JPH0452229A - Highly efficient production of cold rolled steel sheet extremely excellent in workability - Google Patents

Highly efficient production of cold rolled steel sheet extremely excellent in workability

Info

Publication number
JPH0452229A
JPH0452229A JP15858690A JP15858690A JPH0452229A JP H0452229 A JPH0452229 A JP H0452229A JP 15858690 A JP15858690 A JP 15858690A JP 15858690 A JP15858690 A JP 15858690A JP H0452229 A JPH0452229 A JP H0452229A
Authority
JP
Japan
Prior art keywords
rolling
cold
rolled
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15858690A
Other languages
Japanese (ja)
Other versions
JPH07103423B2 (en
Inventor
Kazuo Koyama
一夫 小山
Atsushi Itami
淳 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2158586A priority Critical patent/JPH07103423B2/en
Publication of JPH0452229A publication Critical patent/JPH0452229A/en
Publication of JPH07103423B2 publication Critical patent/JPH07103423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a cold rolled steel sheet excellent in deep drawability by subjecting a slab of a Ti-containing dead-soft carbon steel minimal in impurities to hot finish rolling under specific conditions and then applying cold rolling and continuous annealing to the resulting steel plate. CONSTITUTION:At the time of subjecting a steel having a composition consisting of, by mass, <0.00040% C, <0.0040% N, 0.05-0.4% Mn, <0.015% S, 0.005-0.100$ acid soluble Al, 0.04-0.085% Ti, 0.0001-0.0010% B, and the balance iron with inevitable impurity elements to heating up to <=1200 deg.C and to hot rolling, finish rolling is completed at 880-950 deg.C while regulating rough finishing thickness and effective strain epsiloneff represented by equation to >=45mm and <=45%, respectively, and then, cooling is started within 1s and exerted down to <=830 deg.C at >=20 deg.C/s average cooling rate, and successively, the hot rolled plate is coiled at 680-800 deg.C, cold-rolled at 75-90% cold rolling rate, and continuously annealed at 780-870 deg.C, by which the cold rolled steel sheet extremely excellent in workability can be produced with high efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車外板などで特に超深絞り性が必要とさ
れる用途に適した極めて優れた深絞り加工性を有する極
低炭素冷延鋼板を効率的に製造する方法に係わる。
Detailed Description of the Invention (Industrial Field of Application) The present invention is an ultra-low carbon cooling material with extremely excellent deep drawability, which is suitable for applications where ultra-deep drawability is particularly required, such as in automobile outer panels. It concerns a method for efficiently manufacturing rolled steel plates.

(従来の技術) 冷延鋼板の規定であるJIS G 3141SP CE
級を超える超深絞り用冷延鋼板として、極低炭素TI添
加冷延鋼板が発明され(特公昭44−1s086号公報
)、冷延鋼板の用途が飛躍的に広がった。それとともに
この鋼の改善・改良がその後大いに進められた。現在で
は、TI、Nbの複合添加による加工性特に深絞り性の
一層の向上やB添加による耐二次加工性向上等が図られ
ている。これらに対する先行技術としては、例えば特開
昭59−140333号、特開昭81−113724号
、特開昭61−113725号公報等がある。
(Prior art) JIS G 3141SP CE, which is the regulation for cold rolled steel sheets
As a cold-rolled steel sheet for ultra-deep drawing that exceeds the grade, an ultra-low carbon TI-added cold-rolled steel sheet was invented (Japanese Patent Publication No. 44-1s086), and the uses of cold-rolled steel sheets have expanded dramatically. At the same time, improvements and improvements to this steel have since progressed greatly. At present, efforts are being made to further improve workability, particularly deep drawability, by adding a combination of TI and Nb, and to improve secondary workability by adding B. As prior art for these, there are, for example, JP-A-59-140333, JP-A-81-113724, and JP-A-61-113725.

(発明が解決しようとする課題) この極低炭素TI添加鋼の冷延・焼鈍後の特性は、高純
化を主とした成分とともに熱延条件の影響が極めて大き
く、そのためその変動による材質のバラツキが生じ、そ
れが歩留まり落ちとなり経済性を損なうという、自動車
用鋼板のような大量消費材にとっては、致命的な欠点が
あった。これはそもそも製鋼で真空脱ガス等が必要で費
用を要する該鋼にあっては極めて大きな問題点であった
(Problem to be solved by the invention) The properties of this ultra-low carbon TI-added steel after cold rolling and annealing are extremely influenced by the hot rolling conditions as well as the components that mainly improve the purity. This is a fatal drawback for mass-consumable products such as steel sheets for automobiles, which causes a decrease in yield and impairs economic efficiency. This is an extremely serious problem in steel production, which requires vacuum degassing and is expensive.

