JPS62139823A - Production of cold rolled steel sheet for deep drawing - Google Patents

Production of cold rolled steel sheet for deep drawing

Info

Publication number
JPS62139823A
JPS62139823A JP28054285A JP28054285A JPS62139823A JP S62139823 A JPS62139823 A JP S62139823A JP 28054285 A JP28054285 A JP 28054285A JP 28054285 A JP28054285 A JP 28054285A JP S62139823 A JPS62139823 A JP S62139823A
Authority
JP
Japan
Prior art keywords
rolled
hot rolling
temperature
cold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28054285A
Other languages
Japanese (ja)
Other versions
JPH058257B2 (en
Inventor
Naomitsu Mizui
直光 水井
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28054285A priority Critical patent/JPS62139823A/en
Publication of JPS62139823A publication Critical patent/JPS62139823A/en
Publication of JPH058257B2 publication Critical patent/JPH058257B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To inexpensively produce a cold rolled steel sheet for deep drawing having the small intra-surface anisotropy of an r value and slow aging characteristic by subjecting a specifically composed steel successively to soaking, hot rolling, quick cooling, coiling, cold rolling, and continuous annealing under specific conditions. CONSTITUTION:The slab contg., per weight %, 0.005-0.0050% C, 0.001-0.50% Mn, <0.01% S, 0.0005-0.0070% N, <=0.02% acid solAl, and at least one kind of Ti and Zr in the range of 3.4XN+4(C-0.0015)<=Ti+48/91Zr<3.4XN+4.C except the same contained in the form of oxide and sulfide and consisting of the balance iron and inevitable impurities is soaked at >=1,100 deg.C. The slab is then hot rolled at 700-880 deg.C finish temp. and is rolled down at >=30% of the sheet thickness after the rough hot rolling in the temp. region of the finishing temp. +100 deg.C. The rolled sheet is quickly cooled down to 300-550 deg.C at >=5 deg.C/sec upon completion of the hot rolling and is coiled as it is at 300-550 deg.C. The sheet is further cold rolled at 70-95% draft and is continuously annealed at 680-850 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐常温歪時効性、耐2次加工脆性および耐肌
荒れ性が良好で、かつ、絞り性の指数であるr値の面内
異方性が小さい、深絞り用冷延鋼板の安価な製造方法に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention has good room temperature strain aging resistance, secondary work brittleness resistance, and skin roughening resistance, and has an in-plane r value that is an index of drawability. The present invention relates to an inexpensive manufacturing method for cold-rolled steel sheets for deep drawing with low anisotropy.

(従来の技術) 従来、深絞り用冷延鋼板は、低炭素アルミキルド鋼を箱
焼鈍して製造していた。ところが近年、深絞り用冷延鋼
板にも生産性向上等のために連続焼鈍法が広く用いられ
るようになり、それに伴って、従来材の低炭素アルミキ
ルド鋼では必要な材料特性が容易には得られないと言う
問題が生じてきた。
(Prior Art) Conventionally, cold rolled steel sheets for deep drawing have been manufactured by box annealing low carbon aluminum killed steel. However, in recent years, continuous annealing has become widely used for cold-rolled steel sheets for deep drawing in order to improve productivity, and as a result, it has become difficult to obtain the necessary material properties with conventional low-carbon aluminum-killed steel. The problem has arisen that it cannot be done.

このような問題に対処すべく、従来にあっても、極低炭
素鋼にTiやZrのような炭窒化物形成元素を添加した
材料が数多くR案されている。
In order to cope with such problems, many R plans have been proposed in the past, in which carbonitride-forming elements such as Ti and Zr are added to ultra-low carbon steel.

例えば、特公昭44−18066号公報にはTi添加−
深絞り用冷延鋼板の製造法が開示されている。これは、
C: 0.001〜0.020%としたうえでTi 0
.2〜0.5、かつTi≧4xCの量のTiを添加する
ことにより鋼中の炭素・窒素を全て炭窒化物として固定
した、いわゆるインタースティシャル・フリー(rnt
erstitial−Free)鋼に関するもので、下
記のような長所がみられる。
For example, in Japanese Patent Publication No. 44-18066, Ti is added.
A method of manufacturing a cold rolled steel sheet for deep drawing is disclosed. this is,
C: 0.001 to 0.020% and then Ti 0
.. So-called interstitial free (rnt
erstitial-free) steel, and has the following advantages.

(i)深絞り用冷延鋼板が安定して製造できる。(i) Cold-rolled steel sheets for deep drawing can be stably produced.

(11)固溶炭素・固溶窒素が残留しないので、低炭素
鋼では常に問題になる常温ひずみ時効が生じない。
(11) Since no solid solute carbon or nitrogen remains, room temperature strain aging, which is always a problem with low carbon steel, does not occur.

しかし、その反面、次のような短所もみられる。However, on the other hand, there are also the following disadvantages.

(1)鋼中の炭素・窒素を完全に炭窒化物として固定す
るために、常にTiが過剰になるように添加しなければ
ならず、製造コストが高い。
(1) In order to completely fix carbon and nitrogen in steel as carbonitrides, Ti must always be added in excess, resulting in high manufacturing costs.

