JPS62108458A - Nickel-hydrogen secondary cell - Google Patents

Nickel-hydrogen secondary cell

Info

Publication number
JPS62108458A
JPS62108458A JP60246672A JP24667285A JPS62108458A JP S62108458 A JPS62108458 A JP S62108458A JP 60246672 A JP60246672 A JP 60246672A JP 24667285 A JP24667285 A JP 24667285A JP S62108458 A JPS62108458 A JP S62108458A
Authority
JP
Japan
Prior art keywords
positive electrode
nickel
oxygen
hydrogen storage
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60246672A
Other languages
Japanese (ja)
Other versions
JPH0630251B2 (en
Inventor
Sanehiro Furukawa
古川 修弘
Shuzo Murakami
修三 村上
Takanao Matsumoto
松本 孝直
Seiji Kameoka
亀岡 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60246672A priority Critical patent/JPH0630251B2/en
Publication of JPS62108458A publication Critical patent/JPS62108458A/en
Publication of JPH0630251B2 publication Critical patent/JPH0630251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To suppress droppage of capacity during storage by employing a nickel positive electrode added with specific metal or metal oxide, thereby suppressing production of oxygen at the time of recharging or storing. CONSTITUTION:A negative electrode mainly composed of a hydrogen absorbing alloy and a nickel positive electrode are employed in a cell. More than one kind of lead, silver and cadmium or their oxides are added to the positive electrode. With such composition, production of oxygen gas from the positive electrode at the time of recharging or storing can be suppressed by said metal or oxide. Consequently, droppage of capacity during storage due to reaction of the negative electrode with oxygen can be suppressed, resulting in a lengthened cycle life.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は水素を吸蔵及び放出することのできる水素吸蔵
合金を備えた水素吸蔵電極を負極とし。
DETAILED DESCRIPTION OF THE INVENTION A) Industrial Application Field The present invention uses a hydrogen storage electrode as a negative electrode, which is equipped with a hydrogen storage alloy capable of absorbing and desorbing hydrogen.

ニッケル正極を備えたニッケル−水素二次電池C二関す
る。
It relates to a nickel-hydrogen secondary battery C2 equipped with a nickel positive electrode.

(01従来の技術 従来からよく用いられる二次電池としては鉛電池及びニ
ッケル−カドミウム電池があるが、近年これら電池より
軽量で且つ高容祉となる可能性があるということで、特
に低圧で負極活物質である水素を可逆的に吸蔵及び放出
する水素吸蔵合金を備えた電極を負極に用い、水酸化ニ
ッケルからなる正極活物質を備えた電極を正極に用いた
忙属−水素二次電池が注目されている。そして一般にこ
の種のニッケル−水素二次電池は特公昭58−4682
7号公報(:於いて示されるように、水素吸蔵合金を備
えた水素吸蔵電極と、ニッケル正極との間C:セパレー
タを介して構成され、充電時や保存時(:正極から発生
する酸素ガスは、充電状態の負極、すなわち水素吸蔵電
極中の水素吸蔵合金に吸蔵した水素と反応して消費され
る構成となっている。ところが、酸素は水素吸蔵合金中
の水素と反応して水(=なると共(−1水素吸蔵合金と
直接反応して水素吸蔵合金の組成を化学的に変化させ。
(01 Conventional technology) Lead-acid batteries and nickel-cadmium batteries have traditionally been commonly used secondary batteries, but in recent years there has been a development of batteries that are lighter than these batteries and have the potential to be more hygienic. A hydrogen secondary battery uses an electrode equipped with a hydrogen storage alloy that reversibly absorbs and releases hydrogen, which is an active material, as a negative electrode, and an electrode equipped with a positive electrode active material made of nickel hydroxide as a positive electrode. This type of nickel-metal hydride secondary battery is generally recognized by the Japanese Patent Publication No. 58-4682.
As shown in Publication No. 7 (:), a hydrogen storage electrode equipped with a hydrogen storage alloy and a nickel positive electrode are configured with a separator interposed between them, and during charging and storage (: oxygen gas generated from the positive electrode The oxygen is consumed by reacting with the hydrogen stored in the hydrogen storage alloy in the charged negative electrode, that is, the hydrogen storage electrode.However, oxygen reacts with the hydrogen in the hydrogen storage alloy and produces water (= As it becomes (-1), it directly reacts with the hydrogen storage alloy and chemically changes the composition of the hydrogen storage alloy.