これら極低炭素冷延鋼板はそもそもかなり加工性に優れ
たものであるが、本発明ではそのうちのランクフォード
値(以下?値という)で示される深絞り性がより一層向
上した超深絞り性を付与させるとともに、つぎに示す工
業上の安定性を増す製造方法を提供するものである。
These ultra-low carbon cold-rolled steel sheets have excellent workability to begin with, but in the present invention, we have developed ultra-deep drawability that has further improved deep drawability as indicated by the Lankford value (hereinafter referred to as ? value). The purpose of the present invention is to provide a manufacturing method that increases industrial stability as described below.

(課題を解決するための手段) 本発明はこのような課題に対して、特定成分の高純度鋼
を特定の熱延、特に仕上圧延条件〜巻取までを従来にな
い条件をとることで解決しようとするもので、その骨子
とするところは、IaSS%で、C二0.0040%以
下、N : 0.0040%以下、M口:0.05〜0
.4%、S :0.015%以下、酸可溶A、9(以下
so1.AI ):0.005〜0.100%、Tf:
0.04〜0.085%、B : 0.0001〜0.
0010%を含有し、残部不可避的不純物元素からなる
鋼を、1200℃以下に加熱後熱延するにあたり、粗仕
上厚みを45++m以上とし、次式で示される有効ひず
みをεeffを45%以上とり、880℃以上の温度で
仕上圧延を終了した後、1s以内に冷却を開始し20℃
/S以上の平均冷却速度で830℃以下まで冷却を行い
、続いて680〜800℃の温度で巻取り、引続き75
〜90%の冷延率で冷延を行い、780〜870℃の温
度で連続焼鈍を行うことを特徴とする加工性の極めて優
れた冷延鋼板の高効率な製造方法である。
(Means for Solving the Problems) The present invention solves these problems by hot-rolling high-purity steel with a specific composition, and in particular, by applying unprecedented conditions from finish rolling to winding. The main points are IaSS%, C2: 0.0040% or less, N: 0.0040% or less, M: 0.05 to 0.
.. 4%, S: 0.015% or less, acid soluble A, 9 (hereinafter so1.AI): 0.005-0.100%, Tf:
0.04-0.085%, B: 0.0001-0.
When hot-rolling a steel containing 0.0010% and the remainder consisting of unavoidable impurity elements after heating to 1200 ° C. or less, the rough finishing thickness is set to 45++ m or more, and the effective strain expressed by the following formula is set to εeff of 45% or more, After finish rolling at a temperature of 880°C or higher, cooling is started within 1 s and the temperature is 20°C.
Cooling is performed to 830°C or less at an average cooling rate of /S or more, followed by winding at a temperature of 680 to 800°C, and then 75°C.
This is a highly efficient manufacturing method for cold-rolled steel sheets with extremely excellent workability, characterized by cold rolling at a cold rolling rate of ~90% and continuous annealing at a temperature of 780-870°C.

ユニに、 ε8「「−最終パス圧下率(%)+172最終1段前パ
ス圧下率(%)+1ハ最終2段前パス圧下率(%) とする。
For Uni, ε8 "- Final pass rolling reduction rate (%) + 172 Pass rolling reduction rate (%) before the final 1st stage + 1 C Pass rolling reduction rate (%) before the final 2nd stage.

すなわち、成分的には通常使用されるNbは使用せずT
Iを炭素および窒素の化学量論的等量よりかなり多めに
添加する。これは固溶T1をある量確保しようとするも
のである。さらに、熱延にあたり、比較的低温で加熱し
た後粗仕上厚を厚くすることで、全仕上圧下率を大きく
し、仕上後段の最終に近いほど圧延の効果が発揮される
ような特定の後段圧下をとる熱延を行った後、その効果
をなるべく凍結すべく速やかに冷却を開始し、かつ高温
で巻取る。
That is, in terms of components, Nb, which is normally used, is not used and T
I is added in significantly more than the stoichiometric equivalents of carbon and nitrogen. This is intended to ensure a certain amount of solid solution T1. Furthermore, in hot rolling, by increasing the rough finishing thickness after heating at a relatively low temperature, the total finishing reduction ratio can be increased, and a specific later stage rolling where the effect of rolling is exerted closer to the end of the latter stage of finishing can be achieved. After hot rolling for a certain amount of time, cooling is immediately started to freeze the effect as much as possible, and winding is performed at a high temperature.

この効果の機構はいまだ定かではないが、このような高
純度鋼の前処理として熱延板に期待される要件は、細粒
でかつ不純物の極度に少ないマトリックスの提供にある
と考えられる。
Although the mechanism of this effect is still unclear, it is thought that the requirements expected of hot-rolled sheets as a pretreatment for such high-purity steels are the provision of a fine-grained matrix with extremely low impurities.

この両者はそもそも相反するもので、また、その制御は
極めて微妙である。しかしながら、全仕上圧下率を大き
くすることで、析出物のひずみ銹起析出が促進されγ中
での析出処理は完全となる。
These two are contradictory to begin with, and their control is extremely delicate. However, by increasing the total finishing reduction rate, the strain-induced precipitation of precipitates is promoted and the precipitation treatment in γ is completed.

