JPS62139258A - Electrode for storage battery - Google Patents

Electrode for storage battery

Info

Publication number
JPS62139258A
JPS62139258A JP60279521A JP27952185A JPS62139258A JP S62139258 A JPS62139258 A JP S62139258A JP 60279521 A JP60279521 A JP 60279521A JP 27952185 A JP27952185 A JP 27952185A JP S62139258 A JPS62139258 A JP S62139258A
Authority
JP
Japan
Prior art keywords
battery
electrode
internal pressure
storage battery
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60279521A
Other languages
Japanese (ja)
Other versions
JPH0690924B2 (en
Inventor
Munehisa Ikoma
宗久 生駒
Hiroshi Kawano
川野 博志
Nobuyuki Yanagihara
伸行 柳原
Yoshio Moriwaki
良夫 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60279521A priority Critical patent/JPH0690924B2/en
Publication of JPS62139258A publication Critical patent/JPS62139258A/en
Publication of JPH0690924B2 publication Critical patent/JPH0690924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an electrode for storage battery in which internal pressure in a battery is not increased even if charge-discharge cycles are increased, high rate discharge performance is improved, and reliability is increased by using a specified hydrogen absorbing alloy as an electrode for storage battery. CONSTITUTION:A hydrogen absorbing alloy indicated in LnNixMnyCuzCoa (Ln is lanthanum alone or a mixture of rare earth metal containing lanthanum, 4.5<=x+y+z+a<=5.5, x>3.5, 0.2<=y<=1.0, 0.2<=z<=1.5, 0.2<=a<1.5) is used as an electrode for storage battery. By using the alloy in which a part of nickel of rare earth-nickel alloy having a CaCu5 type crystal structure is replaced with manganese, copper, and cobalt, a sealed battery in which increase in internal pressure is retarded and high rate discharge performance is improved can be obtained. By adding manganese, steady discharge capacity is obtained over wide temperature range, and by adding copper, high rate discharge performance is increased. In addition, by adding cobalt, increase in internal pressure in the battery is retarded even after charge-discharge cycles are repeated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ蓄電池などの負極に用いる電気化学
的に水素の吸蔵・放出が可能な蓄電池用電極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a storage battery electrode capable of electrochemically absorbing and releasing hydrogen, which is used as a negative electrode of an alkaline storage battery or the like.

従来の技術 従来、この種の二次電池としては鉛蓄電池、ニッケルー
カドミウム蓄電池がよく知られているが、これらの蓄電
池は単位重量または単位体積当シのエネルギー密度が比
較的小さい欠点がある。そこで、電気化学的に多量の水
素を吸蔵・放出が可能2ページ な合金を負極とし、正極にはニッケル酸化物を用いたエ
ネルギー密度の大きいニッケルー水素蓄電池が提案され
ている。ここでの負極には電気化学的に水素の吸蔵・放
出が可能なLaNi5やLaNi4Cu。
2. Description of the Related Art Hitherto, lead-acid batteries and nickel-cadmium storage batteries have been well known as secondary batteries of this type, but these batteries have the drawback of relatively low energy density per unit weight or unit volume. Therefore, a nickel-hydrogen storage battery with high energy density has been proposed in which the negative electrode is a metal alloy that can electrochemically absorb and release a large amount of hydrogen, and the positive electrode is nickel oxide. The negative electrode here is LaNi5 or LaNi4Cu, which can electrochemically absorb and release hydrogen.

LaNi4Co 、 LaNi、、N7゜、3等の水素
吸蔵合金が用いられている。たとえば特公昭59−49
671号公報が知られている。また、特に高温での特性
を改善するためにLaN14.25Mno、−r6(イ
ンターナショナル シンポジウム ハイドライド エナ
ージ ストレージ Int、Symp、Hydride
 EnergyStoiage P、 485 (19
78))が用いられている。
Hydrogen storage alloys such as LaNi4Co, LaNi, N7°, 3, etc. are used. For example, special public relations
No. 671 is known. In addition, to improve the characteristics especially at high temperatures, LaN14.25Mno, -r6 (International Symposium Hydride Energy Storage Int, Symp, Hydride
EnergyStoiage P, 485 (19
78)) is used.