(2)固溶炭素による結晶粒界の強化効果がないため、
2次加工脆性を生じやすくなる。
(2) Since there is no strengthening effect of grain boundaries due to solid solution carbon,
Secondary processing embrittlement is likely to occur.

(3) Tiの添加量が増すのに伴って再結晶温度が高
くなり、焼鈍温度も高くなり、熱エネルギー・コストが
大きくなる。また、高温焼鈍を行うと、ヒート・バック
リングや、焼鈍炉内のハースロールの表面に酸化物等が
付着して生じるロールすり傷の発生が多くなり、生産性
が著しく劣化する。
(3) As the amount of Ti added increases, the recrystallization temperature increases, the annealing temperature also increases, and the thermal energy cost increases. Furthermore, when high-temperature annealing is performed, heat buckling and roll scratches caused by adhesion of oxides and the like to the surface of the hearth roll in the annealing furnace increase, resulting in a significant deterioration of productivity.

上記(2)の短所に対しては、Bを添加して粒界を強化
する方法が特開昭57−35662号公報等により開示
されている。また上記(3)の短所に対しては、連続鋳
造の引き抜き速度や熱間圧延条件等を制御することによ
り再結晶温度を低下せしめる方法が特公昭58−574
90号公報等により開示されている。
To address the above disadvantage (2), a method of strengthening grain boundaries by adding B is disclosed in Japanese Patent Application Laid-Open No. 57-35662. In addition, to solve the above disadvantage (3), a method of lowering the recrystallization temperature by controlling the drawing speed of continuous casting, hot rolling conditions, etc. was proposed in Japanese Patent Publication No. 58-574
This is disclosed in Publication No. 90 and the like.

しかし、いずれにしろ、上記111の短所は解消されて
いない。
However, in any case, the disadvantages of 111 described above have not been resolved.

このような状況において、Tiの添加量を少なくすると
再結晶温度が低下することに注目し、C01020%以
下とするとともにTi O,005〜0.08%であっ
てかつTiとCとの重量%の比が4未満になるようにT
i添加量を調整した極低炭素−Ti添加鋼を素材として
用いた、プレス成形用冷延鋼板の製造法が、特開昭53
−137021号公報により開示されている。しかしな
がら、絞り性の指数であるr値ならびに全伸びも深絞り
用としては不十分なものしか得られていない。これは、
この製造法が単にTi/Cを4未満に限定しただけであ
るため、添加されたTiの大部分が酸化物や硫化物にな
ってしまうで、実際には、鋼中に多量の固溶炭素が存在
するため、焼鈍後に良い特性が得られないものと考えら
れる。
In this situation, it is noted that the recrystallization temperature decreases when the amount of Ti added is reduced, and the amount of Ti added is set to 20% or less, and the weight percentage of Ti and C is set to 0.005% to 0.08% and the weight percentage of Ti and C is reduced. T so that the ratio of is less than 4
A method for manufacturing cold-rolled steel sheets for press forming using ultra-low carbon-Ti added steel with an adjusted amount of i added was disclosed in JP-A-53
It is disclosed in the publication No.-137021. However, the r value, which is an index of drawability, and the total elongation are insufficient for deep drawing. this is,
Since this manufacturing method simply limits the Ti/C ratio to less than 4, most of the added Ti becomes oxides and sulfides, and in reality, a large amount of solid solute carbon is present in the steel. It is thought that due to the presence of , good properties cannot be obtained after annealing.

また熱間圧延時の粒成長も考慮せず、550〜700℃
と高温巻取りを行っている。
Also, without considering grain growth during hot rolling,
and high-temperature winding.

これに対して、特開昭59−67322号公報は、極低
炭素−Ti添加鋼のスラブを低温で均熱し熱間圧延する
とTilとC量の関係ではなく 、Tiff1と(N+
5)ffiの関係で深絞り性が決定されるとの考え方に
もとづいた深絞り用冷延鋼板の製造法が開示している。
On the other hand, JP-A No. 59-67322 discloses that when a slab of ultra-low carbon-Ti added steel is soaked at low temperature and hot-rolled, the relationship between Tiff1 and (N+
5) A method for producing cold-rolled steel sheets for deep drawing is disclosed based on the idea that deep drawability is determined by the relationship of ffi.

しかし、この製造法ではスラブを1100℃以下で均熱
しなければならず、スラブ加熱時の温度むらが顕著にな
り、その後の熱間圧延等の条件がスラブの部位によって
異なり、製品特性のコイル内変動の原因となり、品質管
理上好ましくない。
However, with this manufacturing method, the slab must be soaked at a temperature of 1100°C or less, resulting in significant temperature unevenness during heating of the slab, and conditions such as subsequent hot rolling vary depending on the part of the slab. This causes fluctuations and is unfavorable in terms of quality control.

また、特開昭60−9830号公報より開示された製造
法においては、酸化物や硫化物となってしまうTiを考
慮に入れ、鋼中窒素を窒化物として固定するのに足りる
だけのTiを添加する。しかし、固溶炭素が多いとr値
が高くとも、r値の鋼板面内での異方性が大きく、絞り
加工には好ましくない。
In addition, in the manufacturing method disclosed in JP-A No. 60-9830, sufficient amount of Ti is added to fix the nitrogen in the steel as nitrides, taking into consideration Ti that would otherwise become oxides and sulfides. Added. However, if there is a large amount of solid solute carbon, even if the r value is high, the anisotropy of the r value within the plane of the steel sheet is large, which is not preferable for drawing.