そして仕上終段域を高圧下とすることで、安定して微細
な再結晶γ粒が得られる。
By placing the final finishing stage under high pressure, fine recrystallized γ grains can be stably obtained.

そして、γ粒の成長、γ/α変態、α粒の成長を通じて
形成される熱延板結晶粒を、圧延後部急冷することによ
り、圧延ままの状態で凍結する。
Then, the hot-rolled sheet crystal grains formed through the growth of γ grains, γ/α transformation, and growth of α grains are frozen in the as-rolled state by rapidly cooling after rolling.

最後にもはやα粒の成長がほとんどなくなる温度域で巻
取り、α中の溶解度の低いことを利用した析出物の析出
・粗大化の徹底をはかる。
Finally, coiling is carried out in a temperature range where almost no growth of α grains occurs, and thorough precipitation and coarsening of precipitates is carried out by taking advantage of the low solubility in α.

析出物の粗大化はこのようにγ中およびα中の両方で行
い、熱延細粒化を仕上終段圧下を高め飽和する領域で行
うことで、熱延板での状態を安定して好ましい状態にす
る。
In this way, the coarsening of the precipitates is carried out both during γ and α, and the hot-rolling refinement is carried out in the region where the finishing stage final reduction is increased and saturated, thereby stabilizing the condition of the hot-rolled sheet. state.

(作  用) つぎに各要件の作用および数値限定理由について述べる
(Effects) Next, we will discuss the effects of each requirement and the reasons for numerical limitations.

C,N:C,Nは侵入型固溶元素で集合組織形成に有害
とされる。したがって通常の極低炭素鋼よりもさらに極
力低下させる必要がある。そのため各々0.0040%
以下とする。好ましくはc : o、o。
C, N: C and N are interstitial solid solution elements that are considered harmful to texture formation. Therefore, it is necessary to reduce the carbon content as much as possible compared to ordinary ultra-low carbon steel. Therefore, each is 0.0040%
The following shall apply. Preferably c: o, o.

25%、N : 0.0020%である。25%, N: 0.0020%.

Mn:fl換型固溶体元素であり、多すぎると鋼を硬化
して延性を害する。しかし、鋼中のSとMnSを形成し
Sによる熱間脆性を避ける役割もあり、そのため0.0
5〜0.4%とする。低Mnとしたほうが延性、j値と
もに向上させるので0.15%以下とすることが好まし
い。
Mn: is a fl conversion type solid solution element, and if it is present too much, it hardens the steel and impairs its ductility. However, it also has the role of forming S and MnS in the steel and preventing hot embrittlement due to S, so 0.0
5 to 0.4%. Since lower Mn improves both ductility and j value, it is preferably 0.15% or less.

S:MnSとなり、有害介在物となるため極力低減した
方がよい。そのため0.015%以下とした。
S: Becomes MnS and becomes a harmful inclusion, so it is better to reduce it as much as possible. Therefore, the content was set at 0.015% or less.

好ましくは、Mnを0.15%以下、Sを0.008%
以下とすることである。
Preferably, Mn is 0.15% or less and S is 0.008%.
The following shall be done.

5olZ、AI + AIは脱酸に必要でそのため鋼中
に0.005〜0.10%残存する。下限値未満では十
分な脱酸ができず、また上限値超では介在物が増加し鋼
の延性を害する。
5olZ, AI + AI is necessary for deoxidation and therefore remains in the steel in an amount of 0.005 to 0.10%. If it is less than the lower limit, sufficient deoxidation cannot be achieved, and if it exceeds the upper limit, inclusions increase and impair the ductility of the steel.

Tj: Tiは0,04〜0.085%必要である。ま
ずTiはNをTiNの形に固定し固溶Nの悪影響をさけ
る。また、大部分のCもTiCの形で固定する。さらに
固溶Tiは熱延板の再結晶に影響し、これを細粒化する
作用を有しそのため本発明では、この固溶Tiを確保す
るために多量にTiを添加する。0.04%未満の添加
ではこれらの効果がない。
Tj: Ti is required in an amount of 0.04 to 0.085%. First, Ti fixes N in the form of TiN and avoids the adverse effects of solid solution N. Furthermore, most of the C is also fixed in the form of TiC. Furthermore, solid solution Ti affects the recrystallization of the hot rolled sheet and has the effect of making the grains finer. Therefore, in the present invention, a large amount of Ti is added in order to ensure this solid solution Ti. Addition of less than 0.04% does not have these effects.

しかし、0.085%を超える添加では上記作用以上に
不純物の悪影響が出る。そのため加工性が劣化する。
However, if the amount exceeds 0.085%, the adverse effects of impurities will be greater than the above-mentioned effects. As a result, workability deteriorates.

