in the towers 202, 204 and the rate of oxidation of calcium sulfite in the tower 204 is made larger than the rate of absorption of SO2 in the tower 204, whereby gypsum dihydrate slurry is prepd. Thus there is no need for any oxidizing device, there is no sticking of scale and the performance of desulfurization is improved.

Description

【発明の詳細な説明】 本発明はボイラ排ガスの如き80Jを含む排ガスから有
害なSO,を除去する方法に関する4ので、CaCO3
4’ Ca(OH)1などの難溶性カルシウム化合物を
801の吸収剤とし、副生物として2水石膏を回収する
湿式石灰・石膏法による排煙脱硫方法の改良に係わる本
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing harmful SO from exhaust gas containing 80J, such as boiler exhaust gas.
4' This book concerns an improvement of a flue gas desulfurization method using a wet lime/gypsum method, which uses a sparingly soluble calcium compound such as Ca(OH)1 as an 801 absorbent and recovers dihydrate gypsum as a by-product.

最近の社会情勢から大気に放散する有害なSQJの□排
出量を極力低減させることが必要とされており、それに
対応するための一手段として湿式排煙脱硫装置の高性能
化が進められている。
Due to recent social conditions, it is necessary to reduce as much as possible the amount of harmful SQJ released into the atmosphere, and as a means of responding to this, the performance of wet flue gas desulfurization equipment is being improved. .

脱硫率の向上を図る手段として従来から寸でに用いられ
ている方法としては、吸収塔を複数設け、排ガスを第1
吸収塔でまず洗浄した後、次いで第2吸収塔へ導いて洗
浄し、その後本必要に応じて順次洗浄して行く方法、即
ち吸収工程な単に直列に連結する方法である。
A method that has been widely used in the past as a means of improving the desulfurization rate is to install multiple absorption towers and absorb the exhaust gas into the first
This is a method in which the material is first washed in an absorption tower, then introduced into a second absorption tower for washing, and then sequentially washed as required, that is, the absorption process is simply connected in series.

第1図に上記公知の吸収塔を2塔設けた場合の具体例を
示す。
FIG. 1 shows a specific example in which two of the above-mentioned known absorption towers are provided.

SO,を含む排ガス1を第1吸収塔2に導き、更に脱硫
する為に第1吸収塔2の出口ガス3を第・2吸収塔4に
導いて、殆んど完全K 80.を除去された浄化ガス5
として系外へ排出される。
The exhaust gas 1 containing SO is led to the first absorption tower 2, and the outlet gas 3 of the first absorption tower 2 is led to the second absorption tower 4 for further desulfurization, so that almost complete K80. Purified gas 5
is discharged from the system as

第1a収塔2でのSへ吸収量に見合ったカルシウム化合
物を含む吸収剤スラリー6を第1吸収塔2へ供給し、亜
硫酸カルシウム及び亜硫酸カルシウムの一部が偽によっ
て酸化され生成した2水石膏とを含むスラリー7がバラ
ンスによって抜き出される。一方第2吸収塔4でのSO
An absorbent slurry 6 containing calcium compounds commensurate with the amount absorbed by S in the 1a collection tower 2 is supplied to the first absorption tower 2, and calcium sulfite and a portion of the calcium sulfite are oxidized to form dihydrate gypsum. A slurry 7 containing the following is extracted by balance. On the other hand, SO in the second absorption tower 4
.

吸収量に見合ったカルシウム化合物、を含む吸収剤スラ
リー8を第2吸収塔4へ供給し、亜硫酸カルシウム及び
亜硫酸カルシウムの一部がOAKよって酸化され生成し
た工水石膏とを含むスラリー9がバランスによって抜き
出される。
An absorbent slurry 8 containing calcium compounds commensurate with the absorption amount is supplied to the second absorption tower 4, and a slurry 9 containing calcium sulfite and engineered water gypsum produced by oxidizing a part of the calcium sulfite with OAK is supplied to the second absorption tower 4. being extracted.