また、熱間圧延の諸条件の重要性について何ら認識して
いない。
Furthermore, they do not recognize the importance of hot rolling conditions.

Zrを添加したものについても同様のことがあてはまる
The same applies to those to which Zr is added.

(発明が解決しようとする問題点) したがって、本発明の目的とするところは、Tiあるい
はZrの微量添加にもかかわらず、r値の面内異方性が
小さい深絞り用冷延鋼板の安価な製造方法を提供するこ
とである。
(Problems to be Solved by the Invention) Therefore, the object of the present invention is to provide an inexpensive cold-rolled steel sheet for deep drawing that has small in-plane anisotropy of the r value despite the addition of a small amount of Ti or Zr. The purpose of this invention is to provide a manufacturing method.

さらに、本発明の別の目的は、耐常温歪時効性、耐2次
加工脆性および耐肌荒れ性が良好である深絞り用冷延鋼
板の安価な製造方法を提供することである。
Furthermore, another object of the present invention is to provide an inexpensive method for producing a cold-rolled steel sheet for deep drawing that has good room temperature strain aging resistance, secondary work brittleness resistance, and roughening resistance.

(問題点を解決するための手段) ところで、IF系のTi添加鋼を素材に用いると深絞り
性の良好な冷延鋼板を製造できる理由として、従来から
幾多の説が提案されてきている。これらはだいたい次の
2点に集約される。すなわち、深絞り性に好ましい再結
晶集合組織が発達するのは、(1)固溶C・固溶Nがな
い状態で冷間圧延・再結晶させるから、 (2)微細なTiの炭窒化物が存在する状態で、冷間圧
延・再加熱させるから の2つである。しかし、上記(11に対しては、固溶C
・固溶Nのきわめて少ない純鉄では決して深絞り性に好
ましい再結晶集合組織が得られないし、また(2)に対
しては、熱延板に熱処理等を施して、析出物を粗大化さ
せると更に深絞り性が向上すると言う事実があり、これ
ら2つの説がまだまだ不完全なことを示している。
(Means for Solving the Problems) By the way, a number of theories have been proposed in the past as to why cold-rolled steel sheets with good deep drawability can be produced when IF-based Ti-added steel is used as a raw material. These can roughly be summarized into the following two points. In other words, a recrystallized texture favorable for deep drawability develops because (1) cold rolling and recrystallization is performed in the absence of solid solute C and solute N, and (2) fine Ti carbonitrides. Two reasons are that the steel is cold rolled and reheated in the presence of However, for the above (11), solid solution C
・Pure iron with extremely low solute N will never have a recrystallized texture that is favorable for deep drawability, and for (2), the hot-rolled sheet is subjected to heat treatment to coarsen the precipitates. There is also the fact that deep drawability is further improved, which shows that these two theories are still incomplete.

ここに、本発明者らは、いくつかの実験事実から、次の
ような推論に達した。つまり、深絞り性に好ましい再結
晶集合組織を得るには、(i)熱延板すなわち冷間圧延
前の結晶粒径が十分少さいこと (11)再結晶時の固溶C・固i8Nが十分少ないこと (iii )再結晶温度が低いこと の3つの条件を満たすことが必要である。ただし、(i
i )と(iii )の間には補完的な関係がある。つ
まり、再結晶温度が十分低ければ、固溶C・固溶Nがあ
っても、また逆に、固溶C・固溶Nが十分少なければ、
再結晶温度が高くても、深絞り性に好ましい再結晶集合
組織が得られる。
Here, the present inventors have reached the following inference from several experimental facts. In other words, in order to obtain a recrystallized texture favorable for deep drawability, (i) the grain size of the hot-rolled sheet, that is, before cold rolling, must be sufficiently small; (11) the solid solution C and solid i8N during recrystallization must be sufficiently small; It is necessary to satisfy three conditions: (iii) the recrystallization temperature is sufficiently low; and (iii) the recrystallization temperature is low. However, (i
There is a complementary relationship between i) and (iii). In other words, if the recrystallization temperature is low enough, even if there is solute C and N, and conversely, if the solute C and N are sufficiently small,
Even if the recrystallization temperature is high, a recrystallization texture favorable for deep drawability can be obtained.

さて、製造コストを低減させるために、Tiの添加量を
少なくしてゆくと、やがて、固溶Cが残存するようにな
る。またTiO量が減少すると析出物の量も減少し、再
結晶抑制効果が少なくなり、熱間圧延時の動的な再結晶
やその後の冷却の過程での粒成長が容易になり、熱間圧
延後の結晶粒径が大きくなる。また同時に、焼鈍時の再
結晶温度が低くなる。前記のごとく、固溶Cが存在する
状態で再結晶させても、再結晶温度が十分低ければ、深
絞り性に好ましい再結晶集合&+1織が発達する。
Now, if the amount of Ti added is reduced in order to reduce manufacturing costs, solid solution C will eventually remain. In addition, when the amount of TiO decreases, the amount of precipitates also decreases, and the effect of suppressing recrystallization decreases, which facilitates dynamic recrystallization during hot rolling and grain growth during the subsequent cooling process. Later crystal grain size becomes larger. At the same time, the recrystallization temperature during annealing becomes low. As mentioned above, even if recrystallization is performed in the presence of solid solution C, if the recrystallization temperature is sufficiently low, a recrystallized aggregate &+1 weave, which is favorable for deep drawability, will develop.