BIBは二次加工性向上のため添加する。木調のような
高純極低炭素鋼にあっては粒界強化元素である固溶炭素
がなくそのため粒界強度が低い。
BIB is added to improve secondary processability. High-purity ultra-low carbon steel such as wood-like steel does not have solid solution carbon, which is a grain boundary strengthening element, and therefore has low grain boundary strength.

これは本発明鋼主加工形式である超深絞り加工を受けた
後、口広げのような二次加工を行った場合に縦割れの形
態で発生する。Bはこの二次加工脆性を防止するために
添加する。1pp−未満ではその効果がなく、1Opp
s+を超える添加では固溶Bによる悪影響が出て、F値
を劣化させる。
This occurs in the form of vertical cracking when secondary processing such as mouth widening is performed after ultra-deep drawing, which is the main processing method for the steel of the present invention. B is added to prevent this secondary processing brittleness. Less than 1pp- has no effect, and 1Opp
If the addition exceeds s+, the solid solution B will have an adverse effect, deteriorating the F value.

熱延加熱温度: 1200℃以下とする。この温度以上
で加熱すると圧延前γ粒が大きくなりすぎ、本誌にした
がった熱延後でも熱延板粒が混粒となり、所定の組織な
らず、さらにまた種々の析出をむやみに溶解させること
で、後の熱延工程での析出・粗大化処理を困難なものに
する。この意味からは、熱延加熱温度は1100℃以下
とすることが好ましい。
Hot rolling heating temperature: 1200°C or less. If heated above this temperature, the pre-rolling γ grains will become too large, and even after hot rolling according to this publication, the hot rolled sheet grains will become mixed grains, the desired structure will not be achieved, and various precipitates will be dissolved unnecessarily. , which makes precipitation and coarsening treatment difficult in the subsequent hot rolling process. From this point of view, the hot rolling heating temperature is preferably 1100°C or less.

粗仕上厚:45mm以上の厚みとする。これにより仕上
圧延という比較的低い温度域での圧延率を高め、種々の
析出物のひずみ誘起変態を促進させ粗大化させる。通常
の40m++■程度ではこの効果は完全ではなく、ひい
ては材質劣化やバラツキをもたらす。好ましくは551
111以上とすべきである。
Rough finish thickness: 45 mm or more. This increases the rolling rate in the relatively low temperature range of finish rolling, promotes strain-induced transformation of various precipitates, and coarsens them. This effect is not perfect at the normal distance of about 40 m++■, which may lead to material deterioration and variations. Preferably 551
It should be 111 or more.

εeff ’木調では、上記の効果のため、その粒界お
よび粒内は不純物の少ない、清浄化されたものである。
εeff' Due to the above-mentioned effects, the grain boundaries and interior of the grains are clean and have few impurities.

したがって通常の圧延では細粒の結晶粒が得られない。Therefore, fine grains cannot be obtained by normal rolling.

これを克服するのが特定の仕上圧延条件で、特に仕上後
段の3パスの圧延率は非常であることを知見し、この後
段圧下率の効果を工業的に示す指標として種々検討した
結果、次式で示されるε8「「を導出するに至った。す
なわち、εef’f’−最終パス圧下率(%)+1/2
最終1段前パス圧下率(X) + 1/4最終2段前パ
ス圧下率(%) である。
We found that specific finishing rolling conditions can overcome this problem, and in particular the rolling rate in the 3 passes in the latter stage of finishing is extremely high.As a result of various studies as an industrial indicator of the effect of the rolling reduction in the latter stage, we found the following: We have derived ε8" shown by the formula. That is, εef'f' - Final pass rolling reduction rate (%) + 1/2
The following formula is given: Pass rolling reduction ratio before the final stage (X) + 1/4 Pass rolling reduction ratio before the final stage two stages (%).

第1図は仕上圧延終了温度とε82.の関係において、
冷延・焼鈍後の1値をプロットした図である。
Figure 1 shows finish rolling finish temperature and ε82. In the relationship,
FIG. 3 is a diagram plotting one value after cold rolling and annealing.

成分は、C:15〜23ppm 、N : 12〜20
ppm 。
Ingredients are C: 15-23 ppm, N: 12-20
ppm.

M n + 0 、08〜0 、14%、S : 0.
003〜0.007%、5oi1. A l  :0.
02〜0.035%、T i : 0.043〜0.0
83%、B:0.0003〜0.0006%で、熱延加
熱温度: 1100〜1130℃、粗仕上厚:55〜θ
0朋、仕上終了後0.3〜0.4S後に平均30〜40
℃/Sで約800〜780℃まで急冷し730〜760
℃で巻取った。続いて80%冷延後850℃で連続焼鈍
を行い、0,3%の調圧を施して試験に供した。
Mn+0, 08-0, 14%, S: 0.
003-0.007%, 5oi1. Al: 0.
02-0.035%, Ti: 0.043-0.0
83%, B: 0.0003-0.0006%, hot rolling heating temperature: 1100-1130°C, rough finishing thickness: 55-θ
0, average 30-40 0.3-0.4S after finishing
Rapid cooling at ℃/S to about 800-780℃ and 730-760℃
It was rolled up at ℃. Subsequently, after 80% cold rolling, continuous annealing was performed at 850° C., pressure was adjusted to 0.3%, and the test was performed.