従来は第1図に於ける第1吸収塔2の出口ガス3中のS
O,排出量が排出規制を十分満足し得る本のであったが
厳しい排出制限を満足すぺ〈#まは完全に脱硫する為に
第2吸収塔4を設けたのであるから、第2吸収塔−での
8偽吸収量は第1吸収塔2でのSOJ吸収吸収化べると
少な、〈j・屯 通常は全8偽吸収量の約90モル%が第1吸収塔2で吸
収除去され、全SOs吸収量の約10モル%が第2吸収
塔4で吸収される。
Conventionally, S in the outlet gas 3 of the first absorption tower 2 in FIG.
O, the amount of emissions was enough to satisfy the emission regulations, but it was not enough to satisfy the strict emission limits. -The amount of 8 false absorption in the first absorption tower 2 is smaller than that of SOJ absorption in the first absorption tower 2. Normally, about 90 mol% of the total amount of 8 false absorption is absorbed and removed in the first absorption tower 2. , about 10 mol% of the total amount of SOs absorbed is absorbed in the second absorption tower 4.

第1図の従来方式では、吸収剤スラリーを供給する装置
が2式必要であること、第1吸収塔2の出口スラリ−7
及び第2吸収塔4の出口スラリ−9をライン10によっ
て酸化装置11[送動亜硫酸カルシウムを空気酸化して
工水石膏とする工程が必要であり、酸化を促進する為に
硫酸124必要である。
In the conventional system shown in FIG.
And the slurry 9 at the outlet of the second absorption tower 4 is passed through the line 10 to the oxidizer 11 [a step of air oxidizing the fed calcium sulfite to produce water gypsum is necessary, and sulfuric acid 124 is necessary to promote the oxidation. .

そこで第2図のように、吸収剤スラリー供給装置を1つ
和して酸化装置での硫−を不快する方式がすでに知られ
ている。
Therefore, as shown in FIG. 2, a method is already known in which one absorbent slurry supply device is combined to make the sulfur in the oxidation device unpleasant.

第2図について説明する。FIG. 2 will be explained.

8偽を含む排ガス101を第1吸収塔102に導き脱硫
する。更に脱硫する為に第1吸収塔102の出ロガ、*
105を第2吸収塔104に導き、殆んど完全K 80
.を除去した後、浄化ガス105を系外し卜排出する。
Exhaust gas 101 containing 8.8% is led to the first absorption tower 102 to be desulfurized. For further desulfurization, the output logger of the first absorption tower 102,*
105 to the second absorption tower 104, almost completely K 80
.. After removing the purified gas 105, the purified gas 105 is discharged from the system.

′1ニ 一方、全8oj:吸1収量に見合ったカルシウム化1゜ 合物を含む吸収剤スラリー106を第2吸収塔104へ
供給し、第2吸収塔104で吸収剤の約10モル%を消
−資したのち、ライン107Q経由して第1吸収塔10
2に送る。第1吸収塔1G2では全8へ吸収量のうち約
90モル%のSO,がライン107からのスラリー中に
含まれる未反応の吸収剤(約90モル%の吸収剤が残存
している)によって脱硫される0次いで、亜硫酸カルシ
ウム及び亜硫酸カルシウムの一部が01によって家化さ
れ生成し九二水石膏とを含むスラリー108が酸化装置
109に送られ、亜硫酸カルシウムは空気酸化されて工
水石膏となる。
On the other hand, the absorbent slurry 106 containing the calcified 1° compound corresponding to the total 80j:absorption amount is supplied to the second absorption tower 104, where about 10 mol% of the absorbent is After consumption, the first absorption tower 10 is transferred via line 107Q.
Send to 2. In the first absorption tower 1G2, about 90 mol% of the total absorbed amount of SO is due to unreacted absorbent (about 90 mol% of the absorbent remains) contained in the slurry from line 107. 0 to be desulfurized Next, a slurry 108 containing calcium sulfite and a part of the calcium sulfite is converted into aqueous gypsum by 01, and is sent to an oxidizer 109, where the calcium sulfite is oxidized in the air and converted into industrial gypsum. Become.