発明が解決しようとする問題点 しかしこのような従来の構成による水素吸蔵合金を負極
とし、正極にニッケル極を用いて密閉電池系を構成した
場合、6時間率(0,26通)程度の充電で、100サ
イクル程度の充放電の繰シ返すと電池内圧が10気圧以
上になるという問題がある。また、”i4.25”0.
75の合金を用いて密閉電池系を構成した場合、電池内
圧は数サイクル3ペー/゛ で1o気圧以上になるという問題がある。さらに、これ
らの合金を用いた場合、1時間率以上の放電率で放電し
た場合、放電容量が非常に低下するという問題があった
。本発明はこのような問題点を解決するもので、負極を
構成する水素吸蔵合金組成を改良することを目的とする
Problems to be Solved by the Invention However, when a sealed battery system is constructed using such a conventional hydrogen storage alloy as a negative electrode and a nickel electrode as a positive electrode, charging at a rate of about 6 hours (0.26 cycles) is possible. However, there is a problem in that when charging and discharging are repeated for about 100 cycles, the internal pressure of the battery becomes 10 atmospheres or more. Also, "i4.25" 0.
When a sealed battery system is constructed using an alloy of No. 75, there is a problem that the internal pressure of the battery becomes 10 atm or more after several cycles of 3 p/s. Furthermore, when these alloys are used, there is a problem in that the discharge capacity is significantly reduced when discharge is performed at a discharge rate of 1 hour or more. The present invention aims to solve these problems and aims to improve the composition of the hydrogen storage alloy that constitutes the negative electrode.

問題点を解決するための手段 この問題点を解決するために、本発明は、LnNixM
nyCuzCo工(ただし、Lnはランタン単独又はラ
ンタンを含む希土類元素の混合物、4.5<X十Y+ 
Z + ct<:5.5t X> 3.5+ 0.2<
Y<1 、o、 0.2<Z<1.5.0.2<d<1
.5 ) テ表わせる水素吸蔵合金を備えた負極とした
ものである。
Means for Solving the Problem In order to solve this problem, the present invention provides LnNixM
nyCuzCo (however, Ln is lanthanum alone or a mixture of rare earth elements containing lanthanum, 4.5<X0Y+
Z + ct<:5.5t X> 3.5+ 0.2<
Y<1, o, 0.2<Z<1.5.0.2<d<1
.. 5) The negative electrode is equipped with a hydrogen-absorbing alloy that exhibits TE.

作  用 このようにCaCu6型結晶構造をもつ希土類−ニッケ
ル系合金のニッケルの一部をマンガン、銅およびコバル
トで置換した組成の合金を用いることによシ、電池内圧
が上昇せず、高率放電特性の優れた密閉電池を得ること
ができる。マンガンの添加によシ、幅広い温度範囲で安
定した放電容量を示し、銅の添加は高率放電特性を向上
させる。さらに、コバルトの添加によシ、充放電サイク
ルを繰シ返しても電池内圧が上昇しない。すなわち、過
充電時に正極から発生する酸素ガス消費能力を低下させ
ない密閉電池を得ることができる。
Function: By using an alloy with a composition in which a part of the nickel in a rare earth-nickel alloy with a CaCu6 type crystal structure is replaced with manganese, copper, and cobalt, the internal pressure of the battery does not increase and high rate discharge is achieved. A sealed battery with excellent characteristics can be obtained. Addition of manganese shows stable discharge capacity over a wide temperature range, and addition of copper improves high rate discharge characteristics. Furthermore, due to the addition of cobalt, the internal pressure of the battery does not increase even after repeated charging and discharging cycles. That is, it is possible to obtain a sealed battery that does not reduce its ability to consume oxygen gas generated from the positive electrode during overcharging.