図から明らかなようにεefTが45%以上で仕上圧延
終了温度の広い範囲で安定してj値が2.2以上程度の
極めて高い値を示す。より安定して高1値を示すにはε
efrは60%以上が好ましい。
As is clear from the figure, when εefT is 45% or more, the j value is stable over a wide range of finish rolling completion temperatures and exhibits an extremely high value of about 2.2 or more. To show a high 1 value more stably, ε
Efr is preferably 60% or more.

仕上圧延終了温度=950〜880℃とする。これを超
える温度では第1図かられかるように、いかにε84.
を高めようと安定して高加工特性が得られない。また、
880℃を下回る温度では一部α域圧延となる場合があ
り、材質が出ないばかりでなく、肌荒れ等の欠陥も発生
する。
Finish rolling end temperature is set at 950 to 880°C. As can be seen from Figure 1, at temperatures exceeding this, ε84.
Even if you try to increase the processability, you cannot stably obtain high processing characteristics. Also,
At temperatures below 880°C, some rolling may occur in the α region, which not only results in poor material quality but also causes defects such as rough skin.

圧延後の冷却条件:上述のようにして得られた熱延の組
織を、特に結晶粒度を粗大化させないため、15以内に
冷却を開始し、平均20℃/S以上で830℃以下まで
冷却する。この条件をはずすと結晶が粗大化し、一定の
材質が得られない。この場合特に冷却開始までの時間が
重要で1s以内、好ましくは0.5s以内とすべきであ
る。冷却速度が20℃/S未満では冷却中に粒の粗大化
が生じる。
Cooling conditions after rolling: In order not to coarsen the grain size of the hot-rolled structure obtained as described above, cooling is started within 15 minutes and cooled to 830°C or less at an average rate of 20°C/S or more. . If this condition is not met, the crystals will become coarse and a certain quality of material cannot be obtained. In this case, the time required to start cooling is particularly important and should be within 1 s, preferably within 0.5 s. If the cooling rate is less than 20° C./S, grains will become coarser during cooling.

830℃以下ではもはや結晶粒成長は起こりにくいので
この冷却の終点は830℃とする。
Since crystal grain growth is no longer likely to occur below 830°C, the end point of this cooling is set at 830°C.

巻取温度:巻取後の保温効果で析出の促進および析出物
の粗大化を図る。680℃未満ではこの効果が少なく、
800℃を超えると圧延組織の凍結が十分でなく結晶粒
の粗大化が起こる可能性があるので、巻取温度は680
〜800℃とした。析出粗大化を十分に行うには巻取温
度は720℃以上とすることが好ましい。
Winding temperature: The heat retention effect after winding promotes precipitation and coarsens the precipitates. Below 680℃, this effect is small;
If the temperature exceeds 800°C, the rolled structure may not freeze sufficiently and the crystal grains may become coarse, so the coiling temperature should be set at 680°C.
The temperature was 800°C. In order to sufficiently coarsen the precipitation, the winding temperature is preferably 720° C. or higher.

冷延率:冷延率は高?値とするため75%以上必要であ
る。好ましくは78%以上である。一方、本鋼において
は圧下率は93%程度まで増してもFは向上するところ
であるが、工業的に困難な領域であるので上限を90%
とした。
Cold rolling rate: Is the cold rolling rate high? 75% or more is required to obtain the desired value. Preferably it is 78% or more. On the other hand, in this steel, even if the reduction rate is increased to about 93%, the F value will improve, but since this is an industrially difficult area, the upper limit should be set at 90%.
And so.

焼鈍温度二連続焼鈍の焼鈍温度は十分軟質で高f値集合
組織とするため780℃は必要である。
Annealing temperature The annealing temperature for two successive annealing is required to be 780° C. in order to obtain a sufficiently soft texture with a high f-value.

方、上限は870℃とする。これを超える高温での焼鈍
では、本鋼のように粒成長しやすい鋼では、製品として
の結晶粒が大きくなり過ぎてプレス成形後に肌荒れを生
じる。焼鈍温度としては、連続焼鈍では比較的高い83
0℃以上の高温焼鈍が好ましい。
On the other hand, the upper limit is 870°C. When annealing at a higher temperature than this, in a steel that tends to grow grains like this steel, the crystal grains in the product become too large, resulting in rough skin after press forming. The annealing temperature is relatively high for continuous annealing.83
High temperature annealing of 0° C. or higher is preferred.

