JPS6111295B2 - - Google Patents

Info

Publication number
JPS6111295B2
JPS6111295B2 JP56149133A JP14913381A JPS6111295B2 JP S6111295 B2 JPS6111295 B2 JP S6111295B2 JP 56149133 A JP56149133 A JP 56149133A JP 14913381 A JP14913381 A JP 14913381A JP S6111295 B2 JPS6111295 B2 JP S6111295B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
sec
seconds
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56149133A
Other languages
Japanese (ja)
Other versions
JPS5852440A (en
Inventor
Osamu Akisue
Shigeru Ueda
Teruaki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14913381A priority Critical patent/JPS5852440A/en
Publication of JPS5852440A publication Critical patent/JPS5852440A/en
Publication of JPS6111295B2 publication Critical patent/JPS6111295B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

最近、自動車用鋼板として高強度冷延鋼板が用
いられるようになつた。自動車用鋼板に要求され
る特性としては、高深絞り性でかつプレス加工性
に優れ耐時効性の良いことが最大の要点である
が、本発明は、そのような要望に応えるべくなさ
れたものである。その基本思想は連続焼鈍法に
て、均熱後の冷却条件と過時効条件を制御するこ
とにより、優れた深絞り性を鋼板に付与しつつ、
プレス加工性・耐時効性の優れた35Kg/mm2級の高
強度冷延鋼板の製造を可能とするものである。 本発明は、C:0.015〜0.045%、Mn;0.08〜
0.70%,P0.13%、Al;0.020〜0.080%で残部
Fe及び不可避的な不純物からなる鋼を熱間圧延
し、630℃以上の温度で捲取り、冷延後連続焼鈍
を行なうにあたり、750〜900℃で10秒〜20分間の
均熱後、一次冷却において、均熱温度から720〜
650℃の間の急冷開始温度までを、20℃/sec以下
の冷却速度で徐冷すると共に、上記急冷開始温度
から520℃の間を40℃/sec〜400℃/secの冷却速度
で冷却し、引続く冷却を300℃以上の温度で停止
させ、300〜500℃の温度で30秒以上300秒以下過
時効処理をすることを特徴とする高い深絞り性を
有し、プレス加工性の優れた遅時効性高強度冷延
鋼板の連続焼鈍による製造方法を要旨とする。 以下に、本発明の対象鋼の成分の限定理由を説
明する。 C,Mn,Pは鋼板に強度を付与する元素であ
るが、特にCについては、0.045%以下とする。
これは、0.045%以上となると充分な絞り性を得
るのが困難となるからである。又、Cが0.015%
未満では強度が確保されない。よつて、Cは
0.015〜0.045%とした。又、Pは0.13%超では二
〓〓〓〓
次加工割れが生じるようになるため、Pは0.13%
以下に限定した。Mnを0.08〜0.70%としたの
は、0.08%より少ないと熱間圧延時の赤熱脆性が
発生するのでこれを防ぐために0.08%以上とし、
又、0.70%より多くなるとプレス加工性に必要な
r値が劣化するためである。AlはNによる耐時
効性の劣化を防止するために必要な元素でAl量
が0.020%未満では、熱間圧延の時点でNをAlN
として析出させるためには不十分である。尚、
Al量は0.080%以上添加する必要は何らない。他
の元素については、少ない方が望ましいが、必要
に応じて添加してもよい。 このような成分組成の鋼は常法に従つて連続鋳
造法、又はインゴツト―分塊法でスラブとなし、
熱間圧延及び冷間圧延をおこない、次いで特徴的
な連続焼鈍をおこなう。熱間圧延に際しては前記
の如く、時効劣化防止のためのAlNの析出に必要
な捲取温度として630℃以上が必要となる。尚、
熱間圧延前のスラブ加熱温度を700〜1150℃とす
ることは、AlNの析出が熱延鋼帯全長、全巾にわ
たりより完全にななるので好ましい条件である。
又、冷間圧延に際しては、深絞り加工性にとつて
必要なr値を向上させるため、圧下率を70〜85%
にすることが望ましい。 以下、連続焼鈍条件について詳しく説明する。 先ず、昇温、加熱条件については生産性を高め
るという観点から直火式噴流加熱の如き急速加熱
が望ましいが、特に限定する必要はなく、通常の
ラジアントチユーブによる加熱方式で得られる条
件で充分である。 均熱は750〜900℃で10秒〜2分間行なう。これ
は750℃未満、10秒未満では十分な再結晶と粒成
長が得られず、所望のプレス加工性が得られな
い。一方900℃を超える均熱ではオーステナイト
化する量が多くなり過ぎ、絞り性に必要なr値が
劣化する。均熱時間の上限は長くても良いが連続
焼鈍炉の炉長が長くなるなど設備、経済上の理由
から2分以内と限定した。 上記の均熱を終了した後の冷却は、720〜650℃
の間の急冷開始温度までを、20℃/sec以下の冷
却速度で徐冷すると共に、上記急冷開始温度から
520℃の間を40℃/sec〜400℃/secの冷却速度で
冷却する。鋼板のr値及び延性の向上をはかるた
めには、高温の均熱を行なう必要があるが、この
場合オーステナイト量が増加する。このような状
態から急冷した場合には鋼板中に焼入組織が生
じ、延性がやや劣化することも考えられる。 そこで本発明においては、均熱後の急冷による
焼入組織の生成を避けるべく、急冷開始温度を
720〜650℃の間で選択し、均熱温度からこの急冷
開始温度までを20℃/sec以下の冷却速度で徐冷
するものである。又、急冷開始温度が650℃未満
となつたり、急冷終点温度が520℃超となつた
り、更に急速冷却速度が40℃/sec未満になると
急速冷却効果は少なくなり、自動車外板用高強度
冷延鋼板に必要な耐時効性が損なわれるので、少
なくとも650〜520℃の間の冷却速度を40℃/sec
以上と限定した。尚冷却速度の上限は、400℃/
secを超えると、材質の向上効果がないばかりか
急冷の終点温度の制御が困難になるので、400
℃/secとした。冷却手段は、冷却終点制御が可
能なものであれば、例えばガスジエツト、ミス
ト、ボイリングウオーター、ウオーター、メタル
コンタクトクーリングの如きいずれの冷却手段も
採用できる。尚、冷却速度は必要以上に高くして
も急速冷却の効果の向上代はあまり期待できず、
又冷却速度が早くなればなる程終点制御が困難と
なる傾向を有するが特に制限されるものではな
い。引続き行なわれる520℃からの冷却速度は特
に限定されないが、冷却の終点温度が300℃より
低くなると硬質化し、充分なプレス加工性が得ら
れないので、一次冷却に際しては、300℃より低
く冷却しないように限定した。 過時効温度は300〜500℃が最適であつて、300
℃未満ではプレス加工性に必要な延性が低下し、
500℃超では耐時効性が劣化する。又、過時効時
間は30秒未満では充分な延性と耐時効性が得られ
ないので過時効温度と時間をそれぞれ300〜500
℃、30秒以上と限定するものである。尚過時効時
間の上限は、300秒を超える過時効処理を施して
も材質の向上はなくなり、コストがかかるばかり
であるので300秒とした。 以上述べた連続焼鈍条件と鋼の成分組成、及び
熱間圧延条件との組み合わせによつて、高い深絞
り性を有し、プレス加工性の優れた遅時効性高強
度冷延鋼板を経済的に得ることができる。次に、
上述の本発明のポイントである低C化による深絞
り性向上について、実験例に基き説明する。 〓〓〓〓
〈C含有量とr値の関係〉 P:0.050%、Mn:0.15%、Al:0.050%を含
み、C含有量を0.02〜0.06%まで変えた溶鋼組成
のものを連続鋳造によつてスラブを得、それを熱
間圧延し、700℃で捲取り、酸洗、冷延した0.8mm
の冷延鋼板を、第1図に示す連続焼鈍サイクルで