実施例 以下本発明をその実施例によシ説明する。市販のミソシ
ュメタルMm(希土類元素の混合物、例えばCe 45
 wt%、La30wt%、 Nd 6 wt%。
EXAMPLES The present invention will be explained below with reference to Examples. Commercially available Misos metal Mm (mixture of rare earth elements, e.g. Ce 45
wt%, La30wt%, Nd6wt%.

他の希土類元素20wt%)とLa 、 Ni 、 M
n 、Cu。
other rare earth elements (20 wt%) and La, Ni, M
n, Cu.

COの各試料を所定の組成比に秤量し混合した。Each sample of CO was weighed and mixed to a predetermined composition ratio.

これらの試料をアーク溶解炉に入れて、10〜10”’
torz  まで真空状態にした後、アルゴンガス雰囲
気中でアーク放電し、加熱溶解させた。試料の均質化を
図るために数回反転させてアーク溶解を行い水素吸蔵合
金を得た。さらに、この合金の均質性を良好にするため
に、アルゴンガス雰囲気中にて1000℃で8時間熱処
理を行い、次にこの合金を粗粉砕後、ボールミルで38
μm以下の粉末にし、負極に用いる合金粉末を得た。こ
れ5ペーノ らの合金粉末をポリビニルアルコールの5wt %水溶
液でペースト状にし、発泡ニッケル多孔体に充填し乾燥
した。次に、これらの電極を比重1.30のKOH水溶
液中に46℃で12時間浸漬してアルカリ処理を施し、
水洗、乾燥後、加圧し負極とする。
These samples were placed in an arc melting furnace and melted at 10 to 10"'
After creating a vacuum state with torz, arc discharge was performed in an argon gas atmosphere to heat and melt. In order to homogenize the sample, the sample was inverted several times and arc melted to obtain a hydrogen storage alloy. Furthermore, in order to improve the homogeneity of this alloy, heat treatment was performed at 1000°C for 8 hours in an argon gas atmosphere, and then this alloy was coarsely ground and then milled in a ball mill for 38 hours.
The alloy powder was made into a powder of micrometer or less and used for a negative electrode. This 5-peno alloy powder was made into a paste with a 5 wt % aqueous solution of polyvinyl alcohol, filled into a foamed nickel porous body, and dried. Next, these electrodes were immersed in a KOH aqueous solution with a specific gravity of 1.30 at 46°C for 12 hours to perform alkali treatment.
After washing with water and drying, pressurize it and use it as a negative electrode.

正極には公知の焼結式ニッケル極を用い、セパレータを
介してAAサイズの密閉型蓄電池を構成した。電解液は
比重1.26のKOH水溶液にLiOH・−P内圧は、
電池ケース底部にドリルで1ffの穴をあけ、圧力セン
サーを取シ付けた固定装置に電池を固定し測定した。実
施例で用いた電極の水素吸蔵合金の組成を次表に示す。
A well-known sintered nickel electrode was used as the positive electrode, and an AA-sized sealed storage battery was constructed with a separator interposed therebetween. The electrolyte is a KOH aqueous solution with a specific gravity of 1.26, and the internal pressure of LiOH・-P is
A 1ff hole was drilled in the bottom of the battery case, and the battery was fixed to a fixing device to which a pressure sensor was attached, and measurements were taken. The composition of the hydrogen storage alloy of the electrode used in the example is shown in the following table.

6 ベーン また、充放電サイクル数と電池内圧の関係を調べた結果
を第1図に示す。第1図から明らかなように、従来例の
電極A、B、C,Dを用いた電池の内圧は100〜14
0サイクルの充放電の繰シ返しによシ、電池内圧は10
Kg/d以上になる。
6 Vane Figure 1 also shows the results of investigating the relationship between the number of charge/discharge cycles and battery internal pressure. As is clear from Fig. 1, the internal pressure of the battery using conventional electrodes A, B, C, and D is 100 to 14
After repeated charging and discharging of 0 cycles, the internal pressure of the battery is 10
It becomes more than Kg/d.