ここに、本発明者らは、この固溶C量と再結晶温度の低
下のバランスを検討した結果、鋼中の全C量および全N
量が各々、o、ooso重量%以下、0゜007007
%以下の範囲ならば、TiあるいはZrの添加量の減少
に伴う、炭窒化物の減少による再結晶温度の低下が、固
溶Cの増加に見あうことを明らかにし、かつ、熱間圧延
条件および巻取条件を適切に規制することにより、細か
な結晶粒が得られることを見い出した。これにより、安
価でかつ遅時効性で、肌荒れの恐れがなく、r値の面内
異方性の少ない深絞り用冷延鋼板を連続焼鈍法によって
ででも製造できることが判明した。
As a result of examining the balance between the amount of solid solute C and the decrease in recrystallization temperature, the inventors found that the total amount of C and total N in the steel
The amount is less than o, ooso weight%, respectively, 0゜007007
% or less, the decrease in the recrystallization temperature due to the decrease in carbonitrides associated with the decrease in the amount of Ti or Zr added is commensurate with the increase in solid solution C. It has also been found that fine crystal grains can be obtained by appropriately controlling the winding conditions. As a result, it has been found that a cold-rolled steel sheet for deep drawing that is inexpensive, has slow aging properties, is free from the risk of surface roughening, and has little in-plane anisotropy of the r value can be produced even by continuous annealing.

すなわち、本発明者らは、種々検討を続けたところ、C
固溶量が0.0015%未満程度であれば「値、の面内
異方性も小さく、特に支障なく、その場合の結晶粒の粗
粒化も、熱間圧延時に低温大圧下を行うとともに熱間圧
延後も急冷、低温巻取りを行って粗粒化を抑制すること
により防止できることを見い出し、本発明を完成した。
That is, the present inventors continued various studies and found that C.
If the amount of solid solution is less than 0.0015%, the in-plane anisotropy of ``value'' is small and there is no particular problem. It was discovered that coarsening can be prevented by performing rapid cooling and low-temperature winding even after hot rolling, and completed the present invention.

よって、ここに、本発明は、広義には、鋼中に0.00
15重量%以下の固溶炭素が存在するようにTiおよび
Zrを添加し、スキッド・マーク (スラブ加熱時の温
度むら)が生じないように1100”C以上で鋼片を均
熱した後、熱間圧延を700〜880 ℃で仕上げると
ともに、仕上げ温度と仕上げ温度+1o。
Therefore, in a broad sense, the present invention provides 0.00 in steel.
Ti and Zr are added so that 15% by weight or less of solid solution carbon exists, and the steel slab is soaked at 1100"C or higher to prevent skid marks (temperature unevenness during heating of the slab). Finish rolling at 700 to 880°C, and increase the finishing temperature to +1o.

℃の間の温度域において、粗熱間圧延後の板厚の30%
以上を圧下し、熱間圧延完了後5℃/S以上で急冷し、
300〜550℃で巻取り、結晶粒径の小さな熱延板を
得、次いでこれを素材として用いて冷間圧延を行う、連
続焼鈍法によってでも、遅時効性で、絞り加工時に肌荒
れの恐れがなく、かつr値の面内異方性の小さな深絞り
用冷延鋼板の製造方法である。
30% of the plate thickness after rough hot rolling in the temperature range between ℃
The above is rolled down, and after the hot rolling is completed, it is rapidly cooled at 5°C/S or more,
Even with continuous annealing, which involves winding at 300 to 550°C to obtain a hot-rolled sheet with a small grain size, and then cold-rolling it as a raw material, it has slow aging properties and there is no risk of roughening of the surface during drawing. This is a method for producing a cold-rolled steel sheet for deep drawing, which has no in-plane anisotropy of the r value.