焼鈍し、1.0%の調質圧延を施し、r値を調査し
た。第2図に調査結果を示す。C含有量を0.045
%以下にすることによつて、深絞り加工に必要な
r値(1.5)を確保することができる。 実施例 第1表に示すような化学成分を持つた試料A,
B,C,D,E,Fを同表中に示す熱間圧延捲取
温度(CT)で捲取り、それらを板厚0.80mmで冷
間圧延したのち、均熱を850℃×60sec行ない、そ
の後675℃まで10℃/secで徐冷し、しかるのち
100℃/secの冷却速度で400℃まで冷却したもの
を400℃×120secの過時効処理を行なうという連
続焼鈍サイクルによつて焼鈍して、材質調査をし
た。材質調査の結果は第1表に併示する。 これから明らかなように、C<0.045%である
A,Bは各々値が1..56と1.60、YPが22.4Kg/mm2
と20.8Kg/mm2、YP―Elが0.2と0.1というように、
高い深絞り性とプレス加工性に加えて耐時効性も
備えた自動車用鋼板としては最適の素材である。 Mn量の多いCの値は1.10であり、プレス加
工用鋼板のr値としては不十分である。従つてr
値を高くするために、Mn量は本発明の範囲のよ
うに0.70%以下にしなくてはならない。 又、C量の多いD,E,Fにおいては、が
夫々1.33,1.40,1.38と低いことに加えて、YPは
逆に夫々33.8Kg/mm2、28.5Kg/mm2、29.8Kg/mm2という
ように高くなつている。これでは、プレス加工性
鋼板としては不適である。従つて、C量は本発明
の範囲のように0.045%以下にしなくてはならな
い。 以上、述べたように本発明によれば、高い深絞
り性を有し、プレス加工性の優れた遅時効性高強
度冷延鋼板の連続焼鈍による製造方法を容易に提
供し得るものである。 〓〓〓〓
Recently, high-strength cold-rolled steel sheets have come to be used as steel sheets for automobiles. The most important characteristics required for automotive steel sheets are high deep drawability, excellent press workability, and good aging resistance, and the present invention was made to meet these demands. be. The basic idea is to use a continuous annealing method to impart excellent deep drawability to the steel sheet by controlling the cooling conditions and overaging conditions after soaking.
This makes it possible to manufacture 35Kg/mm class 2 high-strength cold-rolled steel sheets with excellent press workability and aging resistance. The present invention has C: 0.015 to 0.045%, Mn; 0.08 to
0.70%, P0.13%, Al; balance at 0.020-0.080%
When steel consisting of Fe and unavoidable impurities is hot-rolled, rolled at a temperature of 630°C or higher, and then subjected to continuous annealing after cold rolling, it is soaked at 750-900°C for 10 seconds to 20 minutes, and then subjected to primary cooling. , from soaking temperature to 720~
Slow cooling is performed at a cooling rate of 20°C/sec or less up to a quenching start temperature of 650°C, and cooling is performed at a cooling rate of 40°C/sec to 400°C/sec from the above quenching start temperature to 520°C. , the subsequent cooling is stopped at a temperature of 300℃ or higher, and an overaging treatment is performed at a temperature of 300 to 500℃ for 30 seconds to 300 seconds.It has high deep drawability and excellent press workability. The summary of this paper is a method for manufacturing slow-aging, high-strength cold-rolled steel sheets by continuous annealing. The reasons for limiting the components of the target steel of the present invention will be explained below. C, Mn, and P are elements that give strength to steel sheets, and the content of C in particular is set to 0.045% or less.
This is because if it exceeds 0.045%, it becomes difficult to obtain sufficient drawability. Also, C is 0.015%
If it is less than that, the strength will not be ensured. Therefore, C is
It was set at 0.015-0.045%. Also, P is 2〓〓〓〓 when it exceeds 0.13%.
P is 0.13% as subsequent processing cracks will occur.
Limited to the following. The reason for setting Mn to 0.08 to 0.70% is that if it is less than 0.08%, red brittleness will occur during hot rolling, so to prevent this, it is set to 0.08% or more.
Moreover, if it exceeds 0.70%, the r value necessary for press workability will deteriorate. Al is an element necessary to prevent deterioration of aging resistance due to N. If the amount of Al is less than 0.020%, N is replaced with AlN at the time of hot rolling.
It is insufficient for precipitation as still,
There is no need to add 0.080% or more of Al. As for other elements, it is desirable to have a smaller amount, but they may be added as necessary. Steel with such a composition is made into a slab by the continuous casting method or the ingot-blubber method according to conventional methods.