第2図の従来法では第2吸収塔104で、全8偽吸収量
の約10モル%の8偽を吸収させるのに、約90モル%
本過剰の吸収剤(この吸収剤は、後で第1吸収塔102
での脱硫に供される。)を含んだスラリーと接触させる
のであるから、極めて高い効率でSO,吸収反応を行な
わしめ得る利点がある。しかしながら難溶性のカルシウ
ム化合物を含むスラリーで脱硫する場合に吸収剤の過剰
供給は吸収塔内で固形物付着によるガス及びスラリー〇
流路狭隘化を来たす欠点がある。吸収剤が大過剰に存在
すると、スラリーがアルカリ性側に移行しOaOOgや
Ca803の溶解度が崗一層小さくなる結果、スケール
が付着しやすくなるためである。
In the conventional method shown in FIG. 2, the second absorption tower 104 absorbs about 90 mol% of the 8-false, which is about 10 mol% of the total 8-false absorbed amount.
This excess absorbent (this absorbent will be added to the first absorption tower 102 later)
It is subjected to desulfurization at ), it has the advantage that the SO absorption reaction can be carried out with extremely high efficiency. However, when desulfurization is performed using a slurry containing a hardly soluble calcium compound, excessive supply of absorbent has the disadvantage that the flow path of the gas and slurry becomes narrowed due to the adhesion of solid matter within the absorption tower. This is because if the absorbent is present in large excess, the slurry shifts to the alkaline side and the solubility of OaOOg and Ca803 becomes even lower, making it easier for scale to adhere.

そζで、スケールを少しで本軽減させる為、第2吸収$
104のスラリー中に極めて多く残存する吸収剤を少な
くする方法が取られる。このことは第1吸収塔102で
吸収剤が若干不足することKなり第1吸収塔102から
バランスによって抜き出されるスラリー108Fi酸性
を示すようKなる。従って、酸化装置109では硫酸を
加えて酸性圧する必要はなくなるのである。
Therefore, in order to reduce the scale slightly, the second absorption $
A method is taken to reduce the amount of absorbent remaining in the slurry of No. 104, which is extremely large. This means that there is a slight shortage of absorbent in the first absorption tower 102, and the slurry 108Fi extracted from the first absorption tower 102 by balance becomes acidic. Therefore, there is no need to add sulfuric acid to create acidic pressure in the oxidizer 109.

現在、湿式石灰石膏法排煙脱硫装置で2基の吸収塔を直
列にして排ガスを処理している本のはその基本的フロー
は第2図のようになってiる。
At present, the basic flow of a wet lime gypsum method flue gas desulfurization system that uses two absorption towers in series to treat flue gas is shown in Figure 2.

本発明は第2図で代表される従来法が第2吸収塔でスケ
ール、付着と−う欠点を生じること、酸化装置が必要で
経済的に割高であることの欠点を克服する為罠なされた
ものであり、排ガスを第1吸収塔、第2吸収塔と順次導
くと同時に、カルシウム化合物を含むSO,吸収用スラ
リーを第1吸収塔に導i、次いで第1吸収塔から抜き出
されたスラリーを第2吸収塔に導くと共に第1吸収塔で
の8へ吸収量を観1及び第2吸収塔での全801吸収量
の50モル%以上となし、第2吸収塔での亜硫酸カルシ
ウムの酸化量を第2峡収塔でのSO,吸収量よ秒多くし
て二本石膏スラリーとなし別途に酸化装置を不要とする
ことを特徴とする排ガス処理方法に関するものである。
The present invention was made to overcome the disadvantages of the conventional method as shown in Fig. 2, which suffers from scale and adhesion in the second absorption tower, and requires an oxidizer, which is economically expensive. At the same time, the exhaust gas is introduced into the first absorption tower and then the second absorption tower, and at the same time, the SO and absorption slurry containing calcium compounds is introduced into the first absorption tower, and then the slurry extracted from the first absorption tower is is introduced into the second absorption tower, and the amount of absorption into 801 in the first absorption tower is set to be 50 mol% or more of the total absorption amount of 801 in the first and second absorption towers, and the oxidation of calcium sulfite is carried out in the second absorption tower. This invention relates to an exhaust gas treatment method characterized in that the amount of SO and absorption in the second absorption tower is increased to form a two-layer gypsum slurry, thereby eliminating the need for a separate oxidizing device.