さらに特定的には、本発明の要旨とするところは、重量
%で、 C: 0.0005〜0.0050%、Mn: 0.0
1〜0.50%、S : 0.01%以下、   N 
: 0.0005〜0.0070,6、酸可溶性# 0
.02%以下、 かつ酸化物および硫化物として含まれるものを除き、3
.4  X N +4(C−0,0015)  ≦T 
i + −Z r<3.4 XN+4Cの範囲でTiお
よびZrの少なくとも一方を含み、 残部鉄および不可避不純物 よりなる組成を有する鋼を、1100℃以上の温度に均
熱して仕上げ温度700〜880′Cで熱間圧延を行い
、かつ仕上げ温度+100℃以下の温度域で、粗熱間圧
延後の板厚の30%以上を圧下し、熱間圧延完了後5℃
/S以上で300〜550℃まで急冷し、そのまま30
0〜550℃で巻取り、次いで、圧下率70〜95%で
冷間圧延し、680〜850℃で連続焼鈍することを特
徴とする、遅時効性の深絞り用冷延鋼板の製造方法であ
る。
More specifically, the gist of the present invention is that, in weight %, C: 0.0005-0.0050%, Mn: 0.0
1 to 0.50%, S: 0.01% or less, N
: 0.0005-0.0070.6, acid soluble #0
.. 0.2% or less, excluding those contained as oxides and sulfides,
.. 4 X N +4 (C-0,0015) ≦T
A steel containing at least one of Ti and Zr in the range of i + −Z r<3.4 Perform hot rolling at C, and reduce 30% or more of the plate thickness after rough hot rolling in a temperature range of finishing temperature + 100°C or less, and reduce the thickness by 5°C after completion of hot rolling.
/S or higher to 300-550℃, then leave it at 30℃.
A method for producing a slow-aging cold-rolled steel sheet for deep drawing, which is characterized by winding at 0 to 550°C, then cold rolling at a rolling reduction of 70 to 95%, and continuous annealing at 680 to 850°C. be.

なお、「粗熱間圧延」とは複数スタンドのタンデム熱間
圧延に先だち、鋼片を予め数十ミリ程度の厚さまで圧延
する熱間圧延を意味する。
Note that "rough hot rolling" refers to hot rolling in which a steel billet is rolled in advance to a thickness of about several tens of millimeters prior to tandem hot rolling in multiple stands.

また、上記鋼片は一般に連続鋳造により製造されたスラ
ブ鋳片であるが、その他造塊法により分塊圧延を経た鋼
片であってもよく、特に制限はない。
Further, the above-mentioned steel slab is generally a slab slab manufactured by continuous casting, but it may also be a steel slab that has been subjected to blooming and rolling using an ingot-forming method, and is not particularly limited.

(作用) 次に、本発明における鋼板の成分を前記のように限定し
ている理由について説明する。なお、本明細書において
「%」は特にことわりがない限り、「重量%」である。
(Function) Next, the reason why the components of the steel plate in the present invention are limited as described above will be explained. In this specification, "%" means "% by weight" unless otherwise specified.

C: 鋼中に必然的に含有されるもので、0.0005%未満
には、現在の製鋼技術では容易かつ安定してできない、
また、0.0050%を超えると、TiCが多くなり再
結晶温度が過度に高くなってしまう。
C: It is inevitably contained in steel and cannot be easily and stably reduced to less than 0.0005% using current steelmaking technology.
On the other hand, if it exceeds 0.0050%, the amount of TiC increases and the recrystallization temperature becomes excessively high.

好ましくは0.001〜0.003%である。Preferably it is 0.001 to 0.003%.

Mn= MnはSによる熱間脆性を防止するのにを効な元素であ
り、0.01%以上含有させるのが好ましい。
Mn= Mn is an element effective in preventing hot embrittlement caused by S, and is preferably contained in an amount of 0.01% or more.

しかし、0.50%を超えると鋼が硬質化し延性が劣化
し、さらにr値も低下する。
However, if it exceeds 0.50%, the steel becomes hard, the ductility deteriorates, and the r value also decreases.

N: Cと同様に鋼中に必然的に含有されるもので、o、oo
os%未溝には、現在の製鋼技術では容易かつ安定して
できない。また0、0070%を超えると、添加するT
iおよびZrO量が増大し、製造コストが高くなる。好
ましくは0.0030%以下におさえる。
N: Like C, it is inevitably contained in steel, and o, oo
Os% ungrooved grooves cannot be easily and stably formed using current steelmaking technology. Also, if it exceeds 0.0070%, the added T
The amount of i and ZrO increases, and the manufacturing cost increases. Preferably it is kept below 0.0030%.

酸可溶Al: 溶鋼を真空脱ガスした後、TiおよびZrを添加するの
に際し、TiおよびZrの歩留りを向上させるため、予
め脱酸のために添加するもので、微量でも存在すれば脱
酸が充分行われていることを示している。しかし0.0
2%を超えて添加することは、メリットがなく単にコス
トの上昇を意味する。
Acid-soluble Al: When adding Ti and Zr after vacuum degassing of molten steel, it is added in advance for deoxidation in order to improve the yield of Ti and Zr. It shows that this is being carried out adequately. But 0.0
Adding more than 2% has no merit and simply means an increase in cost.

S: SはMnよりTiと結合する傾向が強く、S含有量の増
加はTiの添加量の増大を招くので、0.01%以下と
する。
S: S has a stronger tendency to bond with Ti than Mn, and an increase in the S content leads to an increase in the amount of Ti added, so the content is set to 0.01% or less.