Hot rolling and cold rolling are performed, followed by characteristic continuous annealing. As mentioned above, during hot rolling, a rolling temperature of 630° C. or higher is required to precipitate AlN to prevent aging deterioration. still,
Setting the slab heating temperature before hot rolling to 700 to 1150°C is a preferable condition because AlN precipitation becomes more complete over the entire length and width of the hot rolled steel strip.
In addition, during cold rolling, in order to improve the r value necessary for deep drawing workability, the reduction rate is set at 70 to 85%.
It is desirable to The continuous annealing conditions will be explained in detail below. First, regarding the temperature rise and heating conditions, rapid heating such as direct-fired jet heating is desirable from the perspective of increasing productivity, but there is no need to be particularly limited, and the conditions obtained with a heating method using a normal radiant tube are sufficient. be. Soaking is performed at 750 to 900°C for 10 seconds to 2 minutes. If the temperature is lower than 750°C and the temperature is shorter than 10 seconds, sufficient recrystallization and grain growth cannot be obtained, and the desired press workability cannot be obtained. On the other hand, soaking at a temperature exceeding 900°C increases the amount of austenitization, which deteriorates the r value necessary for drawability. Although the upper limit of the soaking time may be long, it was limited to 2 minutes or less due to equipment and economic reasons such as the long furnace length of a continuous annealing furnace. Cooling after completing the above soaking is 720 to 650℃.
At the same time as cooling slowly at a cooling rate of 20℃/sec or less up to the quenching start temperature between
Cooling is performed between 520°C at a cooling rate of 40°C/sec to 400°C/sec. In order to improve the r value and ductility of the steel sheet, it is necessary to perform soaking at a high temperature, but in this case, the amount of austenite increases. If the steel sheet is rapidly cooled from such a state, a quenched structure may be generated in the steel sheet, which may cause a slight deterioration in ductility. Therefore, in the present invention, in order to avoid the formation of a quenched structure due to rapid cooling after soaking, the rapid cooling start temperature is
The temperature is selected between 720 and 650°C, and slow cooling is performed from the soaking temperature to the rapid cooling start temperature at a cooling rate of 20°C/sec or less. Furthermore, if the quenching start temperature is less than 650℃, the quenching end point temperature is more than 520℃, or the rapid cooling rate is less than 40℃/sec, the rapid cooling effect will be reduced, and high-strength cooling for automobile exterior panels will not be effective. The cooling rate between 650 and 520℃ should be at least 40℃/sec because the aging resistance required for rolled steel sheets will be impaired.
limited to the above. The upper limit of the cooling rate is 400℃/
If it exceeds 400 sec, not only will there be no effect on improving the material quality, but it will also be difficult to control the end point temperature of rapid cooling.
It was set as °C/sec. As the cooling means, any cooling means such as gas jet, mist, boiling water, water, and metal contact cooling can be used as long as the cooling end point can be controlled. In addition, even if the cooling rate is increased more than necessary, it is not expected to improve the rapid cooling effect much.