本発明方法の具体例を第3図によって説明する。A specific example of the method of the present invention will be explained with reference to FIG.

石炭焚きボイラ排ガスを脱硝、集じん、冷却処理した後
食なくとも8〜と偽を含む排ガスとし−(201よ11
)第1吸収塔z、、O,、、2K導<、@1吸収塔20
2Iriスプレー塔やグリッド充填塔などの気液接触装
置であれば良い。第1吸収塔202で脱硫処理された排
ガスはライン205を通って第2吸収塔204に人動は
とんど完全にSQJを吸収除去された後、ライン205
から浄化ガスとして系外へ排出される。第2吸収塔20
4本一般に知られてvhイ気液接触装置が適用できる。
Coal-fired boiler exhaust gas is treated with denitrification, dust collection, and cooling treatment, and is treated as exhaust gas that contains at least 8 to 80% of the amount of food after denitrification, dust collection, and cooling treatment. (201 to 11)
) 1st absorption tower z, , O, , 2K conduct<, @1 absorption tower 20
Any gas-liquid contact device such as a 2Iri spray tower or a grid packed tower may be used. The exhaust gas that has been desulfurized in the first absorption tower 202 passes through a line 205 to the second absorption tower 204 where SQJ is almost completely absorbed and removed.
is discharged from the system as purified gas. Second absorption tower 20
Four commonly known gas-liquid contact devices are applicable.

第1吸収塔202 ヘFiCaOO1やca(OH)2
などのeo、吸収剤となり得ゐカルシウム化合物を含む
スラリー206が第1吸収塔202及び第2吸収塔20
4で脱硫される全so!吸収量[1合って供給される。
First absorption tower 202 to FiCaOO1 and ca(OH)2
A slurry 206 containing a calcium compound that can be used as an absorbent is sent to the first absorption tower 202 and the second absorption tower 20.
All so desulfurized in 4! The amount of absorption [1] is supplied.

第1吸収塔202でけ全SQJ吸収量の約90モル%が
吸収されるので、吸収剤も約90モル%が反応して亜硫
酸カルシウムとなる。第1吸収塔202でガスに接触す
るスラリーは約10モル%の未反応吸収剤を有している
が、その量はスケール付着を促がすに足りない量であ艶
、間・題ない。
Since about 90 mol% of the total amount of SQJ absorbed by the first absorption tower 202 is absorbed, about 90 mol% of the absorbent also reacts and becomes calcium sulfite. The slurry that comes into contact with the gas in the first absorption tower 202 has about 10 mol % of unreacted absorbent, but this amount is insufficient to promote scale adhesion and is glossy, causing no problems.

wIt1吸収塔202では排ガス中のへが吸収され、亜
硫酸カルシウムの一部を酸化して三水石膏が生成する反
応本併発するので、第1吸収塔202から抜き出される
スラリ−207a約10モル%の未反応吸収剤(cac
o、)  と亜硫酸カルシウムと三水石膏を含むスラリ
ーとなっている。
In the wIt1 absorption tower 202, 207a in the exhaust gas is absorbed, and a reaction occurs in which part of the calcium sulfite is oxidized to produce trihydrate. Therefore, about 10 mol% of the slurry 207a extracted from the first absorption tower 202 of unreacted absorbent (cac
o, ), calcium sulfite, and gypsum trihydrate.

このスラリー207Fi第2吸収塔204へ送られ、排
ガスと接触しながら全SO,吸収量の約10モル%のE
IO,を吸収する。
This slurry 207Fi is sent to the second absorption tower 204, and while in contact with the exhaust gas, total SO and about 10 mol% of the absorbed amount of E
Absorbs IO.