また、電極Eを用いた場合、200サイクル程度の充放
電で電池内圧は5K11/dになシ、信頼性を考慮する
と好ましくない。これに対し本実施例で用いた電極F、
G、I、J、に、L、Mで構成した電池は、充放電サイ
クルを200サイクル繰シ返7ベー/ しても電池内圧はほとんど上昇しないことがわかる。第
1図に示したように、コバルトの添加量が多い程、電池
内圧は低いことがわかる。一般に、ニッケル正極は過充
電時に酸素ガスを発生する。
Further, when electrode E is used, the internal pressure of the battery is 5K11/d after about 200 charging/discharging cycles, which is not preferable in terms of reliability. In contrast, the electrode F used in this example,
It can be seen that in a battery composed of G, I, J, L, and M, the internal pressure of the battery hardly increases even after 200 charge/discharge cycles of 7 b/d. As shown in FIG. 1, it can be seen that the larger the amount of cobalt added, the lower the battery internal pressure. Generally, nickel positive electrodes generate oxygen gas when overcharged.

しかしながら、この酸素ガスは次の反応によって負極で
消費されるものと考えられる。すなわち、酸素ガスは水
素を吸蔵した負極表面上で化学的消費反応(MH工+ 
02+MH!、、、+2H20) ト、電気化学的す消
費反応(02+ 2H20−t−4e−→401r 、
 40H−+ MHx+ MHx、−4+4 H2O)
がおこる。コバルトの添加は化学的および電気化学的な
酸素消費反応の速度を早くする効果がある。コバルトの
添加量が原子比で0.1の電極Kを用いた電池の内圧は
、%C,Aの充電率でts、2Kg/dとなる。信頼性
を考慮すると電池内圧はs Kf/ ci以下が好まし
い。したがって、コバルト添加量は原子比で0.2以上
必要である。また、コバルト添加量が原子比で1.6以
上になると単位重量又は単位体積当シの放電容量が低下
し、蓄電池用電極としては好ましくない。
However, it is thought that this oxygen gas is consumed at the negative electrode by the following reaction. In other words, oxygen gas undergoes a chemical consumption reaction (MH process +
02+MH! ,,, +2H20) G, Electrochemical consumption reaction (02+ 2H20-t-4e-→401r,
40H-+ MHx+ MHx, -4+4 H2O)
occurs. The addition of cobalt has the effect of speeding up chemical and electrochemical oxygen-consuming reactions. The internal pressure of a battery using electrode K in which the amount of cobalt added is 0.1 in terms of atomic ratio is ts, 2 Kg/d at a charging rate of %C,A. In consideration of reliability, the battery internal pressure is preferably s Kf/ci or less. Therefore, the amount of cobalt added must be 0.2 or more in terms of atomic ratio. Further, if the amount of cobalt added is 1.6 or more in terms of atomic ratio, the discharge capacity per unit weight or unit volume decreases, which is not preferable as an electrode for a storage battery.

次に、高率放電特性を調べた結果を第2図に示す。なお
、充電は%−AX4,6hr、 、放電終止電圧は1.
ovである。従来例の電極りおよび銅を含まない電極工
を用いて構成した電池を1C気八へ上の放電率で放電し
た場合、0.2G通の放電容量に対する容量比率は、非
常に低下することがわかる。
Next, FIG. 2 shows the results of examining high rate discharge characteristics. The charging time is %-AX4.6hr, and the discharge end voltage is 1.
It is ov. When a battery constructed using conventional electrodes and copper-free electrodes is discharged at a discharge rate above 1C, the capacity ratio to the 0.2G discharge capacity can be significantly reduced. Recognize.