Furthermore, there is a tendency that the faster the cooling rate, the more difficult it becomes to control the end point, but this is not particularly limited. The subsequent cooling rate from 520°C is not particularly limited, but if the end point temperature of cooling is lower than 300°C, it will become hard and sufficient press workability will not be obtained, so do not cool it below 300°C during primary cooling. limited to. The optimum overaging temperature is 300 to 500℃,
Below ℃, the ductility required for press workability decreases,
Aging resistance deteriorates at temperatures exceeding 500℃. In addition, if the overaging time is less than 30 seconds, sufficient ductility and aging resistance cannot be obtained, so the overaging temperature and time are set at 300 to 500 seconds, respectively.
°C for 30 seconds or more. The upper limit of the over-aging time was set to 300 seconds because over-aging for more than 300 seconds would not improve the quality of the material and would only increase costs. By combining the continuous annealing conditions, steel composition, and hot rolling conditions described above, it is possible to economically produce slow-aging, high-strength cold-rolled steel sheets with high deep drawability and excellent press workability. Obtainable. next,
The improvement of deep drawability by lowering C, which is the key point of the present invention, will be explained based on experimental examples. 〓〓〓〓
<Relationship between C content and r value> Molten steel composition containing P: 0.050%, Mn: 0.15%, Al: 0.050%, with C content varied from 0.02 to 0.06%, was made into a slab by continuous casting. The obtained product was hot rolled, rolled at 700℃, pickled, and cold rolled to 0.8mm.
A cold rolled steel plate was annealed in the continuous annealing cycle shown in FIG. 1, subjected to 1.0% skin pass rolling, and the r value was investigated. Figure 2 shows the survey results. C content 0.045
% or less, it is possible to secure the r value (1.5) required for deep drawing. Example Sample A, which had chemical components as shown in Table 1,
B, C, D, E, and F were rolled at the hot rolling winding temperature (CT) shown in the same table, and after cold rolling them to a plate thickness of 0.80 mm, soaking was performed at 850°C x 60 sec . , then slowly cooled to 675℃ at 10℃/sec, and then
Materials were investigated after being annealed in a continuous annealing cycle in which the material was cooled to 400°C at a cooling rate of 100°C/sec and then over-aged at 400°C for 120 sec . The results of the material investigation are also shown in Table 1. As is clear from this, the values of A and B where C<0.045% are 1.56 and 1.60, respectively, and YP is 22.4Kg/mm 2
and 20.8Kg/mm 2 , YP-El is 0.2 and 0.1, etc.
It is an optimal material for automotive steel sheets, as it has high deep drawability and press workability, as well as aging resistance. The value of C, which has a large amount of Mn, is 1.10, which is insufficient as an r value for a steel plate for press working. Therefore r
In order to increase the value, the Mn content must be 0.70% or less, as in the range of the present invention. In addition, in D, E, and F, which have a large amount of C, in addition to being low at 1.33, 1.40, and 1.38, respectively, YP is 33.8Kg/mm 2 , 28.5Kg/mm 2 , and 29.8Kg/mm 2 , respectively. As such, it is getting higher. This is not suitable as a press workable steel sheet. Therefore, the amount of C must be kept at 0.045% or less as in the scope of the present invention. As described above, according to the present invention, it is possible to easily provide a method for manufacturing a slow-aging high-strength cold-rolled steel sheet having high deep drawability and excellent press workability by continuous annealing. 〓〓〓〓