第2吸収塔204で気液接触するスラリーはほとんど吸
収剤が消費されてしまう6でアルカリ性を示さず、亜硫
酸カルシウムの酸化反応が進行し易い。第2吸収塔20
4でのSO,吸収量は第1rIL収塔でのSon吸収量
に比べて少ないから、第2吸収塔204で生成する亜硫
酸カルシウムはすべて三水石膏に酸化することができb
と共に第1吸収塔202からライン2D”iKよって持
ち込まれる亜硫酸カルシウム4m!!化することができ
る利点がある。
The slurry that comes into contact with gas and liquid in the second absorption tower 204 does not exhibit alkalinity since most of the absorbent is consumed, and the oxidation reaction of calcium sulfite easily progresses. Second absorption tower 20
Since the amount of SO and absorption in the second absorption tower 204 is smaller than the amount of Son absorbed in the first rIL absorption tower 204, all of the calcium sulfite produced in the second absorption tower 204 can be oxidized to trihydrate.
At the same time, there is an advantage that 4 m of calcium sulfite brought in from the first absorption tower 202 via line 2D"iK can be converted into 4m!!.

第1吸収塔及び第2吸収塔に全く同じ形式の吸収塔、例
えdグリッド充填塔を使用した場合、各吸収塔で9へガ
ス吸収速度はほぼ同一である。
When the first absorption tower and the second absorption tower are of exactly the same type, for example, a d-grid packed tower, the gas absorption rate to 9 in each absorption tower is almost the same.

そして偽ガス全吸収量が全801吸収量と同じになった
場合にスラリー中の亜硫酸カルシウムd全部開化されて
三水石膏となる為酸化装置は不要メ會る。
When the total absorption amount of pseudo gas becomes the same as the total absorption amount of 801, all of the calcium sulfite d in the slurry is liberated and becomes trihydrate, making an oxidation device unnecessary.

全SO,吸収量をAモル/時、第1吸収塔での8偽吸収
量をA4モル/時、第2吸収塔でのS鳴吸収量をム(1
−りモル/時、第1吸収塔及び第2吸収塔でのへ吸収量
を各々9モル7時とする。
Total SO, absorption amount is A mol/hour, 8 false absorption amount in the first absorption tower is A4 mol/hour, S sound absorption amount in the second absorption tower is M(1
The absorption amount in the first absorption tower and the second absorption tower is each 9 mol/hour.

なお、ここで第1吸収塔及び第2吸収塔でのへ吸収モル
数をBと同じ値にしたのは、の反応速度が、排ガス中の
へが液中に溶けこむ速度で定まり、aasol−/2%
Oの濃度に左右されない反応特性に基づく本のである。
The reason why the number of moles absorbed by aasol in the first absorption tower and the second absorption tower is set to the same value as B is that the reaction rate of aasol- /2%
This book is based on reaction characteristics that are not affected by O concentration.

(また排ガス中のへ濃度は8へ濃度に比べるとは石かに
高く、第1.2吸収塔の偽ガス濃度は同じとみなされゐ
からである。) 吸収された1モルの5osFi化学当量関係に基づいて
1モルの0a8os@′AH@Oを生成する。一方1モ
ルの0a803・ 411.0は4モルの偽と反応して
1モルの0a8o4・2鳥0を生成する。このことけ逆
に云えば1モルの偽で2モルのCa80g・1 //2穐0 を酸化すること虻なり、更には1モルのへ
で2モルのBC)2相当分を酸化して工水石膏Ca80
3・210を創生することを意味する。
(Also, the concentration of F in the exhaust gas is much higher than that of F, and the pseudo gas concentration in the No. 1.2 absorption tower is considered to be the same.) Chemical equivalent of 1 mole of absorbed 5osFi Based on the relationship, one mole of 0a8os@'AH@O is produced. On the other hand, 1 mole of 0a803.411.0 reacts with 4 moles of fake to produce 1 mole of 0a8o4.2bird0. Conversely speaking, it is dangerous to oxidize 2 moles of Ca80g 1 //2 0 with 1 mole of sham, and furthermore, oxidize 2 moles of BC equivalent to 2 with 1 mole of helium. Water gypsum Ca80
It means to create 3.210.