Ti5Zr: これらの元素は、同じような性質を示し、互いに置き換
えが可能なので、どちらか1種だけ添加しても、複合で
添加しても良い。しかし、酸化物、硫化物として鋼中に
含まれるものを除いて、3.4N + 4 (C−0,
0015)≦Ti +−Zr<3.4N+4Cの範囲で
、添加されなければならない。なぜな%より少ないと、
鋼中に0.0015%を超える固溶Cおよび固溶Nが存
在することになり、鋼板の遅時効性が確保できない。ま
た、(3,4N +4C)5以上になると、IF鋼にな
り、実質上すべてのTi、Zrが固定され、炭窒化物の
量が多くなり、それにともなって再結晶温度が高くなる
とともに、2次加工脆性も起こしやすくなる。
Ti5Zr: These elements exhibit similar properties and can be replaced with each other, so either one of them may be added alone or in combination. However, excluding those contained in steel as oxides and sulfides, 3.4N + 4 (C-0,
0015) ≦Ti + - Zr must be added within the range of 3.4N+4C. Why less than %?
Since solid solution C and solid solution N exceed 0.0015% in the steel, the slow aging properties of the steel sheet cannot be ensured. Furthermore, when the temperature exceeds (3,4N +4C)5, it becomes an IF steel, in which virtually all Ti and Zr are fixed, the amount of carbonitrides increases, and the recrystallization temperature increases accordingly. Subsequent processing embrittlement is also likely to occur.

なお、Ti単独添加の場合、好ましくはTi:0.04
38%以下、Zr単独添加のとき、好ましくは0.08
3%以下である。
In addition, in the case of adding Ti alone, preferably Ti: 0.04
38% or less, preferably 0.08 when Zr is added alone
It is 3% or less.

ここに、添付図面はN含有10.0020%のときに上
記関係式で示される領域、つまり本発明に係る組成領域
をグラフで示すものである。図中、斜線領域がそれであ
る。
Here, the attached drawing is a graph showing the region shown by the above relational expression when the N content is 10.0020%, that is, the composition region according to the present invention. This is the shaded area in the figure.

なお、不純物としてのPは通常の含存呈であれば害作用
を及ぼさないが、−Cには0.02%以下に抑えるのが
好ましい。
Note that P as an impurity does not have any harmful effect if it is present normally, but it is preferable to suppress -C to 0.02% or less.

本発明は、前述の通り、深絞り用冷延鋼板を製造するに
当り、前記鋼組成の鋼、例えば、連続鋳造スラブを11
00℃以上に加熱し、仕上げ温度700〜880℃で熱
間圧延を完了すると共に、この仕上げ温度と、仕上げ温
度+100℃との間の温度範囲で、粗熱間圧延後の板厚
の30%以上を圧下し、更に、熱間圧延後、5℃/S以
上の冷却速度で300〜550℃にまで急冷し、次いで
300〜550℃の低温度で巻取ることを特徴としてい
る。これは、1100℃未満で加熱すると、スラブに温
度むらが生じやすいためであり、また仕上げ温度を低く
し、かつ、低温域での圧下量を限定するのは、Tiある
いはZr含を量が少なくなって、熱間圧延中の動的再結
晶抑制効果が弱まったのを補うためで、これをはずれる
と熱間圧延後の結晶粒径が大きくなり。r値の面内異方
性が大きくなる。更に、熱間圧延後の冷却速度を限定し
、巻取温度を低くしたのは、熱延後の冷却中の粒成長を
抑制するためである。このようなプロセスにより結晶粒
の細かな熱延板が得られる。
As mentioned above, in producing a cold-rolled steel sheet for deep drawing, the present invention uses a steel having the above-mentioned steel composition, for example, a continuous casting slab.
Heating to 00℃ or higher and completing hot rolling at a finishing temperature of 700 to 880℃, and in a temperature range between this finishing temperature and finishing temperature + 100℃, 30% of the plate thickness after rough hot rolling. The above is rolled down, and after hot rolling, it is rapidly cooled to 300 to 550°C at a cooling rate of 5°C/S or more, and then coiled at a low temperature of 300 to 550°C. This is because heating below 1100°C tends to cause temperature unevenness in the slab, and lowering the finishing temperature and limiting the amount of reduction in the low temperature range is because the amount of Ti or Zr is small. This is to compensate for the weakening of the dynamic recrystallization suppressing effect during hot rolling, and if this is removed, the grain size after hot rolling will increase. The in-plane anisotropy of the r value increases. Furthermore, the reason why the cooling rate after hot rolling is limited and the winding temperature is lowered is to suppress grain growth during cooling after hot rolling. A hot-rolled sheet with fine grains can be obtained by such a process.

本発明では、巻取後さらに脱スケールし冷間圧延するが
冷間圧延するに当たって、圧下率は70〜95%とする
。これはこの範囲を外れると焼鈍時にr値改善に好まし
い再結晶集合Mi織が発達しないためである。
In the present invention, after winding, the material is further descaled and cold rolled, and the reduction ratio is set to 70 to 95% during cold rolling. This is because, outside this range, the recrystallized Mi texture, which is preferable for improving the r value, will not develop during annealing.

次に、かかる冷延材について680〜850℃で焼鈍す
るが、これは680℃未満では再結晶が完了するのに時
間がかかりすぎ、十分粒成長しないためであり、一方、
850℃を超えると、ヒートバックリングや、ハースロ
ールによるすり傷等の発生頻度が著しく高くなるからで
ある。
Next, the cold-rolled material is annealed at 680 to 850°C, because below 680°C it takes too long to complete recrystallization and grains do not grow sufficiently;
This is because when the temperature exceeds 850°C, the frequency of occurrence of heat buckling, scratches due to hearth rolls, etc. increases significantly.