この化学的変化(:よって水素吸蔵合金は水素吸蔵能力
を失い、負極の容量が低下し長期にわたって高容1を維
持することができず、特に保存特性が悪かった。
This chemical change (: Therefore, the hydrogen storage alloy lost its hydrogen storage ability, the capacity of the negative electrode decreased, and the high capacity 1 could not be maintained for a long period of time, resulting in particularly poor storage characteristics.

(ハ)発明が解決しようとする問題点 本発明は水素吸蔵合金を主体とする負極を備えたニッケ
ル−水素二次電池の容量の低下を抑制し保存特性の改良
及びサイクル寿命の向上を図ったものである。
(c) Problems to be solved by the invention The present invention aims to suppress the decrease in capacity of a nickel-hydrogen secondary battery equipped with a negative electrode mainly made of a hydrogen storage alloy, improve storage characteristics, and increase cycle life. It is something.

に)問題点を解決するための手段 本発明のニッケル−水素二次電池は、水素吸蔵合金を主
体とする負極とニッケル正極とを備え。
B) Means for Solving the Problems The nickel-hydrogen secondary battery of the present invention includes a negative electrode mainly made of a hydrogen storage alloy and a nickel positive electrode.

ニッケル正極(:鉛、銀及びカドミウムから選ばれた少
なくとも一種の金属またはその金属酸化物を含有させた
ものである。
Nickel positive electrode (contains at least one metal selected from lead, silver, and cadmium, or a metal oxide thereof).

咋)作 用 ニッケル正極に鉛、銀及びカドミウムから選ばれた少な
くとも一種の金属またはその金属酸化物を含有させると
酵素過電圧が上昇し、充電時及び保存時に於ける正極か
らの酸素ガス発生が抑制でき、負極の水素吸蔵合金が酸
素と反応することによる容量低下を抑えることができる
Effect: When the nickel positive electrode contains at least one metal selected from lead, silver, and cadmium, or its metal oxide, the enzyme overvoltage increases, suppressing the generation of oxygen gas from the positive electrode during charging and storage. This makes it possible to suppress a decrease in capacity due to the reaction of the hydrogen storage alloy of the negative electrode with oxygen.

(へ)実施例 水素吸蔵能力を有するLaN i 5を機械的C:粉砕
して微粉化し、このLILNi、5粉末に小さなせん断
力で粒子が簡単に繊維化し塑性変形するポリテトラフル
オロエチレン粉末を、LaNi5粉末の重量に対して1
〜5%添加して混合機で均一(:混合すると共にポリテ
トラフルオロエチレンを繊維化する。次いでこうして得
られたポリテトラフルオロエチレンが繊維化した混合物
C二本を加えてペースト状とした後、ニッケルメッキを
施したパンチングメタルからなる集電体の両面に貼シ付
けて水素吸蔵電極を得る。
(F) Example LaNi 5 having hydrogen storage capacity was mechanically crushed into a fine powder, and polytetrafluoroethylene powder whose particles easily fiberized and plastically deformed with a small shear force was added to this LILNi 5 powder. 1 per weight of LaNi5 powder
~5% is added and uniformly mixed with a mixer (: while mixing, the polytetrafluoroethylene is made into fibers. Next, two pieces of mixture C, in which the polytetrafluoroethylene obtained in this way is made into fibers, are added and made into a paste. A hydrogen storage electrode is obtained by pasting it on both sides of a current collector made of nickel-plated punched metal.

ま九、水酸化ニッケル粉末97重量部と鉛粉末3重量部
との混合物に同様(ニジてポリテトラフルオロエチレン
及び水を加えてペースト状とした後。
Similarly, a mixture of 97 parts by weight of nickel hydroxide powder and 3 parts by weight of lead powder was prepared in the same manner (after stirring and adding polytetrafluoroethylene and water to form a paste).

ニッケルメッキを施したパンチングメタルからなる集電
体の両面に貼り付けてニッケル正極を得る。
A nickel positive electrode is obtained by pasting it on both sides of a current collector made of nickel-plated punched metal.