従って、第1吸収塔から抜き出される未酸化のCaa8
03− .44o量は、(ムx−2B)であり、これが
第2吸収塔へ供給されるのであるから、第2吸収塔へイ
ンプットされる0aEI03・ 、(F1a。
Therefore, unoxidized Caa8 extracted from the first absorption tower
03-. The amount of 44o is (Mux-2B), and since this is supplied to the second absorption tower, 0aEI03., (F1a.

は、この()、x−2B)と新たに第2吸収塔で8へを
吸収して生成するA (1−x )の合計量((hx 
−2B)+ム(1−X))  である。
is the total amount of A (1-x) ((hx
-2B)+mu(1-X)).

第2吸収塔での酸化量、即ち偽吸収量の2倍量は2Bで
あるので、第2吸収塔から抜き出されるスラリーが全て
工水石膏に転化されてしまうための条件は、 ((AI −2B) + A(1−x)) −2B −
(1(1)である。        ・パ・“1 これを解くことによって、 B = −4−(2) が得られる。化学当量的には1モルの偽で2毫ルのSQ
J分を酸化し得るから、全80i!吸収モル量Aのイの
偽が吸収されることを示す(2)式は、全SO,吸収モ
ル数の4が工水石膏に転化していることを意味子る。
Since the amount of oxidation in the second absorption tower, that is, twice the amount of false absorption, is 2B, the conditions for all of the slurry extracted from the second absorption tower to be converted to water gypsum are ((AI -2B) + A(1-x)) -2B -
(1(1). ・P・“1 By solving this, B = −4−(2) is obtained. In terms of chemical equivalent, 1 mole of false and 2 moles of SQ
Since it can oxidize J, the total is 80i! Equation (2), which shows that the false number A of the absorbed molar amount A is absorbed, means that the total SO, 4 of the absorbed mole number, is converted to water gypsum.

前述した通り、(Ax−2B)#i第1吸収塔から抜き
出される未酸化のCa80g・ ’/&ioのモル量を
表わすものであり、これが負になることはあ秒置ないの
で、第1吸収塔においては(Ax−2B)≧0(3) であることが必要である。
As mentioned above, (Ax-2B) #i represents the molar amount of unoxidized Ca80g・'/&io extracted from the first absorption tower, and since this is unlikely to become negative in any second, In the absorption tower, it is necessary that (Ax-2B)≧0(3).

上記(2) 、 (3)式より X≧(L 5               (4)が
得られる。これは第1吸収塔で全SO,吸収量の半分以
上を脱硫することを意味する。
From the above formulas (2) and (3), X≧(L 5 (4)) is obtained. This means that the first absorption tower desulfurizes more than half of the total amount of SO absorbed.

また(4)式は最小の偽吸収量で、ライン208からの
スラリ」:′が工水石膏スラリーとなる為の111□ 
   。
Equation (4) is the minimum false absorption amount, and the slurry from line 208':' becomes industrial water gypsum slurry, so 111
.

条件であり、換営すれば酸化装置を不要となす為には第
1吸収塔での8偽吸収量を全so、吸収量の50モル%
以上となせば良−ことを示して−る。
In order to eliminate the need for an oxidizer if the company is replaced, the amount of 8 false absorption in the first absorption tower should be reduced to 50 mol% of the total SO and absorption amount.
The above shows that it is a good idea to do this.

一方第1図及び第2図の従来法では、第1吸収塔に於い
てB=、なる条件でX≧a5を満たす脱硫を行なった場
合、Ax−2B、=Oとなって、亜硫酸カルシウムが残
存したまま系外へ流出するととになるので工水石膏を得
る為には第1図の11及び第2図の109[示すように
酸化装置が不可欠となる。
On the other hand, in the conventional method shown in Figs. 1 and 2, when desulfurization is carried out in the first absorption tower under the conditions of B=, satisfying X≧a5, Ax-2B,=O, and calcium sulfite is If it flows out of the system while remaining, it will become a problem, so in order to obtain industrial gypsum, an oxidizing device is indispensable as shown at 11 in Fig. 1 and 109 in Fig. 2.