鋼板は焼鈍後調質圧延されてから、製品として出荷され
る。
Steel plates are annealed and temper rolled before being shipped as products.

次に本発明の実施例を示すが、これは単に本発明の例示
であって、これにより本発明が不当に制限されるもので
はない。
Next, examples of the present invention will be shown, but these are merely illustrative of the present invention and are not intended to unduly limit the present invention.

実施例 第1表に示す組成を有する鋼を、実験用真空溶解炉で溶
製した。これを3分割し、熱間加工により20IIII
11厚のスラブとした。これを1200℃に1時間加熱
後、仕上げ温度が700〜880℃に入るように5パス
で41厚に圧延した。ただし、最終2パスは、狙いの仕
上げ温度+100℃より冷えてから圧延し、各々の圧下
率をもとのスラブ厚の20%、15%とした。この熱間
圧延後ただちに水スプレー冷却により急冷しく連続鋳造
速度はぼ2〜bに相当)、種々の温度に保持した炉の中
に挿入し、30分保持後、20℃/hrで冷却して巻取
のシュミレーションとした。
Example Steel having the composition shown in Table 1 was melted in an experimental vacuum melting furnace. This was divided into three parts and heated to 20III.
It was made into a slab with a thickness of 11. After heating this to 1200°C for 1 hour, it was rolled to a thickness of 41 in 5 passes so that the finishing temperature was between 700 and 880°C. However, in the final two passes, the slab was rolled after it had cooled down from the target finishing temperature +100°C, and the respective rolling reductions were 20% and 15% of the original slab thickness. Immediately after this hot rolling, it was quenched by water spray cooling (continuous casting speed corresponds to approximately 2-b), inserted into a furnace maintained at various temperatures, held for 30 minutes, and then cooled at 20°C/hr. This is a simulation of winding.

このようにして得た巻取材同等材を脱スケール後、0.
8mmまで圧下率78%で冷間圧延し、次いで加熱速度
10℃/Sで; 780℃で1分間均熱してから冷却速
度10℃/Sで連続焼鈍し、伸び率1.2%で調質圧延
を行った。
After descaling the material equivalent to the rolled material obtained in this way, 0.
Cold rolled to 8 mm at a reduction rate of 78%, then heated at a heating rate of 10°C/S; Soaked at 780°C for 1 minute, then continuously annealed at a cooling rate of 10°C/S, and tempered at an elongation rate of 1.2%. Rolling was performed.

かかる供試材からJIS 5号引張試験片を作り、殿械
的性質および焼付硬化1(1111)を測定した。結果
を同じく第1表にまとめて示す。同表によれば比較例で
ある1kloは、Cが多くかつri、、’zrの添加量
が少ないため、固溶C呈が多(B11が大きいし、降伏
点も高い。同じく比較例である阻11〜14は、熱間圧
延、巻取条件が不適切なため圧延方向に対し45°方向
のr値が悪く、平均r値もまた面内異方性も悪い。
A JIS No. 5 tensile test piece was prepared from the sample material, and the mechanical properties and bake hardening 1 (1111) were measured. The results are also summarized in Table 1. According to the same table, 1klo, which is a comparative example, has a large amount of C and a small amount of ri, , 'zr added, so it has a large amount of solid solution C (B11 is large and the yield point is high. Samples Nos. 11 to 14 had poor r values in the 45° direction with respect to the rolling direction because the hot rolling and winding conditions were inappropriate, and the average r values and in-plane anisotropy were also poor.

なお、第1表中、「*」印は本発明の範囲外であること
を示す。
In addition, in Table 1, the mark "*" indicates that it is outside the scope of the present invention.

(発明の効果) 以上詳述したように、本発明によれば、熱延板の結晶粒
径を十分小さくでき、固溶C量を0.0015%未満に
まで許容できるため、Ti添加量を極力少なくできると
ともに、耐常温歪時効性および耐2次加工脆性のみられ
ない、かつr値面異方性の小さい安価な深絞り用冷延鋼
板が製造できるのである。
(Effects of the Invention) As detailed above, according to the present invention, the grain size of the hot rolled sheet can be sufficiently reduced and the amount of solid solution C can be tolerated to less than 0.0015%, so the amount of Ti added can be reduced. This makes it possible to produce an inexpensive cold-rolled steel sheet for deep drawing that has as little amount as possible, exhibits no room-temperature strain aging resistance, no secondary work embrittlement resistance, and has low r-value plane anisotropy.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面第1図は、酸化物、硫化物として含まれるもの
は除き、鋼中N含有量を0.0020%としたときの 本発明の範囲内の(’ri+    Zr)ffiおよ
び(J7の許容範囲を示すグラフである。
Figure 1 of the attached drawings shows the allowable ('ri+Zr)ffi and (J7) within the scope of the present invention when the N content in the steel is 0.0020%, excluding those contained as oxides and sulfides. It is a graph showing a range.