【表】 〓〓〓〓
[Table] 〓〓〓〓

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実験例で使用した連続焼鈍サイクル
を示す図、第2図は、C含有量とr値の関係を示
す図である。 〓〓〓〓
FIG. 1 is a diagram showing the continuous annealing cycle used in the experimental example, and FIG. 2 is a diagram showing the relationship between C content and r value. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 C;0.015〜0.045%、Mn;0.08〜0.70%、P
0.13%、Al;0.020〜0.080%で残部Fe及び不可
避的な不純物からなる鋼を熱間圧延し、630℃以
上の温度で捲取り、冷延後連続焼鈍を行なうにあ
たり、750〜900℃で10秒〜20分間の均熱後、一次
冷却において、均熱温度から720〜650℃の間の急
冷開始温度までを、20℃/sec以下の冷却速度で徐
冷すると共に、上記急冷開始温度から520℃の間
を40℃/sec以上400℃/sec以下の冷却速度で冷却
し、引続く冷却を300℃以上の温度で停止させ、
300〜500℃の温度で30秒以上300秒以下の過時効
処理をすることを特徴とする高い深絞り性を有
し、プレス加工性の優れた遅時効性高強度冷延鋼
板の連続焼鈍による製造方法。
1 C; 0.015-0.045%, Mn; 0.08-0.70%, P
0.13%, Al; 0.020 to 0.080% with the balance Fe and unavoidable impurities being hot rolled, rolled at a temperature of 630°C or higher, and then continuously annealed after cold rolling at 750 to 900°C for 10 After soaking for 20 minutes to 20 minutes, in primary cooling, gradually cool from the soaking temperature to a quenching start temperature between 720 and 650℃ at a cooling rate of 20℃/sec or less, and at the same time, from the above quenching start temperature to 520℃ ℃ at a cooling rate of 40℃/sec to 400℃/sec, and the subsequent cooling is stopped at a temperature of 300℃ or higher,
Continuously annealed slow-aging high-strength cold-rolled steel sheet with high deep drawability and excellent press workability, characterized by overaging treatment at a temperature of 300 to 500°C for 30 seconds to 300 seconds. Production method.
JP14913381A 1981-09-21 1981-09-21 Production of delayed aging high strength cold rolled steel plate having high deep drawability and excellent press workability by continuous annealing Granted JPS5852440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14913381A JPS5852440A (en) 1981-09-21 1981-09-21 Production of delayed aging high strength cold rolled steel plate having high deep drawability and excellent press workability by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14913381A JPS5852440A (en) 1981-09-21 1981-09-21 Production of delayed aging high strength cold rolled steel plate having high deep drawability and excellent press workability by continuous annealing