実施例 8021200 ppm、 035%を含む石炭燃焼排
ガス500 &N/Hを第3図に示す70−シートから
なるパイロットプラントで処理した。第1吸収塔及び第
2吸収塔は、共に同規模のグリッド充填塔を用い、吸収
剤として0aOO1粉末を水に懸濁したスラリーを調整
した。 0aOO1スラリーを全SOJ吸収量に等しく
なるよう[19!1吸収塔に約30L/hで定量ポンプ
によって供給した。
EXAMPLE 8 500 &N/H coal flue gas containing 1,200 ppm, 0.35% was treated in a 70-sheet pilot plant as shown in FIG. Both the first absorption tower and the second absorption tower used grid-packed towers of the same scale, and prepared a slurry in which OaOO1 powder was suspended in water as an absorbent. The 0aOO1 slurry was fed to the [19!1 absorption tower at a rate of about 30 L/h by a metering pump so as to be equal to the total SOJ absorption amount.

第1吸収塔では液ガス比15にωNで気液接触させ脱硫
本釣90%を得た。第1吸収塔から出た排ガスを第2吸
収塔に導くと共に第1吸収塔のスラリーを約30νhで
抜き取り第2吸収塔罠送液した。第2吸収塔出口の排ガ
ス中の801は数ppmと僅かであった。一方第1吸収
塔から抜き出されたスラリー中KFi亜硫酸カルシウム
の結晶が多く存在して−ることか確認されたが、第2吸
収塔からバランスによって抜き出されたスラリー中[1
定常状態に於いて、亜硫酸カルシウム結晶が殆んど検出
されず、工水石膏結晶を含むスラリーであった。従来、
吸収塔を2基直列に用いる方法では前述した通り吸収剤
が過剰に供給される第2吸収塔のスケール付着が問題と
なっていたが本発明方法の実験ではスケール発生が認め
られなかった。
In the first absorption tower, gas-liquid contact was carried out at a liquid-gas ratio of 15 at ωN to obtain a desulfurization rate of 90%. The exhaust gas discharged from the first absorption tower was guided to the second absorption tower, and the slurry from the first absorption tower was extracted at about 30 νh and sent to the trap of the second absorption tower. The amount of 801 in the exhaust gas at the outlet of the second absorption tower was as small as several ppm. On the other hand, it was confirmed that there were many KFi calcium sulfite crystals in the slurry extracted from the first absorption tower, but in the slurry extracted from the second absorption tower by balance [1
In the steady state, almost no calcium sulfite crystals were detected, and the slurry contained industrial water gypsum crystals. Conventionally,
As mentioned above, in the method of using two absorption towers in series, there was a problem of scale adhesion in the second absorption tower where an excessive amount of absorbent was supplied, but no scale formation was observed in experiments using the method of the present invention.

以上のよう[’、木本発明法よれば、高脱硫率を得るこ
とができ酸化装置が不要で、スケール付着トラブルのな
い合理的な湿式石灰石膏性排煙脱硫処理が可能となった
As described above, according to the method of the Kimoto invention, a high desulfurization rate can be obtained, an oxidizing device is not required, and a rational wet lime-gypsum flue gas desulfurization treatment without scale adhesion problems has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来法、第3図は本発明に係る排ガス
処理方法を示す実施態様図である。 J′1 111 ′:、。
1 and 2 are conventional methods, and FIG. 3 is an embodiment diagram showing an exhaust gas treatment method according to the present invention. J'1 111':,.

Claims (1)