以上本発明の構成要件の作用について述べたが、本発明
の鋼の溶製は通常転炉で行いRH等の真空脱ガスにて極
低炭素とする。そして通常連続鋳造にて鋼片とされる。
Although the effects of the constituent elements of the present invention have been described above, the steel of the present invention is usually melted in a converter and is made to have extremely low carbon by vacuum degassing such as RH. Then, it is usually made into steel billets by continuous casting.

熱延は圧延5台以上のタンデム圧延機で仕上圧延される
。全仕上圧下率を本発明にしたがって高め、かつ仕上終
了温度を本発明にしたがって守るために、仕上圧延前に
所定の温度となるようにデイレ−を行ってもよい。
The hot rolling is finish rolled using a tandem rolling mill with five or more rolling machines. In order to increase the total finishing reduction rate according to the present invention and to maintain the finish finishing temperature according to the present invention, a delay may be carried out to reach a predetermined temperature before finishing rolling.

熱延後高温巻取を行うが、熱延フィル両端部は急冷され
るためこれを補う意味で端部がさらに高温となるような
U字状の巻取温度パターンをとることは好ましい。熱延
コイルは酸洗後冷延され、続いて連続焼鈍される。連続
焼鈍の均熱温度については上述のごとくであるが、保持
時間については通常とられる40s −1s0sでよい
After hot rolling, high-temperature winding is performed, but since both ends of the hot-rolled film are rapidly cooled, it is preferable to take a U-shaped winding temperature pattern in which the ends become even hotter to compensate for this. The hot-rolled coil is pickled, cold-rolled, and then continuously annealed. The soaking temperature for continuous annealing is as described above, but the holding time may be the usual 40s - 1s0s.

焼鈍後の冷却条件についても特に規定するところではな
く、また通常過時効帯が設けられているが、その温度条
件についても特に規定するところではない。焼鈍後の調
圧は形状矯正のためのやむを得ない範囲にとどめるべき
である。材質からは調圧をしないことが好ましいが、形
状矯正の点を考慮して0.2〜0,8%、好ましくは0
.2〜0.5%が適正調圧率である。
There are no particular restrictions on the cooling conditions after annealing, and although an overaging zone is usually provided, there are no particular restrictions on the temperature conditions. Pressure adjustment after annealing should be kept within an unavoidable range for shape correction. Considering the material, it is preferable not to adjust the pressure, but in consideration of shape correction, the pressure should be adjusted by 0.2 to 0.8%, preferably 0.
.. An appropriate pressure regulation rate is 2 to 0.5%.

(実 施 例) 第1表に示す成分の鋼を転炉にて溶製し連続鋳造にてス
ラブとした。このさい、RH真空脱ガスを用いた。
(Example) Steel having the composition shown in Table 1 was melted in a converter and made into a slab by continuous casting. At this time, RH vacuum degassing was used.

続いて第2表に示す熱延および冷延・連続焼鈍条件にて
処理を行い、各コイルの代表部分を材質試験に供した。
Subsequently, the coils were processed under the hot rolling, cold rolling and continuous annealing conditions shown in Table 2, and a representative portion of each coil was subjected to a material test.

引張試験はJIS Z 2201,5号試験片を用い、
同Z224L記載の方法にしたがって行った。
The tensile test used JIS Z 2201, No. 5 test piece,
This was carried out according to the method described in the same Z224L.

また、耐二次加工性は、まず、−次加工として50璽■
平底ポンチで絞り比2.2の深絞り加工を行い、続いて
この口を広げる加工を種々温度をかえて行い、脆性−延
性破壊の遷移温度を求めた。
In addition, the secondary processing resistance is as follows:
Deep drawing with a drawing ratio of 2.2 was performed using a flat-bottomed punch, followed by widening at various temperatures to determine the brittle-ductile fracture transition temperature.

第3表にコイル長手中心部位の材質試験結果を示す。Table 3 shows the material test results at the longitudinal center of the coil.

木表においてnとは加工硬化指数で、10%および20
%ひずみの応力から0乗則にのっとったとして計算した
。またr aVeはFで面内平均温度ランクフォード値
で、r45は圧延方向に対し45°の方向のランクフォ
ード値である。
On the wood surface, n is the work hardening index, 10% and 20
It was calculated based on the stress of % strain and according to the 0th power law. Further, raVe is F, which is the Lankford value of the in-plane average temperature, and r45 is the Lankford value in the direction of 45° with respect to the rolling direction.

本発明にしたがった処理kl、  7. 9.13.1
4および15の鋼は55%以上の伸び、0,27以上の
n値と極めて高い延性を示すとともに、r≧2.45゜
’45≧2.15というこれまた極めて高い深絞り性を
示すことがわかる。しかも耐二次加工性も十分低い遷移
温度である。
Treatment kl according to the invention, 7. 9.13.1
Steels No. 4 and 15 exhibit extremely high ductility with an elongation of 55% or more and an n value of 0.27 or more, as well as extremely high deep drawability of r≧2.45゜'45≧2.15. I understand. Furthermore, the transition temperature is sufficiently low for secondary processing resistance.