次いでこれら水素吸蔵電極とニッケル正極との間C:セ
パレータを介して巻回して渦巻電極体を構成し、この電
極体を電池外装端に挿入した後アルカリ電解液を注入し
封口を行なって本発明のニッケル−水素二次電池(Al
を作製した。
Next, C: is wound between the hydrogen storage electrode and the nickel positive electrode to form a spiral electrode body through a separator, and after inserting this electrode body into the end of the battery exterior, an alkaline electrolyte is injected and sealed. Nickel-hydrogen secondary battery (Al
was created.

また前記電池囚に於いて、ニッケル正極に添加した鉛を
銀C2代えて添加し、その他は同一の電池(B1.同様
にしてカドミウムに代えて電池(C)、酸化鉛(PbO
2)(二代えて電池(D)、酸化銀(Ag。
In addition, in the battery described above, the lead added to the nickel positive electrode was added in place of silver C2, and the rest was the same battery (B1).
2) (replaced with battery (D), silver oxide (Ag.

)11代えて電池(E)、酸化カドミウム(0(to 
) C代えて電池(F)を作製すると共に、比較として
ニッケル正極に前記鉛などの金属または金属酸化物を加
えず、その他は同一の比較電池(Glを作製した。
)11 Replaced with battery (E), cadmium oxide (0 (to
) A battery (F) was produced in place of C. In addition, for comparison, a comparative battery (Gl) was produced which was the same except that no metal such as lead or metal oxide was added to the nickel positive electrode.

これら電池囚乃至1c)lを120mAで16時間充電
し2次いで240mAで電池電圧がtOVになるまで放
電する充放電サイクルを数回行なって初期活性化を完了
した&、120mAで16時曲充電して放置し、放置時
間と残存容量との関係を調べ、初期容量を夫々100と
してこの結果を第1図C二示した。尚、残存容量は一定
期間放置後C2C24Oで放電して測定した。ま九第2
図は前記放置を1ケ月行なった後電池囚乃至(Glを夫
々前記充放電サイクルによって充放電を繰り返し行なっ
て測定したサイクル特性図である。
These batteries were charged at 120 mA for 16 hours, then discharged at 240 mA until the battery voltage reached tOV. Initial activation was completed by completing initial activation. The relationship between the standing time and the remaining capacity was investigated, and the results are shown in FIG. 1C-2 with the initial capacity set at 100. The remaining capacity was measured by discharging with C2C24O after being left for a certain period of time. maku 2nd
The figure is a cycle characteristic diagram obtained by repeatedly charging and discharging the battery G1 through the charge and discharge cycle described above after the battery was left for one month.

これらの図面から明らかなように本発明電池囚乃至IF
Iは比較電池(GIC比べて放置による容量の低下が小
さく抑えられ、−lた放置後のサイクル寿命が長く優れ
たものであることがわがる。
As is clear from these drawings, the present invention battery capacitor to IF
It can be seen that compared to the comparative battery (GIC), the decrease in capacity due to storage was suppressed to a small extent, and the cycle life after storage was long and excellent.

負極(二相いた水素吸蔵電極は、従来から用いられてき
たカドミウム負極とは異なり満充電時には極めて活性で
あり、酸素と接触すると非常に速い速度で反応して酸化
する。そしてこの酸化(=於いて酸素は水素吸蔵合金(
:吸蔵された水素と反応して水になると共に、水素吸蔵
合金と反応して水素吸蔵合金をしばしば組成の異なる他
の物質に変化させる。つまり上記実施例に於いては放置
した闇cLaNi5がLa 205. La (○H)
5や。
Unlike the conventionally used cadmium negative electrode, the negative electrode (a two-phase hydrogen storage electrode) is extremely active when fully charged, and when it comes into contact with oxygen, it reacts and oxidizes at a very rapid rate. Oxygen is absorbed by hydrogen storage alloy (
: Reacts with occluded hydrogen to form water, and also reacts with hydrogen-absorbing alloys to change the hydrogen-absorbing alloys into other substances, often with different compositions. In other words, in the above embodiment, the left cLaNi5 is La205. La (○H)
5.