Publications (2)

Publication Number Publication Date
JPS5852440A JPS5852440A (en) 1983-03-28
JPS6111295B2 true JPS6111295B2 (en) 1986-04-02

Family

ID=15468454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14913381A Granted JPS5852440A (en) 1981-09-21 1981-09-21 Production of delayed aging high strength cold rolled steel plate having high deep drawability and excellent press workability by continuous annealing

Country Status (1)

Country Link
JP (1) JPS5852440A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174852A (en) * 1984-02-18 1985-09-09 Kawasaki Steel Corp Cold rolled steel sheet having composite structure and superior deep drawability
JPS6119739A (en) * 1984-07-04 1986-01-28 Kawasaki Steel Corp Preparation of high tensile steel plate having good drawing property by continuous annealing
KR100435467B1 (en) * 1999-12-21 2004-06-10 주식회사 포스코 A method for manufacturing high strength cold rolled steel sheet having superior ductility by continuous annealing
WO2011091983A2 (en) * 2010-01-29 2011-08-04 Tata Steel Nederland Technology Bv Process for the heat treatment of metal strip material, and strip material produced in that way

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215046A (en) * 1975-07-26 1977-02-04 Toyo Kaiyo Kaihatsu Kk Method of reducing support force by liquid
JPS55134126A (en) * 1979-04-05 1980-10-18 Nippon Kokan Kk <Nkk> Production of high-strength cold rolled steel plate of superior press formability
JPS5655524A (en) * 1979-10-05 1981-05-16 Kobe Steel Ltd Production of cold-rolled steel plate for press forming
JPS56156720A (en) * 1980-05-01 1981-12-03 Nippon Steel Corp Manufacture of cold rolled steel plate excellent in workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215046A (en) * 1975-07-26 1977-02-04 Toyo Kaiyo Kaihatsu Kk Method of reducing support force by liquid
JPS55134126A (en) * 1979-04-05 1980-10-18 Nippon Kokan Kk <Nkk> Production of high-strength cold rolled steel plate of superior press formability
JPS5655524A (en) * 1979-10-05 1981-05-16 Kobe Steel Ltd Production of cold-rolled steel plate for press forming
JPS56156720A (en) * 1980-05-01 1981-12-03 Nippon Steel Corp Manufacture of cold rolled steel plate excellent in workability

Also Published As

Publication number Publication date
JPS5852440A (en) 1983-03-28

Similar Documents

Publication Publication Date Title
JPS60174852A (en) Cold rolled steel sheet having composite structure and superior deep drawability
JPS6045689B2 (en) Method for manufacturing cold rolled steel sheet with excellent press formability
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
JPH0158255B2 (en)
JPS6116323B2 (en)
JPS5857492B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for automobiles
JPS6111295B2 (en)
JPS6199631A (en) Manufacture of thin steel sheet for deep drawing
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPS6145687B2 (en)
JPH0387320A (en) Manufacture of ultra high-strength cold rolled steel sheet having excellent baking hardenability in paint
JPS6046165B2 (en) A method for producing high-strength cold-rolled steel sheets with high bake hardenability, excellent aging resistance, and press workability by continuous annealing.
JPS5822333A (en) Production of high-strength cold-rolled steel sheet excellent in press-formability and baking-hardenability
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JP2807994B2 (en) Manufacturing method of cold rolled steel sheet for deep printing
JPS61246327A (en) Manufacture of cold rolled steel sheet for extremely deep drawing
JPS6044377B2 (en) Method for producing soft cold-rolled steel sheets for drawing with excellent aging resistance through continuous annealing
JPH0137454B2 (en)
JPS62139823A (en) Production of cold rolled steel sheet for deep drawing
JPH0320407A (en) Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability
JPH01225727A (en) Production of extremely low carbon cold-rolled steel sheet
JPS6114217B2 (en)
JPS60106920A (en) Production of thin steel sheet for deep drawing
JPS6111290B2 (en)