Claims (1)

【特許請求の範囲】 重量%で、 C:0.0005〜0.0050%、Mn:0.01〜
0.50%、S:0.01%以下、N:0.0005〜
0.0070%、酸可溶性Al:0.02%以下、 かつ酸化物および硫化物として含まれるものを除き、3
.4×N+4(C−0.0015)≦Ti+(48/9
3)Zr<3.4×N+4Cの範囲でTiおよびZrの
少なくとも一種を含み、 残部鉄および不可避不純物 よりなる組成を有する鋼を、1100℃以上の温度に均
熱して仕上げ温度700〜880℃で熱間圧延を行い、
かつ仕上げ温度+100℃以下の温度域で、粗熱間圧延
後の板厚の30%以上を圧下し、熱間圧延完了後5℃/
S以上で300〜550℃まで急冷し、そのまま300
〜550℃で巻取り、次いで、圧下率70〜95%で冷
間圧延し、680〜850℃で連続焼鈍することを特徴
とする、遅時効性の深絞り用冷延鋼板の製造方法。
[Claims] In weight%, C: 0.0005-0.0050%, Mn: 0.01-0.01%
0.50%, S: 0.01% or less, N: 0.0005~
0.0070%, acid-soluble Al: 0.02% or less, and excluding those contained as oxides and sulfides, 3
.. 4×N+4(C-0.0015)≦Ti+(48/9
3) Steel having a composition containing at least one of Ti and Zr in the range of Zr<3.4×N+4C, and the balance consisting of iron and unavoidable impurities is soaked at a temperature of 1100°C or higher and finished at a finishing temperature of 700 to 880°C. Perform hot rolling,
And in a temperature range of finishing temperature + 100℃ or less, reduce 30% or more of the plate thickness after rough hot rolling, and reduce the temperature by 5℃/after completion of hot rolling.
Rapidly cool down to 300-550℃ at temperature S or higher, then heat to 300℃
A method for producing a slow-aging cold-rolled steel sheet for deep drawing, which comprises winding at ~550°C, then cold rolling at a rolling reduction of 70-95%, and continuous annealing at 680-850°C.
JP28054285A 1985-12-13 1985-12-13 Production of cold rolled steel sheet for deep drawing Granted JPS62139823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28054285A JPS62139823A (en) 1985-12-13 1985-12-13 Production of cold rolled steel sheet for deep drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28054285A JPS62139823A (en) 1985-12-13 1985-12-13 Production of cold rolled steel sheet for deep drawing

Publications (2)

Publication Number Publication Date
JPS62139823A true JPS62139823A (en) 1987-06-23
JPH058257B2 JPH058257B2 (en) 1993-02-01

Family

ID=17626521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28054285A Granted JPS62139823A (en) 1985-12-13 1985-12-13 Production of cold rolled steel sheet for deep drawing

Country Status (1)

Country Link
JP (1) JPS62139823A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428325A (en) * 1987-07-24 1989-01-30 Kobe Steel Ltd Production of high-strength cold rolled steel sheet for ultra-deep drawing
JPH04247827A (en) * 1991-01-23 1992-09-03 Nkk Corp Manufacture of high strength cold rolled steel sheet excellent in press formability
KR20020040432A (en) * 2000-11-24 2002-05-30 이구택 method of manufacturing a high strength cold rolled steel sheet with good formability

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428325A (en) * 1987-07-24 1989-01-30 Kobe Steel Ltd Production of high-strength cold rolled steel sheet for ultra-deep drawing
JPH04247827A (en) * 1991-01-23 1992-09-03 Nkk Corp Manufacture of high strength cold rolled steel sheet excellent in press formability
JPH0826412B2 (en) * 1991-01-23 1996-03-13 日本鋼管株式会社 Method for producing high-strength cold-rolled steel sheet with excellent press formability
KR20020040432A (en) * 2000-11-24 2002-05-30 이구택 method of manufacturing a high strength cold rolled steel sheet with good formability

Also Published As

Publication number Publication date
JPH058257B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
US4576657A (en) Process of manufacturing a cold rolled steel sheet having excellent press formability
JPH032224B2 (en)
JPS62139823A (en) Production of cold rolled steel sheet for deep drawing
JPS6199631A (en) Manufacture of thin steel sheet for deep drawing
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPS59123720A (en) Production of cold rolled steel sheet for deep drawing
JPH0257128B2 (en)
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPS6111295B2 (en)
JPS61204325A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance
JPH0249373B2 (en)
JPH0369967B2 (en)
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JPH10183254A (en) Production of cold rolled steel sheet for deep drawing excellent in ridging resistance
JPH0394021A (en) Production of cold rolled steel sheet excellent in deep drawability and resistance to secondary working brittleness
JPS60106920A (en) Production of thin steel sheet for deep drawing
JPH03199312A (en) Production of high-tensile cold rolled steel sheet for deep drawing
JPH0463232A (en) Manufacture of cold rolled steel sheet excellent in press formability by continuous annealing
JPS5858232A (en) Production of alloyed zinc plated steel plate having thermal hardenability
JPH0853736A (en) Thin steel sheet for deep drawing and its production
JPS59185729A (en) Production of thin steel sheet having excellent deep drawability
JPH0230719A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH0466621A (en) Production of hot rolled steel plate for deep drawing excellent in resistance to secondary working brittleness
JPH02263932A (en) Manufacture of cold rolled steel sheet for drawing
JPH0561341B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term