【特許請求の範囲】[Claims] 少なく共、8偽ガスとへガスを含む排ガスをカルシウム
化合物を含むスラリーで湿式洗浄する方法に於いて、排
ガスを第1吸収塔(導−九後第2吸収塔に導く一方、カ
ルシウム化合物を含むSO吸収用スラリーを前記第1吸
収塔に導き、次いで前記第1吸収塔から抜き出したカル
シウム化合物を含むスラリーを前記第2吸収塔へ導くと
共に1前記第1吸収塔〒08−吸収量を゛前記第1吸収
塔及び前記第2吸収塔での全80!吸収量の50モル%
以上となし、前□記第2吸収塔での偽による亜硫酸塩の
酸化量を前記第2吸収塔でのSO,吸収量よ抄多くする
ことを特徴とする排ガスの処理方法
In a method of wet-cleaning exhaust gas containing at least 8 false gas and H2 gas with a slurry containing a calcium compound, the exhaust gas is introduced into a first absorption tower (after being led to a second absorption tower, while containing a calcium compound). The slurry for SO absorption is introduced into the first absorption tower, and then the slurry containing the calcium compound extracted from the first absorption tower is introduced into the second absorption tower. 50 mol% of the total 80! absorption amount in the first absorption tower and the second absorption tower
In accordance with the above, an exhaust gas treatment method characterized in that the amount of oxidized sulfite in the second absorption tower described above is made larger than the amount of SO and absorption in the second absorption tower.
JP56170789A 1981-10-27 1981-10-27 Treatment for waste gas Pending JPS5874126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170789A JPS5874126A (en) 1981-10-27 1981-10-27 Treatment for waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170789A JPS5874126A (en) 1981-10-27 1981-10-27 Treatment for waste gas

Publications (1)

Publication Number Publication Date
JPS5874126A true JPS5874126A (en) 1983-05-04

Family

ID=15911387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170789A Pending JPS5874126A (en) 1981-10-27 1981-10-27 Treatment for waste gas

Country Status (1)

Country Link
JP (1) JPS5874126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887567A (en) * 1985-04-10 1989-12-19 Honda Giken Kogyo Kabushiki Kaisha Connecting arrangement in valve operating system for internal combustion engine
CN108905505A (en) * 2018-07-20 2018-11-30 协建(江苏)智能装备有限公司 A kind of chemical industry tail gas purification device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887567A (en) * 1985-04-10 1989-12-19 Honda Giken Kogyo Kabushiki Kaisha Connecting arrangement in valve operating system for internal combustion engine
CN108905505A (en) * 2018-07-20 2018-11-30 协建(江苏)智能装备有限公司 A kind of chemical industry tail gas purification device

Similar Documents

Publication Publication Date Title
CN102580496B (en) Liquid-phase oxidation multistage absorbed flue gas desulfurization and denitrification technology and device
CN105903330B (en) A kind of system and method for efficient joint desulphurization denitration
US3985860A (en) Method for oxidation of SO2 scrubber sludge
US6235248B1 (en) Apparatus for purifying flue gas containing nitrogen oxides
AU2002244966B2 (en) Desulfurizer and method of desulfurization
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
US4085194A (en) Waste flue gas desulfurizing method
CA3059554C (en) Systems and processes for removing hydrogen sulfide from gas streams
US4574076A (en) Removal of hydrogen sulfide from geothermal steam
DK129091D0 (en) METHOD OF TREATING A CHLORIC EFFLUENT AND AN EFFLUENT TREATMENT PLANT FOR USE
AU3015899A (en) Removal of NOx and SOx emissions from pickling lines for metal treatment
EP1109614A1 (en) Process for controlling ammonia slip in the reduction of sulfur dioxide emission
CA1163779A (en) Control of hydrogen sulfide emission from geothermal steam plants with hydrogen peroxide and sodium vanadate
CN103736373A (en) Flue gas treatment method and flue gas treatment device capable of simultaneous desulfurization, de-nitration and mercury removal through magnesium oxide
US4876076A (en) Process of desulfurization
US5827488A (en) Process for removing SO2 and NOx from a gaseous stream
US7288235B2 (en) Method and installation for purifying gas
JPS5874126A (en) Treatment for waste gas
CN201132104Y (en) Desulfurizing device via method for oxidizing lime/carbide mud residue -gypsum out of the tower
NL1009612C1 (en) Method for cleaning a waste gas.
JPH0557141A (en) Flue gas desulfurization apparatus
CN205007853U (en) Improved generation SCR ozone denitrification facility
CN107715670A (en) A kind of method of flue gas desulfurization collaboration denitration by-product HAS
CN113117481A (en) Method for desulfurization and denitrification by using chlorine dioxide
PL172404B1 (en) Method of and apparatus for purifying gases containing oxygen compounds of sulphur