Ni、Nip、N1(0H)2C変化することにより水
素吸蔵能力を失い、以後充放電を繰り返してもLaN1
5C戻ることはない。比較電池[Glでは正極から充電
時に酸素が発生し易いため、充電復電池内に酸素が多量
に残存し、また放置中にも正極から酸素が発生するので
、放置期曲中に容量の低下が大きく、また負極の水素吸
蔵電極中の水素吸蔵合金の組成変化も多く生じるため、
放置71は充放電サイクルの経過に伴う容量低下も大き
くなっている。これに対して1本発明電池では正極の酸
素過電圧が、鉛、銀、カドミウムやこれら金属の酸化物
によって高められているので、充電時及び放置時に於け
る正極からの酸素ガス発生が抑えられ、容量の低下が小
さく、また水素吸蔵合金が酸素と反応することによる組
成変化で水素吸蔵能力を喪失することも抑えられたため
放置後のサイクル劣化も少なくなっている。
Ni, Nip, N1(0H)2C lose their hydrogen storage ability due to changes, and even after repeated charging and discharging, LaN1
There is no going back to 5C. Comparative battery [Gl] Since oxygen is easily generated from the positive electrode during charging, a large amount of oxygen remains in the rechargeable battery, and oxygen is generated from the positive electrode even when left unused, so the capacity decreases during the storage period. This is large, and there are also many changes in the composition of the hydrogen storage alloy in the negative hydrogen storage electrode.
In the case of leaving the battery 71, the capacity decreases significantly as the charge/discharge cycle progresses. On the other hand, in the battery of the present invention, the oxygen overvoltage of the positive electrode is increased by lead, silver, cadmium, or oxides of these metals, so oxygen gas generation from the positive electrode is suppressed during charging and when left unused. The decrease in capacity is small, and the loss of hydrogen storage capacity due to composition changes caused by the reaction of the hydrogen storage alloy with oxygen is suppressed, so cycle deterioration after storage is also reduced.

尚、上記実施例では非焼結式ニッケル正極を用いて説明
したが、焼結式ニッケル正極を用いる場合には、活物質
保持体となる多孔性金属焼結基板を1例えばニッケル粉
末97部と鉛粉末3部を混合し増粘剤及び水を加えて得
たスラリーを集電体の両面に塗着した後焼結して作製し
、この焼結基板中に゛水酸化ニッケルを含浸して焼結式
ニッケル正極を作製すると、ニッケル正極中に鉛や銀や
カドミウムを添茄することができ、これによυ同様の効
果を得ることができる。また実施例では水素吸蔵合金C
L&Ni5を用いたが他の水素吸蔵合金を用いた場合に
も同様の効果が得ら扛る。
In the above example, a non-sintered nickel positive electrode was used, but when a sintered nickel positive electrode is used, a porous metal sintered substrate serving as an active material holder may be mixed with 1 part, for example, 97 parts of nickel powder. A slurry obtained by mixing 3 parts of lead powder and adding a thickener and water is applied to both sides of a current collector and then sintered to create a current collector.The sintered substrate is impregnated with nickel hydroxide. When a sintered nickel positive electrode is manufactured, lead, silver, or cadmium can be added to the nickel positive electrode, and the same effect as υ can be obtained. In addition, in the example, hydrogen storage alloy C
Although L&Ni5 was used, similar effects could be obtained when other hydrogen storage alloys were used.

(ト)発明の効果 本発明のニッケル−水素二次電池は、水素吸蔵合金を主
体とする負極と、鉛、銀及びカドミウムから選ばれた少
なくとも一種の金属または金属酸化物を含有するニッケ
ル正極とを備えたものであり、前記金属または金属酸化
物によって充電時及び放置時(−於けるニッケル正極か
らの酸素ガス発生を抑制することができ、負極が電池内
で酸素と反応することによる放置時の容量低下の抑制及
びサイクル寿命の向上を行なうことができる。
(G) Effects of the Invention The nickel-hydrogen secondary battery of the present invention has a negative electrode mainly composed of a hydrogen storage alloy, and a nickel positive electrode containing at least one metal or metal oxide selected from lead, silver, and cadmium. The metal or metal oxide can suppress the generation of oxygen gas from the nickel positive electrode during charging and when left unused (-), and the negative electrode can suppress the generation of oxygen gas from the nickel positive electrode when left unused due to reaction with oxygen inside the battery. It is possible to suppress capacity reduction and improve cycle life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電池の放置日数と残存容量の関係を示す保存特
性図、害2図は1ケ月放置後のサイクル特性図である。 囚〜町・・・本発明電池、 (Gl・・・比較電池。
Figure 1 is a storage characteristic diagram showing the relationship between the number of days the battery has been left unused and its remaining capacity, and Figure 2 is a cycle characteristic diagram after it has been left unused for one month. Prisoner ~ town...Battery of the present invention, (Gl... Comparative battery.