これに対し、銅を含む電極H,Iを用いて構成した電池
の高率放電特性は非常に良好であることがわかる。銅の
添加は合金中の水素の拡散速度を早める結果、高率放電
特性が良好となる。しかしながら、コバルトを含まない
電極Hを用いた電池は、充放電サイクルの繰シ返しによ
シミ池内圧が高くなる。したがって、蓄電池用電極とし
てはコバルトと銅の両元素が共存する必要がある。銅は
、原子比で0.2以下では高率放電特性に効果はなく、
1.5以上では単位重量、単位体積当シの放電容量を低
下させる。したがって、銅の添加は原子比で0.2〜1
.6の範囲が好ましい。
On the other hand, it can be seen that the high rate discharge characteristics of the battery constructed using electrodes H and I containing copper are very good. The addition of copper increases the diffusion rate of hydrogen in the alloy, resulting in better high rate discharge characteristics. However, in a battery using an electrode H that does not contain cobalt, the internal pressure of the stain pond increases due to repeated charging and discharging cycles. Therefore, it is necessary for the storage battery electrode to contain both cobalt and copper. Copper has no effect on high rate discharge characteristics when the atomic ratio is less than 0.2,
When it is 1.5 or more, the discharge capacity per unit weight and unit volume decreases. Therefore, the addition of copper is 0.2 to 1 in atomic ratio.
.. A range of 6 is preferred.

また、Ni の添加量が原子比で3.5以下および庵の
添加量が1.0以上になると単位重量、単位体積当シの
放電容量が200 mAh / ?以下に減少し、9ペ
ーノ 電池構成上好ましくない。さらに、凪の添加量が原子比
で0.2以下でも同様に放電容量が低下し、蓄電池用電
極として最適である。したがって、庵は原子比で0.2
〜1.o 、 Niは3.5以上が適切である。
Furthermore, when the amount of Ni added is 3.5 or less in atomic ratio and the amount of Ni added is 1.0 or more, the discharge capacity per unit weight and unit volume becomes 200 mAh/? This is not preferable in view of the structure of the 9-peno battery. Furthermore, even if the amount of Nagi added is 0.2 or less in terms of atomic ratio, the discharge capacity similarly decreases, making it optimal as an electrode for storage batteries. Therefore, the atomic ratio of the hermitage is 0.2
~1. o, Ni is suitably 3.5 or more.

発明の効果 以上のように、本発明は一般式LnNiXMnYcuz
COα(7’cだし、Lnはランタン単独又はランタン
を含む希土類元素の混合物、4.5くX十Y−)−Z−
149,5゜X)3.5.0.2<Yり1.0.0.2
≦Z<1.5、0,2≦σ(1,S)で表せる水素吸蔵
合金を蓄電池用電極として用いることによシ、電池内圧
が充放電サイクル数の繰シ返しによシ上昇せず、高率放
電特性の良好な信頼性の高い工業的価値のめる蓄電池用
電極を提供するものである。
Effects of the Invention As described above, the present invention has the general formula LnNiXMnYcuz
COα (7'c stock, Ln is lanthanum alone or a mixture of rare earth elements containing lanthanum, 4.5 x Y-) -Z-
149,5°X)3.5.0.2<Y1.0.0.2
By using a hydrogen storage alloy expressed as ≦Z<1.5, 0,2≦σ(1,S) as an electrode for a storage battery, the internal pressure of the battery does not increase even after repeated charging/discharging cycles. The present invention provides an electrode for a storage battery that has good high rate discharge characteristics, is highly reliable, and has industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は充放電サイクル数と電池内圧の関係を示す図、
第2図は高率放電特性を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
Figure 1 is a diagram showing the relationship between the number of charge/discharge cycles and battery internal pressure.
FIG. 2 is a diagram showing high rate discharge characteristics. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (1)

【特許請求の範囲】[Claims] 一般式LnNi_XMn_YCu_ZCo_α(ただし
、Lnはランタン単独又はランタンを含む希土類元素の
混合物、4.5≦X+Y+Z+α≦5.5、X>3.5
、0.2≦Y≦1.0、0.2≦Z<1.5、0.2≦
α<1.5)で表わせる水素吸蔵合金を備えた蓄電池用
電極。
General formula LnNi_XMn_YCu_ZCo_α (Ln is lanthanum alone or a mixture of rare earth elements including lanthanum, 4.5≦X+Y+Z+α≦5.5, X>3.5
, 0.2≦Y≦1.0, 0.2≦Z<1.5, 0.2≦
A storage battery electrode comprising a hydrogen storage alloy expressed by α<1.5).
JP60279521A 1985-12-12 1985-12-12 Storage battery electrode Expired - Lifetime JPH0690924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279521A JPH0690924B2 (en) 1985-12-12 1985-12-12 Storage battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279521A JPH0690924B2 (en) 1985-12-12 1985-12-12 Storage battery electrode