これに対し、成分、熱延条件あるいは冷延・連続焼鈍条
件が本発明条件と異なるその他の処理磁の鋼では、木調
の目的とする高い特性は得られていない。
On the other hand, other treated magnetic steels whose composition, hot rolling conditions, or cold rolling/continuous annealing conditions are different from those of the present invention do not have the high properties desired for wood-like appearance.

また、第2図は、第2表、処理No、14(本発明条件
)および同表処理No、1B(比較条件)のコイル長手
方向材質分布を示す。前者において仕上終了温度は、8
95〜940℃、また巻取温度はコイル端部で770〜
780℃、それ以外での部位で740〜755℃であっ
た。また後者においてはそれぞれ885〜930℃、7
60〜785℃および745〜760℃であった。
Further, FIG. 2 shows the material distribution in the longitudinal direction of the coil in Table 2, treatment No. 14 (invention conditions) and treatment No. 1B (comparison condition) in the same table. In the former, the finishing temperature is 8
95-940℃, and the winding temperature is 770-940℃ at the coil end.
It was 780°C, and 740-755°C at other parts. In the latter case, 885 to 930℃ and 7
The temperatures were 60-785°C and 745-760°C.

図から明らかなように、本発明にしたがった嵐14のコ
イルでは、全長にわたり安定して高い7と伸びが得られ
ているのに対し、比較コイルではかなり高い水準にある
ものの材質変動が大きい。
As is clear from the figure, the Arashi 14 coil according to the present invention has a stable high elongation of 7 over the entire length, while the comparative coil has a fairly high level of elongation, but there are large variations in the material.

sof、Al1 (質量割合) Ti    B 0.09 0.11 0.08 0.20 0.07 0.14 0.14 0.08 0.0061 0.0073 0.0039 0.0045 0.0075 o、ooae O,0037 0,0072 0,027 0,033 0,033 0,030 0,029 0,025 0,025 0,031 0,050 o、oe。sof, Al1 (mass ratio) Ti    B 0.09 0.11 0.08 0.20 0.07 0.14 0.14 0.08 0.0061 0.0073 0.0039 0.0045 0.0075 o, ooae O,0037 0,0072 0,027 0,033 0,033 0,030 0,029 0,025 0,025 0,031 0,050 o, oe.

O,052 0,043 0,041 0,014 0,112 0,050 (発明の効果) 本発明鋼は冷延鋼板として用いられてもよいし、連続焼
鈍条件気メツキや電気系複合メツキを施したメツキ鋼板
として用いられてもよい。また、本鋼成分は溶融亜鉛メ
ツキ性あるいはその後のメツキ層の合金化特性を特に阻
害するものではない。
O,052 0,043 0,041 0,014 0,112 0,050 (Effects of the invention) The steel of the present invention may be used as a cold-rolled steel sheet, or may be subjected to continuous annealing condition plating or electrical composite plating. It may also be used as a plated steel plate. Furthermore, the present steel components do not particularly impede the hot-dip galvanizing property or the alloying properties of the subsequent plating layer.

したがって、連続焼鈍条件が満たされる限り、連続焼鈍
溶融亜鉛メツキ鋼板あるいは合金化溶融亜鉛メツキ鋼板
としてもよい。
Therefore, as long as the continuous annealing conditions are satisfied, a continuously annealed hot-dip galvanized steel sheet or an alloyed hot-dip galvanized steel sheet may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、冷延・連続焼鈍後の?値−を、仕上圧延終了
温度および仕上圧延有効ひずみε84.との関係におい
て示した図表、第2図は実施例に用いたコイルの長手方
向の材質分布を示す図表である。
Figure 1 shows the results after cold rolling and continuous annealing. The value - is the finish rolling end temperature and finish rolling effective strain ε84. FIG. 2 is a chart showing the material distribution in the longitudinal direction of the coil used in the example.

Claims (1)