Claims (1)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を生体とする負極と、鉛、銀及びカ
ドミウムから選ばれた少なくとも一種の金属または金属
酸化物を含有するニッケル正極とを備えたニッケル−水
素二次電池。
(1) A nickel-hydrogen secondary battery comprising a negative electrode made of a hydrogen storage alloy and a nickel positive electrode containing at least one metal or metal oxide selected from lead, silver, and cadmium.
JP60246672A 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery Expired - Lifetime JPH0630251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60246672A JPH0630251B2 (en) 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60246672A JPH0630251B2 (en) 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JPS62108458A true JPS62108458A (en) 1987-05-19
JPH0630251B2 JPH0630251B2 (en) 1994-04-20

Family

ID=17151896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60246672A Expired - Lifetime JPH0630251B2 (en) 1985-11-01 1985-11-01 Nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JPH0630251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286060A (en) * 1988-09-20 1990-03-27 Sanyo Electric Co Ltd Manufacture of nickel electrode for alkaline battery
US6399247B1 (en) 1999-02-26 2002-06-04 Toshiba Battery Co., Ltd. Nickel-metal hydride secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS5916269A (en) * 1982-07-16 1984-01-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPS5933758A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Sealed nickel cadmium battery
JPS59163754A (en) * 1983-03-08 1984-09-14 Yuasa Battery Co Ltd Pasted positive plate for alkaline storage battery
JPS60212958A (en) * 1984-04-09 1985-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045246A (en) * 1973-08-13 1975-04-23
JPS5916269A (en) * 1982-07-16 1984-01-27 Japan Storage Battery Co Ltd Manufacture of positive plate for alkaline battery
JPS5933758A (en) * 1982-08-19 1984-02-23 Matsushita Electric Ind Co Ltd Sealed nickel cadmium battery
JPS59163754A (en) * 1983-03-08 1984-09-14 Yuasa Battery Co Ltd Pasted positive plate for alkaline storage battery
JPS60212958A (en) * 1984-04-09 1985-10-25 Matsushita Electric Ind Co Ltd Hydrogen absorption electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0286060A (en) * 1988-09-20 1990-03-27 Sanyo Electric Co Ltd Manufacture of nickel electrode for alkaline battery
US6399247B1 (en) 1999-02-26 2002-06-04 Toshiba Battery Co., Ltd. Nickel-metal hydride secondary battery

Also Published As

Publication number Publication date
JPH0630251B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0666606B1 (en) Hydrogen-occlusion alloy for electrode of a sealed battery
JPS62287568A (en) Manufacture of alkaline storage battery
JPS62108458A (en) Nickel-hydrogen secondary cell
JPH04212269A (en) Alkaline storage battery
JP3113891B2 (en) Metal hydride storage battery
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JP3157237B2 (en) Metal-hydrogen alkaline storage battery
JPS62117274A (en) Nickel-hydrogen secondary cell
JPS61176067A (en) Hydrogen occlusion electrode
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH04301045A (en) Hydrogen storage alloy electrode
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0690922B2 (en) Sealed alkaline storage battery
JP2680650B2 (en) Sealed alkaline storage battery and manufacturing method thereof
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH06145849A (en) Hydrogen storage alloy electrode
JP3096464B2 (en) Nickel-hydrogen alkaline storage battery
JP2957745B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2003017116A (en) Alkali storage battery and manufacturing method of the same
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH0582127A (en) Enclosed type nickel-metal hydride storage battery
JPH01231268A (en) Metal-hydrogen alkaline storage battery
JPS6276255A (en) Hydrogen occlusion electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term