Publications (2)

Publication Number Publication Date
JPS62139258A true JPS62139258A (en) 1987-06-22
JPH0690924B2 JPH0690924B2 (en) 1994-11-14

Family

ID=17612183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279521A Expired - Lifetime JPH0690924B2 (en) 1985-12-12 1985-12-12 Storage battery electrode

Country Status (1)

Country Link
JP (1) JPH0690924B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
EP0793284A1 (en) * 1996-03-08 1997-09-03 Matsushita Electric Industrial Co., Ltd. Method of producing a hydrogen storage alloy for alkaline storage battery
EP0817290A1 (en) * 1996-06-28 1998-01-07 Furukawa Denchi Kabushiki Kaisha Hydrogen occlusion alloys for electrical cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250557A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS60250558A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS6191863A (en) * 1984-10-11 1986-05-09 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JPS61168870A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPS61233969A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Electrode for storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250557A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS60250558A (en) * 1984-05-25 1985-12-11 Matsushita Electric Ind Co Ltd Enclosed type alkaline storage battery
JPS6191863A (en) * 1984-10-11 1986-05-09 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JPS61168870A (en) * 1985-01-19 1986-07-30 Sanyo Electric Co Ltd Metal-hydrogen alkaline storage battery
JPS61233969A (en) * 1985-04-10 1986-10-18 Matsushita Electric Ind Co Ltd Electrode for storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512385A (en) * 1994-02-28 1996-04-30 Matsushita Electric Industrial Co., Ltd. Hydrogen storage alloy and nickel-metal hydride storage battery using the same
EP0793284A1 (en) * 1996-03-08 1997-09-03 Matsushita Electric Industrial Co., Ltd. Method of producing a hydrogen storage alloy for alkaline storage battery
US5837317A (en) * 1996-03-08 1998-11-17 Matsushita Electric Industrial Co., Ltd. Method of producing hydrogen storage alloy for battery
EP0817290A1 (en) * 1996-06-28 1998-01-07 Furukawa Denchi Kabushiki Kaisha Hydrogen occlusion alloys for electrical cells

Also Published As

Publication number Publication date
JPH0690924B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
EP0383991B2 (en) Alkaline storage battery using hydrogen absorbing alloy
EP0666606B1 (en) Hydrogen-occlusion alloy for electrode of a sealed battery
US4702978A (en) Electrochemical cell
JP2752970B2 (en) Hydrogen storage electrode
JPS61233969A (en) Electrode for storage battery
JPH01102855A (en) Hydrogen storing alloy electrode
JPS62139258A (en) Electrode for storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP3404758B2 (en) Nickel-metal hydride storage battery and method of manufacturing the same
JP2750793B2 (en) Nickel-metal hydride battery
JPH0562428B2 (en)
JP3057737B2 (en) Sealed alkaline storage battery
JPS60119079A (en) Hydrogen absorption electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JPS63314764A (en) Hydrogen absorbing electrode
JPS60175367A (en) Production of negative electrode for closed storage battery
JPH05174867A (en) Metal-hydrogen alkaline storage battery
JP2679441B2 (en) Nickel-metal hydride battery
JP3482478B2 (en) Nickel-metal hydride storage battery
JP3025770B2 (en) Metal oxide / hydrogen battery
JPS6273564A (en) Metal oxide-hydrogen battery
JPS6280963A (en) Sealed alkaline storage battery
JPS62108458A (en) Nickel-hydrogen secondary cell
JPS63166146A (en) Hydrogen storage electrode
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term