【特許請求の範囲】 mass%で、 C:0.0040%以下、 N:0.0040%以下、 Mn:0.05〜0.4%、 S:0.015%以下、 酸可溶Al:0.005〜0.100%、 Ti:0.04〜0.085%、 B:0.0001〜0.0010%、 残部不可避的不純物元素からなる鋼を、1200℃以下
に加熱後熱延するにあたり、粗仕上厚みを45mm以上
とし、次式で示される有効ひずみε_e_f_fを45
%以上とり、950℃〜880℃以上の温度で仕上圧延
を終了した後、1s以内に冷却を開始し20℃/s以上
の平均冷却速度で830℃以下まで冷却を行い続いて6
80〜800℃の温度で巻取り、引続き75〜90%の
冷延率で冷延を行い、780〜870℃の温度で連続焼
鈍を行うことを特徴とする加工性の極めて優れた冷延鋼
板の高効率な製造方法。 ただし、 ε_e_f_f=最終パス圧下率(%)+1/2最終1
段前パス圧下率(%)+1/4最終2段前パス 圧下率(%)
[Claims] In mass%, C: 0.0040% or less, N: 0.0040% or less, Mn: 0.05 to 0.4%, S: 0.015% or less, acid-soluble Al: Steel consisting of 0.005 to 0.100%, Ti: 0.04 to 0.085%, B: 0.0001 to 0.0010%, and the remainder being unavoidable impurity elements is heated to 1200°C or less and then hot rolled. For this purpose, the rough finishing thickness is set to 45 mm or more, and the effective strain ε_e_f_f shown by the following formula is set to 45 mm.
% or more and finish rolling at a temperature of 950°C to 880°C or more, start cooling within 1 s, cool down to 830°C or less at an average cooling rate of 20°C/s or more, and continue with 6
A cold-rolled steel sheet with extremely excellent workability, characterized by being rolled at a temperature of 80 to 800°C, followed by cold rolling at a cold rolling rate of 75 to 90%, and continuous annealing at a temperature of 780 to 870°C. Highly efficient manufacturing method. However, ε_e_f_f = final pass rolling reduction rate (%) + 1/2 final 1
Pre-stage pass reduction rate (%) + 1/4 final 2-stage pre-pass reduction rate (%)
JP2158586A 1990-06-19 1990-06-19 Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability Expired - Fee Related JPH07103423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158586A JPH07103423B2 (en) 1990-06-19 1990-06-19 Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158586A JPH07103423B2 (en) 1990-06-19 1990-06-19 Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability

Publications (2)

Publication Number Publication Date
JPH0452229A true JPH0452229A (en) 1992-02-20
JPH07103423B2 JPH07103423B2 (en) 1995-11-08

Family

ID=15674930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158586A Expired - Fee Related JPH07103423B2 (en) 1990-06-19 1990-06-19 Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability

Country Status (1)

Country Link
JP (1) JPH07103423B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997664A (en) * 1996-04-01 1999-12-07 Nkk Corporation Method for producing galvanized steel sheet
KR100530057B1 (en) * 2001-11-26 2005-11-22 주식회사 포스코 Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100530059B1 (en) * 2001-11-26 2005-11-22 주식회사 포스코 Method for Manufacturing Cold Rolled Steel Sheet with Superior Drawability, Bake Hardenability and Secondary Working Embrittlement Resistance
US9017492B2 (en) 2003-11-05 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Thin gauge steel sheet excellent in surface conditions, formability, and workability and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276930A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled dead soft steel sheet having good elongation and deep drawability
JPS63100134A (en) * 1986-10-15 1988-05-02 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JPH01191748A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276930A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled dead soft steel sheet having good elongation and deep drawability
JPS63100134A (en) * 1986-10-15 1988-05-02 Kawasaki Steel Corp Manufacture of cold rolled steel sheet for extra deep drawing of thick product
JPH01191748A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997664A (en) * 1996-04-01 1999-12-07 Nkk Corporation Method for producing galvanized steel sheet
KR100530057B1 (en) * 2001-11-26 2005-11-22 주식회사 포스코 Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100530059B1 (en) * 2001-11-26 2005-11-22 주식회사 포스코 Method for Manufacturing Cold Rolled Steel Sheet with Superior Drawability, Bake Hardenability and Secondary Working Embrittlement Resistance
US9017492B2 (en) 2003-11-05 2015-04-28 Nippon Steel & Sumitomo Metal Corporation Thin gauge steel sheet excellent in surface conditions, formability, and workability and method for producing the same

Also Published As

Publication number Publication date
JPH07103423B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPS59197526A (en) Preparation of deep drawing cold rolled steel plate having excellent quality uniformity
JPH07188771A (en) Production of cold rolled steel sheet excellent in formability, having hardenability in coating/baking and small in change of hardenability in coating/baking in width direction
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JPH10152728A (en) Production of cold rolled steel sheet excellent in workability and surface property
JP2718369B2 (en) Steel sheet for galvanizing and method for producing the same
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JPH0394020A (en) Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPH03111519A (en) Production of high strength hot dip galvanized steel sheet having high r-value
JPS61276929A (en) Production of cold rolled dead soft steel sheet having good formability
JPS61157660A (en) Nonageable cold rolled steel sheet for deep drawing and its manufacture
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH08109416A (en) Production of baking-hardened-type cold rolled steel sheet excellent in formability
JPH04365814A (en) Production of cold rolled high strength steel sheet excellent in baking hardenability
JPH06158176A (en) Production of cold rolled steel sheet excellent in press formability
JPH0230719A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH02263932A (en) Manufacture of cold rolled steel sheet for drawing
JPH05239555A (en) Production of cold rolled steel sheet for extra deep drawing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071108

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees